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1. Introduction

BEGINNING with Hotelling’s (1929) study of spatial competition, location
theory has provided important insights into imperfect competition. How-
ever, the applicability of the classical approach is limited; it leaves two
major issues unresolved. First, what impact does price competition have on
the process of product selection? Second, what results are available when
products differ across more than one dimension? We develop a simple
framework to study competition through product differentiation and prices
in a multi-dimensional setting.

Efforts to model price competition, even in a one dimensional setting,
have proved discouraging. Equilibrium may not exist if firms locate too
close together (d’Aspremont et al., 1979). When equilibrium exists, its
nature depends heavily on an exogenously specified transport cost function,
be it fixed, linear, or quadratic (Gabszewicz and Thisse, 1985; Economides,
1985). In general, it is hard to provide an economic interpretation and
justification for these types of transportation costs in a model of product
differentiation.

Most location models follow Hotelling in focussing on competition along
a single dimension. In one dimension, a firm has at most two neighbors; this
places an artificial limit on the extent of competition. Only in higher
dimensions is this problem eliminated (Archibald and Rosenbluth, 1975;
Stiglitz, 1984). Realistically, product differentiation is almost always multi-
dimensional. Computer printers vary in terms of speed, noise, and clarity of
output. Cars vary in size, comfort, sportiness, fuel economy, reliability, and
in many other dimensions.

The multi-dimensional nature of product design is particularly evident in
marketing new products. Products are frequently launched to fill a
perceived market niche; low alcohol beer and caffeine free soft drinks are
two recent examples. These products take advantage of a characteristic
under-exploited by existing competitors. This suggests that a multi-
dimensional setting is important both to the theory of product design and to
the theory of advertising. However, to understand product design first
requires an understanding of price competition.

Product selection and pricing strategy is typically a two-stage process.
Initially, product characteristics are chosen. Then given a set of com-
modities with fixed characteristics, competition takes place through prices.

Multi-dimensional product differentiation and price competition are
brought together in our study of imperfect competition. We use Grandmont’s
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(1978) theory of intermediate preferences to build a tractable multi-
dimensional location model. This provides a framework to address impor-
tant issues in industrial organization: when are there first-mover advantages
in product design (Guasch and Weiss, 1980); how is location chosen to deter
entry (Schmalansee, 1978); what are the signs of collusive behaviour in
product design; how do cost differences affect product differentiation,
prices, and market shares?

If location choice is followed by price competition Proposition 4.1
provides conditions for existence of a price equilibrium given any location
pair. The significance of this result stems from the historic difficulty in
attaining existence of price equilibria in location models. In addition, it
allows us to examine the effects of cost asymmetries on product
differentiation. Proposition 4.2 shows that a low cost entrant seeking to
capture the entire market from a higher cost incumbent does best to imitate
his product. We also show that a high cost firm, by locating well away from
the center of the market, may be able to avoid destructive competition with
its low cost rival, and guarantee itself a market niche.

We present more precise results for product differentiation in a price-
regulated duopoly. The first firm to fix a location is at a disadvantage. The
second mover advantage increases with the dimension of the product space.
For arbitrary distributions of consumer preferences over n-dimensional
goods (n =2), the second firm can capture up to (n — 1)/n of the market.
However, when there is a measure of agreement (defined in Section 5)
about which mix of characteristics is most desirable, the incumbent firm can
always locate so as to guarantee a 36.8% (1/e) market share.

Section 2 presents a brief survey of location theory. Section 3 outlines our
general model. Section 4 integrates product design with endogenous price
competition in a two-dimensional setting. Section 5 analyzes product
differentiation in arbitrary dimensions for price regulated duopolists.
Section 6 offers our conclusions.

2. Location theory

Location theory begins with the work of Hotelling (1929). In his analysis,
the set of possible locations for a given product is represented by the unit
interval, [0,1]. Each firm produces at a single location. Market demand is
generated by consumers who differ in their location along a line. Each
consumer prefers products closer to their own location. Prices are taken as
fixed and identical and hence consumers always buy the closest product.
This basic model has been applied by political scientists to study the choice
of party platforms (Black, 1948; Kramer, 1977), and by economists to
examine product differentiation (Chamberlin, 1933; Eaton and Lipsey,
1975; Prescott and Visscher, 1977; Lane, 1980).
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Attempts to incorporate prices have encountered a major difficulty in
even proving the existence of equilibrium strategies. It is largely this
difficulty which has prevented the more widespread adoption of the model.
To compute the equilibria for a two-stage model requires the existence of
Nash equilibria in prices for arbitrarily close product specifications. The
disturbing result of d’Aspremont et al. (1979) is that no pure strategy pricing
equilibrium may exist when firms are located too close to one another. But,
if no price equilibrium exists for certain locational choices then there is no
way for firms to estimate the profitability of those locations.

Resolutions of the existence problem have concentrated on three areas:
changing the transport cost function, allowing for mixed strategies, and
focussing on vertical as opposed to horizontal location problems.

Gabszewicz and Thisse (1986) have demonstrated the existence of a pure
strategy price equilibrium for the Hotelling model when there are quadratic
as opposed to linear transportation costs. The equilibrium locations are at
the two ends of the unit interval. Similar are the results of Economides
(1983) who shows that when consumers have a maximal or reservation
distance that a pricing equilibrium exists and firms locate far apart. The
equilibrium depends heavily on the form of the transportation cost function
(Gabszewicz and Thisse, 1986). As a consequence, few applications have
been developed.

Even when there is no equilibrium in pure strategies, there may be mixed
strategy solutions (Dasgupta and Maskin, 1986). It is of interest that
Hotelling’s model with linear transportation costs and bounded reservation
prices possesses no equilibrium even in mixed strategies. In games where
mixed strategy equilibria do exist (see examples by Osborne and Pitchik
(1982) and Stiglitz (1984)), their complexity effectively rules out compara-
tive static analysis.

Shaked and Sutton (1982) attain important positive results in price/
location theory by examining vertical rather than horizontal product
differentiation. In their model, firms compete over quality and price. Quality
choice is a “vertical”” location problem because all consumers prefer higher
quality to lower quality. By contrast, in “horizontal” location problems,
changing the product specification is a move towards some consumers and
away from others. Their results are encouraging, but so far limited to
problems of one dimension (quality). It has proved difficult to develop
generalizations that include horizontal product differentiation.

An entirely different approach to multi-dimensional product
differentiation and pricing is taken by Spence (1976), Dixit-Stiglitz (1977).
They address Chamberlin’s question of whether the competitive market will
provide the optimal amount of product diversity. To focus on this question,
they use a completely symmetric model. This bypasses issues of product
design and questions where asymmetries play a prominent role.

To achieve greater applicability of the location model to multi-
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dimensional horizontal product differentiation with price competition, we
begin by reformulating the basic framework.

3. The general model

The formal model provides a precise specification of the consumer and
producer sides of the economy and the definition of equilibrium. After
presenting the general framework, we specialize to the case of duopolistic
competition.

Consumers

Products are identified by an n-dimensional vector of salient characteris-
tics (Lancaster, 1966; Gorman, 1980). Consumers face a variety of
commodities each offering a different bundle of characteristics. There is
exclusivity in consumption; each consumer chooses only one of the
products. The characteristics of the commodities cannot be combined to
yield intermediate mixes.

Our approach to the price/location model separates the space of
consumer preferences from the space of product characteristics. The
population is represented by a distribution on the space of utility functions.
Specifically, we assume that consumers have Cobb-Douglas utility func-
tions. Heterogeneity of tastes is then specified by a distribution function
over the Cobb—Douglas parameters, as in Lane (1980).

In the traditional location model, a single space is traditionally used to
represent both the diversity of products and the diversity of consumer
preferences. A product is represented as a point in characteristic space. A
consumer is represented by a most preferred characteristic mix and by a
“transport cost” function. This function specifies the price difference needed
for the consumer to be indifferent between a unit of any given good and a
unit of their most preferred good. The model of consumer preferences
underlying the transport cost function is left unspecified. A conceptual
advantage of our approach is that “transport costs” are defined en-
dogenously from the utility function rather than being exogenously set as
either fixed, linear or quadratic.

An additional motivation for assuming Cobb—Douglas utility functions is
tractability. There should be a simple calculation determining which
consumers prefer good X to Y and which prefer Y to X. In one dimensional
problems, this is straightforward. But, even in the two-dimensional location
model with linear transportation costs, market areas are defined by
hyperbolas when the two firms charge different prices. In contrast, when
consumer preferences are derived from Cobb-Douglas utility functions, for
all prices (P, P,) the set of consumers who prefer X to Y is divided from
those who prefer Y to X by a hyperplane in the space of Cobb—Douglas
parameters [Grandmont (1978)].
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Producers

On the supply side, there is a fixed list of potential competitors,
i=(1,...,j). We assume that the order of entry into the market is
sequential, with a fixed known order of entry. Based on the expected
competition, the ith firm is either deterred from entering or pays market
entry costs of A® and produces one product. If it enters, competitor i has
cost function C,(W) giving its unit cost of production for any list of product
characteristics, W. Once chosen, product characteristics are fixed. Behind
this assumption is the belief that changing product design is both time
consuming and costly relative to changing price.

Each potential entrant decides on its location rationally, taking account
of the existing products, future product selection, and the anticipated price
competition. After all product locations are chosen, the prices are deter-
mined in a Bertrand—Nash equilibrium for the given products.

Equilibrium

An equilibrium of the game is an ordered list of j firms {f;, £, ..., f}, j
products {W;, W,, ..., W}, and j prices {p1, p,, . . ., p;} where

(i) {p1,p2,...,p;} is a Nash equilibrium in prices given products
(Wi, Wy, ..., WL

(ii) Each firm in the list {f;, f;, ..., f;} picks its location optimally in
relation to other firms’ prior locations, predicted future locations, and the
ensuing price competition. Each firm that locates correctly anticipates
making sufficient profits to justify entry.

(iii) Each non-entering firm rationally predicts a loss should it choose to
enter.

Duopoly

In a duopoly, the incumbent firm first chooses its product, X € R". The
rival firm responds with its product Y € R". Firm X has cost function C,(X),
firm Y has cost function C,(Y). Entry into the market is free.

In this n-dimensional setting, a consumer of type « = (ay,. .., o,) has
Cobb-Douglas utility function,
U(a/) Qr wly ceey wn) = Qb"vtlxl L w;‘lln) (1)

where w; represents the ith characteristic of commodity W and Q
represents the total consumption of other products. Consumption of any
given commodity is treated as a continuous variable.

For simplicity, all consumers are assumed to have identical values of
b=0, and equal incomes I>0. We normalize so that a€S", the n-

dimensional unit simplex, i.e. ;=0 and i «; =1. Thus all individuals

i=1
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spend the same amount, I/(1 + b), on commodity X or Y, whichever they
purchase.! Units are chosen so that I/(1+b)=1. .

Given commodities X and Y, the duopolists simultaneously choose prices
P, and P,. A consumer with Cobb—Douglas parameter a € $” will purchase
X over Y if and only if,

[531

«, [+ 4 [+
X1 ..xn">y1‘...y,,"

5 5 @
Taking logarithms and rearranging yields
n—1 Xy y P
in () >tow () + e ()
2:1 aln ") >log () +log P, 3

Equation (3) asserts that the set of consumers preferring X to Y can be
separated from those preferring Y to X by a hyperplane in the space of
Cobb-Douglas parameters. This observation follows closely from Grand-
mont’s (1978) demonstration that Cobb—Douglas utility functions lie in the
class of intermediate preferences. The dividing hyperplane has normal

vector
X1Yn Xn—1Yn
tog (F22), ..., 10g (22=22)),
< s YiXn g Yn—1Xn

which depends only on the products’ specifications, not on their prices.
Hence price changes cause parallel shifts in the hyperplane dividing the
population between the two products. The central role of hyperplanes
greatly simplifies our analysis. This is most evident in Section 5, which
presents a multi-dimensional extension of the fix-price models of Hotelling
(1929) and Prescott and Visscher (1977).

4. Existence of a price equilibrium

We focus on a two-dimensional version of the general duopoly model. We
assume that both firms have constant returns to scale and that production of
either characteristic is equally costly. This allows us to consider the effect of
cost differences between the two firms. Since the goods are infinitely
divisible, no generality is lost in choosing a scale so that x; +x, =y, +y,=1.
Unit costs for Firm X are C, and for Firm Y are C,.

In two dimensions the determination of market shares is considerably
simplified. Consumers buy (X, P,) over (Y, P,) if o; = af, where

af =[log (y2/x,) +log (P/P)]/K, (3"
and K =In [(x1y,)/(y1x2)].?

1 If expenditure differed across the population, an additional integration would be required
holding “—2‘1 @; constant.

2 When locations are fixed, we assume that X is more intensive in the first characteristic so
that k> 0. If k <0, then market areas are reversed.
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Without loss of generality, total population is 1. Firm X’s revenue is then
F(a¥), where F(af) is the proportion of the population with a; < a;.?
Consumers with Cobb—Douglas preferences who purchase X spend a fixed
amount on X regardless of its price. Higher prices lead to lower production
costs as each consumer’s demand is inversely proportional to price. Thus
profits obey

IL =[1-F(aD][1 - G/P],

I, = F(a})[1 - C,/P,]. @)

The major result of this section is an existence result for a pure strategy
Nash equilibrium in prices given any two distinct commodities (X, Y).
Existence depends on an assumption about the distribution of consumer
preferences.

Assumption Al: The distribution function F(a;) is concave and twice
differentiable over its support (a, b); F'(a;) = f(a1), F'(a1) =f'(a,) <O.

One special case of Al is a uniform density over a connected subset of the
unit interval.

The point of this assumption is to prevent extreme distributions of
consumer preferences. Profit is guaranteed to be well behaved if a sufficient
fraction of the population is “centrally” located in relation to the consumers
with “extreme’ tastes. An equivalent assumption plays a central role in
providing stability to a broad class of voting problems (see Caplin and
Nalebuff, 1986).

To review, the order of events is that Firm X first chooses its
characteristic mix (x;, x,) and then Firm Y selects (y;, y,). The prices
(P, P,) are subsequently determined as a Bertrand-Nash equilibrium for
the given pair of products. To solve the game, it is necessary to work
backwards and calculate the expected price equilibrium for any pair of
locations.

Given locations and Firm Y’s price, the derivative of Firm X’s profit
function must be zero in equilibrium:

_[1=F(aDIC _ faD)A=C/P) _

dIL,/dP, P2 XP, 0, ®)
where we have substituted in the value of daf/dP,,
dai/dP, =1/[KP,]. (6)

Parallel calculations determine the derivative conditions for Firm Y,

_F(aG _flaD)1-G/P) _
P2 KP,

d1,/dP, 0. )

3We assume that the density of F is non-atomic so that consumers indifferent between
distinct goods X and Y are negligible.
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Proposition 4.1 demonstrates that the first-order conditions, (5) and (7) are
also sufficient to identify Bertrand—Nash equilibria. This is the key step in
our proof of existence of an equilibrium.

Proposition 4.1: For consumer preferences satisfying Al, any joint
solution to the first-order conditions is a Bertrand—Nash equilibrium.

Proof
In Appendix. O

Proposition 4.2 shows that there exists a joint solution to the first-order
conditions and that it is unique. In equilibrium, dIT,/dP, =0 and dII,/

dP, = 0 simultaneously. This implies:
PJC,=1+ K[~ F@DVf(e)), ®
P,/C,=1+ KF(a?)/f(a?).

Taking ratios and substituting in the value of «f in terms of P,/P, from
equation (3') yields the following implicit equation for any equilibrium
value of af interior to the support of F,

e E

y(at) = Kai —log| ( ©)

Proposition 4.2: Under Assumption Al, there exists a unique equilibrium
price pair (P,, P,) given locations (X, Y).

Proof

If X and Y are identical, then P, = P, =Max [C,, C,] and the lower cost
firm monopolizes the market. For X and Y distinct, Lemma A1l in the
appendix, demonstrates that v is a strictly monotonic function for «; in the
support of F. Hence, any solution to y(af)=0 is unique. If y(a,) is
everywhere negative then F(af)=1, P,=C,, and P, = C[1 + K | f(a})]. If
Y(a,) is everywhere positive, then F(af)=0, P,=C,, and P,=CJ[1+
K |f(af)]. If a solution to y(a;)=0 exists, then equilibrium prices are
determined by substitution back into equation (8) O

Consider Firm Y’s location decision in light of Proposition 4.2. It faces an
incumbent of known location. If Firm Y has lower costs, it faces a
dichotomous choice: it must decide between choosing a location in order to
monopolize the market and choosing a location which results in a shared
market.® Proposition 4.3 characterizes the optimal exclusionary tactic.
There is an interesting analogy here with Hotelling’s principle of minimum
differentiation—the optimal exclusionary tactic is to locate in the identical

#On this point, Lane (1980) makes an a priori assumption that exclusion will never occur.
Yet, to calculate equilibrium locations, one must allow for exclusion out of equilibrium.
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spot as the incumbent. However, the motivation for imitation is entirely
different than in Hotelling. Rather than agreeably splitting the market, the
new entrant steals the entire market.

Proposition 4.3: When a low cost entrant (Firm Y) faces a high cost
incumbent (Firm X) located in [a, b], its optimal exclusionary strategy is
to produce an identical product.

Proof

Consider all equilibria to the pricing game where Firm Y captures the entire
market, F(ay)=1. Since Firm X’s profits in all of these equilibria are
zero, it follows that P, < C,. If not, Firm X could earn positive profits by
charging P, and selling to consumers who prefer its product. Hence, over all
positions (X, Y) such that F(a{) =1, the highest value of P, is C,. Thus

m,<1-G/C.. (10)

But by locating in the same place as X and charging C,, Firm Y manages to
achieve a monopoly position with a profit of

In,=1-¢/C, (11)
proving the proposition [

Note that if the high cost incumbent is located outside the support of F
then the optimal exclusionary tactic is to locate at the nearest boundary, a
or b.

The alternative to exclusion is accommodation. Whether Firm Y chooses
to exclude or accommodate depends on the density function and Firm X’s
initial location. If the density is continuous at both boundaries of the
support, f(a) =f(b) =0, then Firm X is guaranteed a positive equilibrium
market share and hence positive profits for any initial location. This follows
from the first-order conditions. If Firm Y has the entire market, it will wish
to raise its price since the density of marginal consumers is zero. This allows
Firm X to gain a positive market share.

With f(a), f(b) strictly postive, a high cost firm may be excluded from the
market. For example, if the low cost firm locates first, then there is no
guarantee that the high cost firm can fit into the market. Alternatively there
may be uncertainty about the competitor’s costs. In this case, even if the
high cost firm locates first, it is not sure how much of an extreme position to
take. There will then be a tradeoff between lower profits at more extreme
positions and a higher probability of being excluded.

5. Multi-dimensional product differentiation without price competition

Consider competition in product design in an industry with regulated
pricing. To focus on product differentiation, we assume that the cost
functions, in addition to being linear and additive in characteristics, are
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identical for the two firms X and Y. With an appropriate choice of units,
cost are

Cw, ..., w)=C(wm, ..., w,)= -81 Wi
Prices are a fixed mark-up over input costs P,/C,=P,/C,=1+m, for
m =0. With these assumptions, any two goods X and Y both in $” will have
an equal price.
With mark-ups fixed, total industry profits obey,

I, +1I1, = [1 - F(a’f)](l - %) + F(a’f)(l - %)

x y

m

“1+m

Hence total profits are independent of product choice, and the two firms are
playing a zero-sum game. They choose product design to maximize their
own market share, or equivalently to minimize the competitors market
share.

There is a simple correspondence between product choice and points in
the space of Cobb—Douglas parameters. For a consumer of type « € §”, the
product X =« is most preferred among the possible equally priced
products. This allows us to speak of product selection in the space of utility
parameters. A product of type a €S represents the most preferred point
for the « type.

According to equation (3) of Section 3, the population is divided
between products of type a; and a, by a hyperplane containing «;, on one
side, and «, on the other. The goal of Firm X is to produce for a type «, in
order to maximize its market share. It must anticipate that Firm Y’s product
«, will depend on «,: &, will be chosen to minimize Firm X’s market share.
In equilibrium, Firm X chooses that type «* which minimizes Firm Y’s
maximal market share.

Facing a given product «,, Firm Y’s maximization problem is straightfor-
ward. It picks «, so that the hyperplane in the space of Cobb-Douglas
parameters dividing the population between the two products contains
maximal area on the side of a,. The central observation is Lemma 5.1.
Firm Y can, by an appropriate choice of product, secure for itself the
population on either side of any hyperplane through «,.

Lemma 5.1: Consider any given hyperplane in R” which passes through
the origin, and has a non-empty intersection with the unit simplex, S”.
For any product X € §” which does not lie on this hyperplane, there exists
a distinct product Y € S” so that the given hyperplane separates those who
prefer X from those who prefer Y.
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Proof

A hyperplane is uniquely defined by a point on its surface and its normal.
Given any normal vector & = (7, ..., ®,) and a commodity X € S", we
construct a good Y € 8" so that the separating hyperplane has normal 7 and
passes through the origin.

Let the ith characteristic of Y be y,=x;e™*". Consumers indifferent
between X and Y satisfy « - 7 = 0. Thus, for any non-zero A, the separating
hyperplane passes through the origin and has normal vector . The scale A
is chosen so that Ye§". 0O

A

With Lemma 5.1, the problem is formally identical to existing models in
the social choice literature (see for example Grandmont (1978), Greenberg
(1979) and Kramer (1977)). The optimal policy for Firm X is to produce for
the type «* that minimizes the maximal proportion of the population on
one side of any hyperplane passing through a*.°

We exploit the analogy with social choice to present some examples and
some general results on equilibrium market shares.® The results explore the
relationship between dimensionality, population preferences, and the order
of entry into the market.

The case with n =2 is straightforward with a non-atomic distribution of
parameters. Two firms locating sequentially will share the market evenly.
To secure a fifty percent market share, Firm X produces the product a*
which is most preferred by the median type, F(a™)=3. The political
analogue is the well-known median voter result for a population with
single-peaked preferences along a line (Black [1948]).

The simplicity of the two-dimensional case is misleading. Equal division
does not generalize to higher dimensions, except in the special case where
the distribution of Cobb-Douglas parameters is radially symmetric (Plott,
1967).

A more interesting example involves Cobb—Douglas parameters distrib-
uted uniformly in the three-dimensional unit simplex. Whenever the first
firm locates, the second can receive more than one-half of the market. In
fact it is optimal for the Firm X to produce the good (3, 3, 3) designed for the
individual at the center of mass of the simplex.” At the center of mass, Firm
X serves four-ninths of the population when the second firm locates
optimally [Fig. 1(a)]. If Firm X locates elsewhere, Firm Y gets a greater
than five-ninths share of the market [Fig. 1(b)].

In three dimensions, the worst possibility for Firm X involves an atomic

51In fact Lemma 5.1 shows only that Firm Y can achieve market areas arbitrarily close to
those defined by hyperplanes through «,. The epsilon-equilibrium is the relevant solution
concept.

6 Caplin and Nalebuff (1986) present a thorough treatment of the equivalent problem in the
context of social choice.

71t is tempting to conjecture that the first firm always locates at the center of mass of
population preferences even with more complex densities. This is false (Caplin and Nalebuff,
1986).
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FIG. 1(a). The lines inside the triangle divide it into nine identical triangles. With
Firm X locating at «,, Firm Y can secure five of the nine triangles. To do this it
produces products &, for which the dividing lines approach «, at an angle
perpendicular to any side of the outer triangle. There are no other lines in the
triangle which secure as much as five-ninths of the population for Firm Y.

distribution of parameters. Assume that one third of the population is of
type a4, one third is of type a3, and one third of type a., with a,, ap and
a¢ non-colinear. In this case, Firm Y can secure a two-thirds market share
regardless of Firm X’s location (Figure 2).

Insights from these planar examples are central to understanding higher-

dimensional problems. There are two main results, both drawn from the
social choice literature.

FiG. 1(b). Here, Firm X locates at «, away from the centroid of the simples. Firm Y
can now get more than five-ninths of the triangle. For example, it can pick ay so that
the dividing lines approach «y at an angle perpendicular to the farthest side.
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ap ac

FiG. 2. The market consists of equal numbers of the three types a,, oy, @c. Firm X
locates at «,. To secure the two types oy and a, Firm Y produces a product giving
rise to the dividing line drawn in the figure.

Proposition 5.1: With Cobb-Douglas parameters distributed arbitrarily
over §”,n =2, Firm X locating optimally will receive between 3 and 1/n of
the total market. No tighter bound is possible.

Proof
This follows from the result of Greenberg (1979) in light of Lemma
51 0O

Proposition 5.2: Consider Cobb—Douglas parameters distributed accord-
ing to a non-atomic density f(«) on « € §”,n =2. Assume that the density
f(@) is concave on its support B = $”. Then Firm X locating optimally will
receive a market share of between 3 and ((n — 1)/n)"~*. No tighter bound
is possible.

Proof
This follows from the result of Caplin and Nalebuff (1986) in light of
Lemma 5.1 0O

These results highlight the importance of the dimensionality of the
commodity space. In both propositions, the first firm’s market share falls as
the dimensionality rises. This suggests that entrants can improve their
market share by differentiating their product along a previously unexploited
dimension. Advertising is one tool used to expand the number of a
product’s salient characteristics. Burger King’s advertising campaign
introduce the distinction between flame-broiled and fried hamburgers. The
recently introduced low-alcohol beer, LA, added a new dimension to beer
marketing.
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6. Concluding remarks

Our concluding remarks offer three directions for further research on
multi-dimensional product differentiation and price competition.

Further development of the basic duopoly model

The solution to the simple duopoly model can be applied to examine a
wide variety of other questions. Two important issues are the introduction
of uncertainty into the locational model, and a comparison with the
collusive solution.

The introduction of uncertainty will greatly enhance the model’s realism.
Typically, firms are not fully informed about competitors’ costs. This
informational asymmetry introduces entirely new issues. For example, the
choice of a particular product may act as a signal of the firm’s costs. This has
implications both for an incumbent’s choice of an initial location and the
nature of the subsequent price competition. Here it is of interest that a
central location by the first firm appears to be a high risk strategy once one
takes account of uncertainty. Taking a central location is good for a low cost
producer, but is bad should the rival turn out to have lower costs. Hence
increased uncertainty about the other firm’s cost may push both away from
the center of the market. In equilibrium, locating centrally would send a
strong entry-deterring signal that costs are very low.

The duopoly model can also be applied to study anti-trust questions.
Collusion can take place in pricing decisions and/or location choices.
Traditionally, anti-trust focus has been on recognizing price collusion rather
than collusion in product design. Less obvious are instances where firms
collude in product design, anticipating non-cooperative pricing strategies.
For example, in the case of airlines, given that they pursue competitive
pricing policies, are they colluding or competing in scheduling their flights?

Extensions

While the two firm, two-dimensional version of the model is revealing it is
important to extend the framework to more realistic environments. Exis-
tence of a price equilibrium for an arbitrary pair of locations can be
generalized beyond the two-dimensional existence result in Section 4. Our
assumption of concavity (Al) plays a central role in extending the existence
results to higher dimensions.

It is also important to specify in a more satisfactory manner the
determinants of the order of entry into a particular market (e.g. see Hay,
1976). Frequently, the decision on whether or not to enter is being made by
a number of firms at the same time. This raises entirely new issues. Will
firms agree on an order of entry? If not, will there be a sudden rush to
enter, with several firms entering simultaneously? Conversely, may the
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prospective actions of future competitors deter entry altogether, and so
prevent the development of potentially profitable markets? The issues are
suggestive of a possible asymmetric war of attrition (Nalebuff and Riley,
1985).

Applications

For policy design, we must compare the socially optimal pattern of
product location with the non-cooperative oligopoly solution. It may then
be possible to separately understand market departures from optimality in
(a) the design of products, (b) pricing strategies, and (c) the number of
competing products.

Finally, a potentially important application of our model is to the theory
of the product cycle in international trade theory. It is frequently contended
that the U.S. acts as a leader in innovation but ultimately has its markets
taken away by lower cost foreign producers. There is then the question of
which kinds of products and innovations will be least susceptible to this kind
of potentially destructive low cost competition. The answer has implications
for R&D strategies both at the corporate and national levels as well as for
the design of tariffs as part of an overall industrial policy. Our model
appears well suited to studying product cycle dynamics since the central
elements are the known order of entry into the market and the underlying
asymmetry of costs.

APPENDIX

Proposition 4.1: For consumer preferences satisfying A1, any joint solution to the first-order
conditions is a Bertrand—Nash equilibrium.

Proof

Consider first a joint solution, (P}, Py), with F(a7) € (0, 1). If Firm X (symmetrically, Firm
Y) has a price better than P} against P}, this implies that there is some other price, P,, with
F(a¥) € (0, 1), which is a local minimum of the profit function. But (1a)-(Sa) prove this is
impossible as any solution to the first-order condition with F(af) € (0, 1) is always a local
maximum.

di,

P ~ ~f@D)C./P. = fla}) = f(aD)(1 = GIP)/K (1a)
x 1(d1,/dP,)=0

~ =2f(af)’ = fa)[1l - F(a)IK = f'(aD)[1 - F(a)] (2a)

< =2f(a1)’ = f'(aD)[1 - F(a})] (3a)

=-(3)f(at)? (42)

<0. (5a)

Equation (2a) follows by substitution of the first-order condition solution for C,/P, into (1a).
Equation (3a) follows as K >0. Equation (4a) follows as —f'(a})[1 — F(a})] < (3)f(af)? for
any concave function F. To confirm this, note that the worst case occurs when f’ is a negative
constant. Then for any «,, 1—F(&)=<—3f(a,)*/f'(a;). Equation (5a) follows by Al as
flat)>0 for F(a})e (0, 1).
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The only other possibility is that at the joint solution, (P¥, P}), one firm, say Firm X,
receives a zero market share. In this case, by equation (7), F(af) =1 implies f(«}) >0. From
equation (5), this then requires that P, = C,. This is a best response for Firm X. Any lower
price leads to losses, while higher prices maintain a zero market share. Since Firm Y has a
positive market share (and f(a})> 0) the previous argument proves the optimality of P}.* O

Lemma Al to Proposition 4.2: Under Al, y'(af) >0 for af € (a, b).

Proof
Taking the derivative of equation (9) shows

o 22+ f+ f1 = 2F]

v (“1)‘K[1+(f+ K- F( + KF)] )
] G2+ f
’K[1+(f+K[1—F])(f+KF)] (72)
>0 for afe(a,b). (8a)

In this derivation, we have shortened f(af) to f and similarly for F and f’. Equation (7a)
follows from (6a) by the concavity assumption Al. Again a triangular distribution is the worst
case; with f' a constant, either positive or negative, f'[1 — 2F] = —(3)f*

Substituting this inequality in (6a) yields the desired result. [J

Princeton University, USA.
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