THE DEVOLUTION OF DECLINING INDUSTRIES*

PANKAJ GHEMAWAT AND BARRY NALEBUFF

In declining industries capacity must be reduced in order to restore profitabil-
ity. Who bears this burden? Where production is all or nothing, there is a unique
subgame-perfect equilibrium: the largest firms exit first [Ghemawat and Nalebuff,
1985). In this paper firms continuously adjust capacity. Again, there is a unique
subgame-perfect equilibrium. All else equal, large firms reduce capacity first, and
continue to do so until they shrink to the size of their formerly smaller rivals.
Intuitively, bigger firms have lower marginal revenue and correspondingly greater
incentives to reduce capacity. This prediction is supported by empirical findings.

I. INTRODUCTION

Models of dynamic competition generally take a rosy view of
time: markets expand; better technologies become available; infor-
mation improves. In this preoccupation with time as an engine of
progress, environments in which time is an agent of regress have
been shunted aside. Yet, declining industries form an important
part of developed economies: more than 10 percent of the United
States’ 1977 manufacturing output was accounted for by industries
whose real output had shrunk over the 1967-1977 period.!

In declining industries the important competitive moves per-
tain to disinvestment rather than investment. An industry facing
decline must reduce its capacity in order to remain profitable.
Capacity reduction, however, is a public good that must be provided
privately.? Each firm would like its competitors to shoulder the
reduction: a firm may even maintain excess capacity—and sustain
losses—in order to force competitors to withdraw sooner. The
question arises: who gives in first?

The timing game in a declining industry is therefore a war of
attrition rather than a race to preempt. In the original model of the
war of attrition [Maynard Smith, 1974], each competitor chooses
between continuing to “fight” at a prespecified level of intensity or
conceding; the competitor that hangs in the longest wins the prize.
Ghemawat and Nalebuff [1985] applied this model, with its

*We are very grateful for comments provided by John Londregan, Mike
Whinston, and two anonymous referees.

1. This estimate is based on Bureau of Labor Statistics Data for ninety-five
“Economic Growth” industries. The estimate would be even higher at a lower level of
aggregation.

. For a discussion on motivating private provision of public goods, see Bliss
and Nalebuff [1984].
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dichotomous choice, to declining industries by restricting produc-
tion to be an all-or-nothing decision for each firm. This paper, in
sharp contrast, allows firms greater strategic flexibility by letting
them continuously adjust their capacities as demand declines.

We show that with continuous adjustment, there is a unique
subgame-perfect outcome to the battle over declining markets. The
Davids cut the Goliaths down to their own size: large firms are the
first to reduce capacity, and they continue to do so until they have
shrunk to the size of their formerly smaller rivals. Ceteris paribus,
survivability is inversely related to size. This prediction appears to
fit with recent empirical findings.

The paper’s outline is as follows. Section II discusses theoreti-
cal work on declining industries and introduces our results. Section
III offers corroborative empirical evidence. Section IV presents the
formal model and its equilibrium. Section V provides a brief
conclusion. The Appendix contains the proofs of all lemmata.

II. THEORETICAL LITERATURE

Our previous paper examined market decline in a highly
stylized setting [Ghemawat and Nalebuff, 1985]. Firms were per-
fectly informed about their competitors’ costs and capacities. Reen-
try was not allowed after exit. Demand declined continuously and
deterministically. Exit was an all-or-nothing decision. Under these
four assumptions, there was a unique subgame-perfect equilibrium:
the smaller of two equally efficient duopolists forced its larger rival
to exit as soon as duopoly profits turn negative.

Does the smallest firm continue to enjoy a competitive advan-
tage in a more general setting? It is useful to recapitulate what we
know about the effects of relaxing our previous assumptions.

Incomplete Information. In a paper concurrent with our first
model, Fudenberg and Tirole [1986] examine the exit decision in an
environment of incomplete information where each firm is uncer-
tain about its rival’s costs. They provide conditions for the existence
and uniqueness of sequential equilibrium in duopoly. When expec-
tations are symmetric, if exit occurs, it is the less efficient firm that
leaves.

Reentry. Londregan [1986], in a model of the industry life-
cycle, allows for the possibility of reentry after entry and exit. He
shows that if reentry costs are positive, there is a unique subgame-
perfect equilibrium in the all-or-nothing exit game with complete
information: smallness continues to be an advantage during decline
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and, by backward induction, also during the growth phase. (See
also Fishman [1989] for the effect of decline and exit on entry
deterrence.)

Probabilistic Decline. Fine and Li [1986] consider a market
that is declining probabilistically. In each period the probability
distribution of demand is stochastically worse than before. If the
intervals between decisions are sufficiently short, there is a unique
subgame-perfect equilibrium in which the smaller firm outlasts its
larger competitor.®? Huang and Li [1986] study exit decisions in a
model with random drifts in demand. Because demand may not
decline, there is no endgame to work backwards from. Even so, if
the state space is continuous so that demand changes smoothly,
there is again a unique subgame-perfect equilibrium in which the
smaller firm will never be forced out by its larger rival.

Capacity Adjustment. Whinston [1987, 1988] examines an
oligopoly in which capacity is adjustable in lumps equal to plant
size. In this framework he shows that it is difficult to reach any
general conclusions about the pattern of plant closures. When each
firm controls several differently sized plants, there is no theoretical
prediction about the order of exit. There are several complications.
A firm that withdraws a small plant now may be at a strategic
disadvantage later if its remaining plants are large. Or a firm with
many small plants may find this flexibility disadvantageous against
a larger firm with one big plant. Thus, it is hard to separate out the
effect of flexibility versus size. To focus on size alone, Whinston
considers a special case when all plants equally are sized. There is
still a complication; who moves first to break a tie between the two
largest firms? The structured pattern of exit returns when the
equilibrium play is independent of the tiebreaking rule (a quasi-
markov equilibrium)—only the largest firms reduce capacity. Fol-
lowing the proof of Theorem 1, we discuss the relationship between
our results in greater detail.

In the present analysis we prefer to maintain the assumption of
complete information: in the typical declining industry competitors
are well acquainted, and the production technologies embodied in

3. In their paper they argue that probabilistic decline allows the possibility of
multiple equilibria. The multiplicity, however, is an artifact of the long time periods
between decision making. Imagine that the time interval between decisions is
sufficiently long that only one decision is made for all time. Then, we are in the
traditional one-shot or static Nash equilibrium model where we know multiple
solutions are possible. It is possible to extend the Fine and Li model to prove that if
the decision periods are sufficiently short, there is a unique sequential equilibrium in
which the smaller firm always outlasts its larger rival.
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extant investments are common knowledge. The payoffs to allowing
réentry or stochastic demand trajectories are probably limited: the
papers cited above suggest that smallness continues to be a com-
petitive advantage with these generalizations.

We believe that there is a large payoff in extending the models
of exit beyond the all-or-nothing production technology. Although
such technologies characterize some industries with large, inflexible
plants such as alumina refining (see Ghemawat and Nalebuff
[1985]), firms usually shrink continuously as demand declines (soda
ash, rayon, baby foods, vacuum tubes, cigars, and electric coffee
percolators are some of the many examples: see Harrigan [1980]).
We study competition under the opposite of all-or-nothing adjust-
ment; we focus on production technologies where capacity is con-
tinuously adjustable. This allows us to model the effect of size
differences without the complication of differential flexibility.

Allowing variable capacity is an important extension for an
additional reason: it represents a significant generalization of the
standard war of attrition. Wars of attrition, as usually formulated,
allow only two actions: fight or concede. The possibility of variable
capacity corresponds to allowing variable levels of concession,
which considerably complicates calculating equilibrium. To our
knowledge, this paper and one by Whinston [1987, 1988] are the
first to characterize the equilibria in a war of attrition with variable
response possibilities. The cost of this extension is that we must
confine our attention to a highly stylized oligopoly with uniform
and constant marginal costs.

We demonstrate that given continuous capacity adjustment,
there is a unique subgame-perfect equilibrium in declining indus-
tries. In this equilibrium the largest of several equally efficient
firms will reduce capacity alone until its market share is equal to
that of its next smallest rival. Once parity is reached, the two largest
firms reduce capacity together while all others maintain capacity.
Then, when they reach the size of the third biggest firm, all three
start to shrink at an equal rate, and so on.

The motivation behind this result is that marginal revenue is
inversely proportional to firm size. Firm i’s marginal revenue equals
Q:P'(Q) + P(Q); this is a declining function of @, since a bigger firm
suffers more from a decline in price. In the absence of economies of
scale, bigger firms have, therefore, a greater incentive to reduce
capacity. The force of this marginal revenue argument is quite
distinct from the level that operates when capacity decisions are
all-or-nothing. In the all-or-nothing environment the survivor of
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competition among equally efficient rivals is the firm that has the
longest profitable tenure as a monopolist.

To help illustrate the novel results of this paper, consider a
duopoly where firm 1 operates four machines and firm 2 operates
two machines.* If the firms must make a dichotomous choice
between operating at full capacity or exiting in toto, Ghemawat and
Nalebuff [1985] demonstrate that the capacity vector evolves from
(4,2) to (0,2) to (0,0) as the industry declines. In contrast, if firms
may withdraw machines continuously, the only subgame-perfect
equilibrium for the industry capacity vector is (4,2) to (X,2) to (2,2)
to (Y,Y) to (0,0), where X falls smoothly from 4 to 2 and Y falls
smoothly from 2 to 0. In words, the larger firm reduces capacity
until its size equals that of its smaller competitor. Once parity is
reached, the firms shrink together.

The move toward equalization of market shares provides the
testable hypothesis that large firms undertake a disproportionate
share of the capacity reductions during decline. Empirical support
for this hypothesis is marshaled in the following section. The formal
propositions are then proved in the context of the stylized model
presented in Section IV.

III. EMPIRICAL EVIDENCE

The available empirical evidence on decline suggests that firms
with larger market shares experience greater pressures to shrink as
an industry devolves. Herein, we provide a review of three case
studies and relevant cross-sectional evidence.

The first case describes the decline of the U. S. synthetic soda
ash industry over the 1967-1978 period (see Harrigan [1980, Ch. 5]).
In 1967 almost three quarters of the soda ash consumed in the
United States was synthesized from limestone and salt. Five firms
(listed in Figure I) accounted for 99 percent of the domestic
synthetic soda ash capacity. All five employed the mature and very
capital-intensive Solvay process. The remainder of the U. S. soda
ash market was supplied by natural reserves that had begun to be
mined in Wyoming in the 1950s. Natural soda ash cost significantly
less to “produce” than did synthetic soda ash; the costs of trans-
porting it, however, were higher because most soda ash customers
were located east of the Mississippi, closer to the synthetic soda ash
capacity.

4. The machines are all of equal size and equal efficiency.
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Under pressure from natural soda ash, synthetic soda ash
producers operated at 89 percent of their capacities in 1967—an
amount probably just below their break-even level. Over the next
decade the tide continued to turn against synthetic producers.
Wyoming relaxed its regulations governing the mining of natural
soda ash. Higher energy costs and stricter environmental regula-
tions undercut the Solvay process because it was more energy- and
emission-intensive. Since the Solvay capacity required substantial
reinvestment to be kept operational, the stage was set for plant
closures.

Over the next decade the output of synthetic soda ash fell by
nearly two thirds. In 1978 only one Solvay plant, out of the original
nine, remained operational.’ Figure I depicts the devolution of that
industry. The pattern of closures supports our predictions in two
respects. First, each of the three multiplant firms closed a plant
before either of the two single-plant operators. Second, none of the
five firms dropped out of the market until all firms were down t¢
one plant apiece.®

Our second example is based on Baden Fuller and Hill’s [1984]
case study of the U. K. steel castings industry. The demand for
U. K. steel castings declined by 42 percent over the 1975-1981
period, and the industry’s return to sales dropped from 11 percent
to 1 percent. Competitors adjusted their capital stocks by closing
foundries. Executives of the two largest firms, F. H. Lloyd and the
Weir Group, “felt that they had borne the brunt of the costs of
rationalization” [Baden Fuller and Hill, 1974, p. 23]. They
accounted for 41 percent of industry output in 1975, but for 63
percent of the capacity that was withdrawn over the 1975-1981
period; this reduced their combined market share to 24 percent.
Some of the Lloyd and Weir foundries that were closed had been
more efficient than foundries that their competitors continued to
operate.

The U. S. integrated steel-making industry provides a third
example of devolution. During the 1960s and 1970s, imports and

5. The sole survivor, Allied Chemical, operated the largest plant in the industry.
Harrigan [1980, pp. 136-37] notes that it benefited from the most advanced Solvay
technology, access to a saline lake (which facilitated waste disposal), and the
easternmost location of any synthetic soda ash plant (which gave it the biggest
advantage in terms of transportation cost over producers of natural soda ash).

6. Note that some of this evidence goes against the predictions of Ghemawat
and Nalebuff [1985] that the order of exit should follow plant size. Of course, the
smaller firms may be producing below efficient scale. Or, they may be producing for a
market niche so that their fate will be less affected by the great winds blowing
against the industry.
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minimills (which recycle steel scrap) intensified the pressure on
integrated steelmakers. Deily [1985] studied the contraction of the
eight largest integrated steelmakers which together accounted for
90 percent of U. S. capacity in 1960. Because they faced large
barriers to exit, Deily focused on their replacement investments
over the 1962-1979 period. After controlling for plant efficiency and
reinvestment requirements, she concluded that [p. 125] “firm size
seemed to have a negative impact on all major investments during
these years. It is possible that some of the laggardness reflected the
strategic behavior described by Ghemawat and Nalebuff [1985].” It
is worth adding that the eight-firm concentration ratio in steelmak-
ing fell from 90 percent in 1960 to 76 percent by 1979.

In order to ascertain whether the market-share effects identi-
fied in these case studies hold up more broadly, Ghemawat [1985]
used Harvard University’s PICA database to analyze the determi-
nants of changes in four-firm concentration ratios over the 1967-
1977 period in 294 four-digit U. S. manufacturing industries. Since
it is difficult to control for intraindustry differences in efficiency
based on publicly available data, the basic specification did not
attempt to do so. This omission is likely to bias the results toward
the null hypothesis—that declining demand does not decrease
concentration—in proportion to one’s prior belief that size is
positively correlated with efficiency.

Ghemawat found that even in the absence of controls for cost
differences, a dummy variable indicating declines in real industry
output over the sampled period was positively associated, as the 5 to
10 percent level of statistical significance, with decreases in indus-
try concentration. When the rate of decline was introduced as a
continuous independent variable, again he found a significant
correlation: the higher the rate of decline, the greater the observed
rate of decrease of concentration.

Lieberman [1989] offers the most careful and comprehensive
cross-sectional tests of the predictions implied by the theoretical
models of exit and devolution. His results are based on a sample of
thirty chemical products, each of which experienced chronic
declines in output lasting five years or longer. “In general in
declining industries, it appears that small producers suffer dispro-
portionately high mortality rates whereas large-share firms make
more frequent incremental reductions of capacity. When analysis is
limited to survivor firms in steeply declining industries, there is
significant evidence that firm size convergence is due to more rapid
divestment by the largest producers” [p. 17]. Specifically, of the 15
products in Lieberman’s sample that experienced declines in capac-
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ity of 40 percent or more, 12 exhibited convergence in the sizes of
the survivors. This evidence, together with the cases discussed
above, is suggestive of a tendency for market shares to converge
during decline.

IV. MODEL SPECIFICATION

The formal structure of our model consists of the following
notation and assumptions:

Al. There are m competitors in the market. Initially, firm i has a
capacity level of k;(0). The industry capacity vector at time ¢ is
represented by K(t) = [k,(t), ..., Ek.(t)].

A2. For each firm i the flow cost of maintaining its capacity is C per
unit. There are no other operating costs. Production is con-
strained by capacity; setup costs preclude the addition of
new capacity or the reintroduction of previously withdrawn
capacity.

A3. Capacity can be adjusted continuously. Reductions are
irreversible.

A4. Time is quantized into periods of duration A. Period n begins at
time t". An approximation of the continuous time solution is
the equilibrium in the limit where A approaches zero.

A5. A withdrawal of capacity is effected at the beginning of the
relevant time interval and is reflected immediately in cost
reduction. Withdrawal decisions are made simultaneously.

A6. Firm i’s cost of withdrawing capacity is S per unit. This cost
will be positive if exit costs (e.g., severance payments) pre-
dominate or negative if the retired capacity has a sufficiently
large salvage value. If the output price is zero, exit costs are not
sufficiently large to prevent firms from withdrawing capacity:
rS < C, where r is the discount rate.

A7. Each firm’s output is a perfect substitute for every other firm’s
output. Define total output at ¢t by Y(¢t) = k(t) + ku(t) +
...+ k,(t). The price to firm i is P(Y(t),t).”

7. We are implicitly assuming that firms produce at full capacity. Although this
simplifies the exposition, the results generalize directly to the case where firms may
produce at less than full capacity. The reason is that production costs depend only on
capacity. Thus, in a one-period problem, no firm would maintain excess capacity. We
then show (Theorem 1) that the unique subgame perfect equilibrium follows the
sequence of period-by-period maximizations. This remains true whether or not there
is the option of maintaining idle capacity.
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A8. The inverse demand function P(Y,t) is well defined and
continuous for all Y = 0. P(0,t) is bounded, and P(Y,t) equals
zero for some finite Y. Furthermore, P(Y,t) has continuous
second derivatives and is downward sloping: P(Y,t) =
dP(Y,t)/dY < 0, P"(Y,t) = d*P(Y,t)/dY?is continuous.

A9. Firm i’s marginal revenue at any Cournot-Nash equilibrium
output level (k) is a nonincreasing function of total industry
output: P'(Y,t) + k¥*P"(Y,t) < 0 for all possible Y. Hahn [1962]
demonstrates that this condition ensures the stability of the
Nash equilibrium.®

A10. Demand is declining toward zero for exogenous reasons. For
any ¢ > 0 there exists a T such that P(0,t) <eforallt = T.

A11. Marginal revenue at full capacity, P(Y,t) + kP'(Y,t), is a
strictly decreasing function of ¢ for all Y. Assumptions A10 and
A11 are both satisfied, for example, if P(Y,t) = P(Y)e%.

These assumptions lead to a unique subgame-perfect equilib-
rium. The firms with the largest capacity are the first to shrink. -
When the formerly larger firms shrink to the size of their smaller
rivals, the latter join in subsequent reductions of capacity.

Although the arguments are technical, the intuition is simple.
Imagine that all firms act “myopically”; i.e., each firm seeks to
maximize only its current period profits. This behavior leads to a
sequence of period-by-period Cournot-Nash equilibria. Since mar-
ginal costs are equal, the firms with the smallest outputs have the
greatest marginal revenue. This implies that the smallest firms
never act first to reduce capacity.

This sequence of period-by-period Nash equilibrium strategies
is the unique subgame-perfect equilibrium. When each firm acts
myopically, any deviation in output must lower current period
profits. The only reason to deviate, therefore, would be to raise
future profits. In Lemma 2 we show that maintaining capacity in
excess of the myopic equilibrium has no effect on future outcomes.
Since demand is declining, the firm will already have some excess
capacity; extra units of excess capacity do not convince competitors
to further reduce their output. In Lemma 4, we show that a
reduction of capacity below the myopic solution also fails to

8. Note that Hahn [1962] makes an a priori assumption that there is a unique
Nash equilibrium. Since we are also interested in proving uniqueness, his condition
must be modified so that the stated inequality holds at any Nash equilibrium. The
general condition will be satisfied if YP'(Y,t) is a declining function of Y.
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increase future profits; it may even decrease profits by encouraging
competitors to increase their future outputs (i.e., temper their
reductions). This intuition is now made rigorous.

LEMMA 1. There exists a unique Cournot-Nash equilibrium to the
single-period problem where each firm maximizes its current
flow of profits subject to the constraint that no firm produces
above its capacity: k;(t") < k;(t"7Y).

Proof of Lemma 1. See the Appendix.

The output at this Cournot-Nash equilibrium is denoted by
k¥(K(t"1),t"). We refer to the strategy of maximizing current
profits as myopic behavior.

DEFINITION 1. K*(K(t"1),t") is the vector of myopic Nash strate-
: 9
gies:

K*(K(t""),t") = [kFK " ),t"), ..., kAEK ("))

The sequence of myopic Nash equilibrium strategies is then defined
by calculating the myopic Nash equilibrium level in period ¢t", where
the initial capacity vector is given by the myopic Nash equilibrium
from period t"~'. Proposition 1 states that in this sequence of
myopic Nash equilibrium strategies, only the largest firms reduce
capacity.

PROPOSITION 1. Order the firms so that k,(0) < k,(0) <... < k,,(0).
In the sequence of myopic Nash equilibria, each period there
exists some k*(t") such that all firms with initial capacity
below k*(t") remain at their initial capacity and all firms with
initial capacity above k*(t") have reduced their capacity to
kR*(t"):

K*(K(tn—l),tn) = [kl(O),k2(O), s k](O)ak*(tn), LRI | k*(tn)L
where k;(0) is the maximum initial capacity less than k*(t").

Proof of Proposition 1. Define k*(t") by

f“ R*(t") P (K*t" + 1) + P(K*t" + 7) — (C — rS)le"dr = 0,
0

where K* is shorthand for the industry’s unique, myopic Cournot-
Nash equilibrium level of output in period t". All firms with
capacity £*(t") are maximizing current period profits. Because P’ is

9. For notational consistency, let K*(K(t"),t°) equal K(0), the initial capacity
vector.
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negative, all firms with &;(0) < k*(¢") have positive marginal profit
at full capacity utilization. In the myopic solution all such firms are
capacity constrained. Hence, K*(K(t""),t") is a Cournot-Nash
equilibrium for period t", and by Lemma 1 this equilibrium is
unique.

QED.

To calculate a subgame-perfect equilibrium for this model
poses no theoretical difficulties. We proceed using the logic of
dynamic programming and backward induction. The primary con-
ceptual issue is to characterize the nature of the solution. We show
that for equally efficient oligopolists, only the largest firms reduce
capacity in response to declining demand. This characterization of
the subgame-perfect Nash equilibrium coincides with the descrip-
tion of the sequence of myopic Nash equilibrium strategies proved
in Proposition 1, as we now show that the two solutions are the
same.

THEOREM 1. Under Assumptions A1-A11, K*(K(t"!),t") is the
unique subgame-perfect equilibrium capacity vector in period
t" for all n.

Proof of Theorem 1. The proof is based on backward induction.
We first show that the result is true past some time 7. Then by
assuming the result from period ¢t"*! onwards, this implies that from
time t" onwards there exists a unique subgame-perfect equilibrium
which coincides with the myopic Nash equilibrium in each period.
Intermediate steps in the argument are provided by Lemmata 2-5,
which are stated and proved in the Appendix.

Since demand is declining toward zero, eventually all firms will
cease to produce, even as a monopolist. Lemma 5 shows that there
exists a time T such that once t* = T, the unique myopic solution
coincides with any subgame-perfect equilibria: all firms have zero
capacity.

The inductive hypothesis tells us that over [t"*!,«) there is a
unique subgame perfect equilibrium which coincides with the
sequence of period-by-period Cournot-Nash solutions. We need to
extend this back one period to t". By Lemma 1 the myopic Nash
equilibrium in period ¢" is unique. To demonstrate that this is also
the unique subgame-perfect equilibrium, it is sufficient to show
that producing either more or less than k*(K(¢t"!),t") results in
lower aggregate profits over [t",T']. Any deviation away from k}
lowers profits over [t"t"*!], since k¥ is the one-period profit-
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maximizing strategy. The only reason to deviate, therefore, is that it
might produce higher profits over [¢"*!,T]. In this interval the
inductive hypothesis allows us to consider the sequence of period-
by-period Cournot-Nash solutions as the unique subgame-perfect
equilibrium. We show for this sequence of myopic Nash equilibrium
strategies, any deviation away from k}(K(t""'),t") cannot raise
profits over [¢t"*,T].

Consider the payoff to a firm that deviates and chooses to
produce more than the myopic level, k; > kX (K(t"1),t"). Because
firm i is able to produce more that k}, it is obviously not constrained
by capacity in the period ¢ myopic Nash equilibrium. In the
sequence of myopic Nash equilibria that follow, Lemma 2 shows
that all unconstrained firms produce a strictly smaller output each
period. As a result, from period t"*! onwards, the subgame-perfect
equilibrium in each period is unchanged: K*(K'(t"),t"*!) =
K*(K(t"),t"*"). The additional capacity of firm i held at t" is
eliminated immediately in period ¢t"*! and does not affect profits
over [t"*1,T].

Consider, alternatively, the payoff to a firm that deviates and
chooses to produce k; < k*(K(t"!),t"). In this case the subgame-
perfect equilibrium from periods t"*' onwards may change. Lemma
3 implies that the new subgame-perfect equilibrium involves firm i
producing no more and the other firms producing no less than at the
no-deviation benchmark. This outcome leads to (weakly) lower
profits for firm i by Lemma 4. Intuitively, the reaction curves are
negatively sloped so that excess capacity reduction by firm i
encourages its rivals’ production and thus reduces its own profits.

We have shown that any output other than k* (K (t" !),t") in
period t" results in strictly lower profits in period t” without any
possibility of future gain in the continuation equilibrium. Thus,
k¥(K(t"7"),t") is the unique subgame perfect equilibrium output in
period t". By induction this is true for all n. The sequence of
myopic Nash equilibrium strategies is the unique subgame-perfect
equilibrium.

Q.E.D.

Remark 1. One might be tempted to argue for uniqueness more
directly. Subgame-perfection is a stronger condition than Nash
equilibrium. Since every subgame-perfect equilibrium is a fortiori
Nash, if there were multiple subgame-perfect equilibria there
would have to be multiple Nash equilibria. It might therefore be
argued that since Lemma 1 establishes uniqueness of the Nash
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equilibrium, there can be at most one subgame-perfect equilibrium.
This argument is flawed. Lemma 1 only establishes the uniqueness
of the myopic Nash equilibrium in each period. If firm i lowers its
capacity below k*(K(t" ~!),t"), this can change the sequence of
subsequent myopic Nash equilibria. The full Nash equilibrium of
the multiperiod problem is not unique.

Remark 2. If capacity reductions are reversible, the result
remains true, and the argument is even simpler. In each period
there is a unique “myopic” Cournot-Nash equilibrium, and this
equilibrium is not affected by the previous play (since reductions
are reversible). The uniqueness of the single period-by-period Nash
play together with a finite horizon immediately implies that there is
a unique subgame-perfect equilibrium.

Remark 3. Weaker conditions that also lead to Lemmata 1-5
will provide a generalization of the Theorem 1. For example, the
market can decline stochastically, as in Fine and Li [1986].

There is no direct generalization of Theorem 1 when firms have
heterogeneous costs. The reason is that without equal marginal
costs, we can no longer order marginal revenue by output. As a
result, the decline in demand affects firms differentially depending
on both size and marginal cost. Even if there remains a unique
subgame-perfect Nash equilibrium, there is no longer a simple
characterization result (such as Proposition 1) describing an orderly
pattern to the capacity reductions.

A comparison with Whinston [1988] suggests that the assump-
tion of continuous capacity adjustment is essential to our result. If
capacity adjustment is subject to an integer constraint, the proof of
Theorem 1 breaks down. The problem arises in Lemma 1; because
of integer constraints, there is no guarantee of a unique solution
even in the one-period myopic problem.

It is worth pinpointing the source of difficulty. If capacity
lumps come in different sizes, multiple equilibria are a generic
problem. But, if capacity lumps are all equally sized, multiple
equilibria arise in the one-period problem only to break ties. When
there are two equally large firms, which one reduces capacity first?
A tiebreaking rule is needed. Because the rule may depend on the
earlier play of the game, it can contaminate the entire characteriza-
tion of the previous play. Whinston solves this problem by restrict-
ing firms to “super-markov” strategies; the resolution of ties cannot
depend on earlier play. With this additional restriction, he shows
that with equally sized lumps of capacity, only the largest firms
reduce capacity.
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Our result is a limiting case of the discrete model. In the
passage to continuous time we do not require super-markov strate-
gies. For intuition, consider the sequence of period-by-period
myopic Nash equilibrium strategies. With lumps of any size one of
two equally-sized firms must move before the other. With continu-
ous capacity adjustment there is no tension between equally sized
firms; they reduce capacity together. There is a unique myopic
equilibrium in every period which then coincides with the subgame-
perfect solution.

V. CONCLUSIONS

We have demonstrated that in situations where equally effi-
cient oligopolists start out with asymmetric market shares, larger
firms will bear the brunt of capacity reductions until their market
shares equal those of their smaller competitors. Once shares do
equalize, all competitors with identical capacities reduce together.

Although some empirical corroboration of these conclusions is
available, we still face obvious gaps in our understanding of how
industries actually decline. One important item on the research
agenda concerns the impact of cost differences (arising, possibly, -
from economies of scale) on shrinkage patterns. An additional
agenda item is to expand firms’ strategy spaces to permit cost-
reducing investment. The considerable amount of theoretical and
empirical work that remains to be done in this area suggests that the
study of exit will continue to be a growth industry.

APPENDIX
This Appendix provides the proofs for Lemmata 1-5.

LEMMA 1. There exists a unique Cournot-Nash equilibrium to the
single-period problem where each firm maximizes its current
flow of profits subject to the constraint that no firm produces
above its capacity, k;(t") <k'(t"!). The output at this
Cournot-Nash equilibrium is denoted by kX (K (t" ~),t"),

k¥ (K (t""),t") = argmax
jo‘A ki[P (Z k¥ (K(t"1),t") + kit" + 1') —-(C - rS)]e‘" dr
i
subject to

ki = ki(tn_l).
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Proof of Lemma 1. Assumptions A8 and A9 provide sufficient
continuity to prove the existence of at least one myopic Nash
equilibrium (see Friedman [1977]). Here we concentrate on proving
uniqueness.'” At any myopic Nash equilibruim marginal profit for
firm i equals™

(1.A) MI; = fA {k;P"(K*t" + 7) + P(K*t" + 7)
0

—(C-rS)}e™dr=0.

Let there be two distinct myopic Nash equilibria, with total
capacity levels K} and K} Without loss of generality, K} = K}.
Since K} and K} are distinct, there must exist some firm i such that
k% > k%. The fact that &k}, > k% implies that firm i is not capacity
constrained in B, and hence MII;z; = 0. For firm { in the Nash
equilibrium K}, MII;, = 0. Therefore, MII;, — MII;5 = 0. This leads
to a contradiction because

(2A) MIL, — M1,
(34A) = fo“ {k% P (K%,t" + 1) + P(K4,t" + 7)

— kB P (K5t" + 1) + P(K§t" + D]l e ™ dr
(44 = fo“ kA P/(K§,t" + 1) — kA P (K5 ,t" + 7)le " dr
(5.A) =<0

Equality (3.A) follows by canceling the cost terms (C — rS).
Inequality (4.A) is based on A9, which states that each firm’s
marginal revenue k;P’'(K,t) + P(K,t) is a nonincreasing function of
industry output, K; this implies that kAP (K%,t) + P(K%t) < k4P’
(Kxt) + P(K%t) over the interval t & [t",t"*!]. The final inequality
follows as P'(K},t) is negative (by A8) and & > k.

Q.E.D.
DEFINITION 2. IT1*(K(t""!),t") is the present value of firm i’s profits
over the period t" to t"*! in the sequence of myopic Nash
equilibria.
. 10. At any Nash equilibrium the second-order conditions for a maximum will be
met as

T

dk?

< [P&t" + 1) + kXP"(K,t" + 1) e dr = 0 by A9.

- _[ 2P (Kt" + 1) + RFP"(Kt" + 1)}e~" dr

11. Firm i’s marginal profit may be positive if it is capacity constrained.
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The myopic Nash equilibrium outputs in period t",
K*(K(t""),t"), are a function only of the previous period’s capacity
vector; thus, K(t"!) determines the profits in period t".

DEFINITION 3. Firm i is capacity constrained in the myopic Nash
equilibrium K*(K(t""),t") if k,;(0) < k*(t"), where k*(t") is as
defined in the proof of Proposition 1. For all capacity-
constrained firms, k*(K(t""),t") = k;(0).

LEMMA 2. In the iterated sequence of myopic Nash equilibria, each
firm that is not capacity constrained in the period beginning at
t" reduces its output in the next period:

RE(K(E"1),t") = R*(t") = kF((K* (K" ),t"),t™") < k*(t").

Proof of Lemma 2. Imagine to the contrary that in the unique
equilibrium K*(K(t"),t"*!) there exists some unconstrained firm i
with EX((K*(K(t"Y),t")),t"*!) = k¥*(K(t"!),t") = k*(t"). Since in
any myopic Nash equilibrium MR, = 0, it must be true at ¢"** that

(6.A) f0 2 {k* (") P (K * (K (E") ")t + 7)
+ P(K*(K(t™),t""),t""' +7) — (C — rS)e™™"dr = 0.

This implies that no firm would want to reduce capacity below
k*(t") in period t"*'; any firm with a lower capacity would have
strictly positive marginal revenue and could only be in equilibrium
if it is capacity constrained. By Proposition 1 all firms have capacity
less than or equal to £*(t") and hence maintain their capacity. But
if no firm reduces capacity between period t" and t"*!, then
K*(t"*') = K*(t"). The inequality in (6.A) now contradicts All
which states that if K is held constant, k,P'(K,t") + P(K,t") is a
strictly declining function of ¢; this is zero averaged over t" to ¢t"**
and hence cannot be greater than or equal to zero when averaged
over t"*! to t"*2,

Q.E.D.

Next, we show that if a firm reduces its output, this encourages
its competitors to raise their production in the future. As a result,
such a firm earns (weakly) smaller profits in each subsequent
iteration of the myopic Nash equilibrium.

LEMMA 3. Let K(t") and K'(t") differ only in that firm ; has less
capacity in K’ than in K: kj(t") < k,(t") and kj(t") = k;(t") for
all j # i. This implies that

k¥ (K't™") < k¥ (K,t"*") and k} (K',t™*") = B} (K, ™).
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Proof of Lemma 3. If k¥(K',t™*") = k¥*(K';t"*'), then the
constrained optimization problem that defines the Nash equilib-
rium is unaffected by the fact that k*(K',t") < k¥(K',t"): the
equilibrium following K’ and K are identical. By the same token, it
would be impossible for the equilibrium following K’ to have
kX (K't"*Y) > k¥(K',t™*"); any Nash equilibrium following K’ is also
feasible following K, and this would contradict the uniqueness
result of Lemma 1. It remains to show that if k*(K't"*") <
EX(Kt™*"), then k¥(K',t™") < k}(K,t**") leads to a contradiction.
An argument parallel to the derivation of equation (6.A) shows that
firm j cannot be capacity constrained in k}(K',t"*'); its mar-
ginal revenue must be zero in the K’ solution. This leads to the
inequality,

(TA)  [* k(K P K™ +7) + PUGE™ + e

= [* k3K P (K™ + 1) + PK ™ 4 1)e™ dr.
0

This implies for all firms other than i, that k}"(K’,t"“) =
k¥(K',;t"*"). And for firm i, this is true by assumption. Aggregating
across firms reveals that K*(t"*}) < K*(t"*'). But the function
k;P'(Kt™") + P(K,t"™") is decreasing in both K by A9 and k;
(holding K constant) by A8: this contradicts the inequality in
(7.A).

On a more intuitive level, A9 insures that the reaction curves
are negatively sloped:

dMR; (K (¢"),t")/dk;
— [HPE* 4 1) + B PURE 4 1) e dr =0,
0
As a result, a reduction by firm ; moderates the future reductions by

all other firms.
Q.E.D.

LEMMA 4. Let K(t*) and K'(t") differ only in that firm i has less
capacity in K’ than in K. Then for all t* = t",

X (K'(¢7),6%+1) < TF(K(7),t**Y),

where K'(t*) and K(t*) are the two myopic Nash equilibria that
evolve in period t* given capacity levels K'(t") and K(t"),
respectively, in period ¢".

Proof of Lemma 4. To consider the effect on firm i of moving
from K(t") to K'(t"), we break up the change into two parts. First
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consider the effect of firm i moving from k}(K(t")) to k; when all
other firms remain at K(t"). Because K(t") is a myopic Nash
equilibrium, firm i strictly lowers its current profit by moving to k;.
Next, consider the effect on firm i of the other firms’ movement
from k}"(K(t"),t"“) to k}"(K'(t"),t"“). By Lemma 3, all the other
firms either maintain or increase their output. Because goods are
perfect substitutes, this can only reduce the price and thus further
hurt firm i. The same argument applies to all periods past t"**.
Q.E.D.

Our final lemma establishes the trivial uniqueness of the
subgame-perfect equilibrium once the market price is sufficiently
low that all firms have k; = 0 as a dominant strategy.

LEMMA 5. There exists some time T such that in any subgame-
perfect equilibrium all firms have zero capacity for t” = T This
coincides with the myopic Nash equilibrium, K *(K (t"~'),t").

Proof of Lemma 5. Downward sloping demand (A8) implies
that a firm could never earn more than the price at zero aggregate

supply:
IL (K(t™),t") < k;(t")[P(0,t") — (C — rS)]/r.

Let e = [C — rS]. By A6, ¢ > 0. Then by A10 there exists some T'
such that P(0,t) < efor t = T. Hence, for t* = T, II;(K (t*),t*) <0 for
all K(t*) and for all firms. Maintaining any positive capacity is

dominated by exiting in toto.
Q.E.D.
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