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Abstract: Social scientists have long been interested in understanding the extent to which the
typicalities of an object in concepts relate to its valuations by social actors. Answering this question
has proven to be challenging because precise measurement requires a feature-based description of
objects. Yet, such descriptions are frequently unavailable. In this article, we introduce a method to
measure typicality based on text data. Our approach involves training a deep-learning text classifier
based on the BERT language representation and defining the typicality of an object in a concept in
terms of the categorization probability produced by the trained classifier. Model training allows for
the construction of a feature space adapted to the categorization task and of a mapping between
feature combination and typicality that gives more weight to feature dimensions that matter more
for categorization. We validate the approach by comparing the BERT-based typicality measure of
book descriptions in literary genres with average human typicality ratings. The obtained correlation
is higher than 0.85. Comparisons with other typicality measures used in prior research show that our
BERT-based measure better reflects human typicality judgments.
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THIS article addresses issues of measurement in sociological research that builds
on cognitive processes. We propose a way to use state-of-the-art natural lan-

guage processing to measure aspects of categorization. Categorization decisions
concern distinguishing what is and what is not an instance of some mental repre-
sentation, such as a concept or schema. These issues arise routinely in sociological
work on culture and economic organization.

Cognitive anthropology, initially a founding discipline of cognitive science,
provided an early template for making explicit links between culture and cognition
in work done primarily in the 1950s and 60s (D’Andrade 1995; Bender, Hitchins,
and Medin 2010). Interest in these issues has waned in anthropology (Beller, Bender,
and Medin 2012); sociologists, however, following the lead of Paul DiMaggio (1997),
have taken up the challenge. Recent years have seen a flurry of activity seeking to
exploit notions from cognitive science (principally cognitive psychology) in cultural
analysis (for reviews, see Cerulo, Leschziner, and Sheperd [2021] and Vaisey [2021]).

A similar development has taken place in the study of organizations and mar-
kets. In this case, the focus was on how agents acting as audience members judge
the offers of producers. A crucial part of the evaluation process entails categoriz-
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ing the producers/products (Porac et al. 1995; Zuckerman 1999; Hannan, Pólos,
and Carroll 2007; Hannan 2010). In other words, concepts such as industry and
genre serve as the basis for audience expectations, and categorizations tell which
producers/products deserve attention.

Unlike efforts like Measuring Culture (Mohr et al. 2020) that attempt to deal with
measurement of the realm of culture as a whole, our aims are narrower. We limit
the scope of methods to modern natural language processing. A second limit on
scope is theoretical. The sociological research of interest generally uncovers issues
of typicality, a measure of the degree to which an object/agent/situation exemplifies
the focal concept. The possible advantage of such narrowing is that it makes it
feasible to provide specific advice about measurement. This choice of focus also
facilitates making explicit connections with cognitive science/psychology, because
since the work of Rosch in the early 1970s, exploring typicality has been a strong
focus in those disciplines.

A number of natural language processing (NLP) techniques have proven useful
to analyze sociological processes. Latent semantic analysis has been used to study
the structure of the healthcare sector (Ruef 2000), topic modeling has been used
to study newspaper coverage of U.S. government arts funding (DiMaggio, Nag,
and Blei 2013), and word embeddings have been used to study how the markers of
social class have shifted over time (Kozlowski, Taddy, and Evans 2019). In recent
years, the performance of NLP techniques has experienced a qualitative jump with
the advent of the “transformer models” class of language representation (Vaswani
et al. 2017).

NLP based on deep learning and transformer models far outperforms prior
approaches such as content analysis, bag-of-words representations, topic model-
ing, or word embeddings. A dramatic breakthrough occurred in 2018 with the
public release of the BERT (Bidirectional Encoder Representations from Trans-
formers) language representation (Devlin et al. 2018). At the time of this writing,
this model is used to interpret Google search queries in more than 70 languages
(see announcement on Twitter: https://twitter.com/searchliaison/status/
1204152378292867074?s=20), and it is approaching human-level performance in
a number of natural language understanding tasks (Nangia and Bowman 2019).
Moreover, virtually all subsequent state-of-the-art language models have been
based on BERT (see https://gluebenchmark.com/leaderboard).1

Despite the impressive performance of models based on BERT (and related
language representations) in solving language understanding tasks and reasoning
problems, we lack direct evidence that these techniques can be used to produce
typicality measures that parallel human judgements. In a tour-de-force analysis,
Bhatia and Richie (2022) demonstrated that BERT can reproduce human judgment
patterns obtained in a wide variety of previous studies of semantic structures.
Generally, these take the form of patterns of agreement/disagreement of “is-a”
statements relating subconcepts to concepts, for example, “a penguin is a bird.” This
research gives further confidence that sociologists can profitably employ BERT in
analyzing culture and markets. However, we still do not have direct evidence that
the typicality of objects produced by a BERT-based model (e.g., a particular artwork)
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resembles human typicality judgments. Addressing this shortcoming of current
knowledge is the main focus of this article.

Our focus on objects contrasts with the focus of recent work that used word
embeddings to measure semantic associations (Garg et al. 2018; Kozlowski et al.
2019; Lewis and Lupyan 2020). This work measured the association between
concepts (an occupation [e.g., teacher] and a gender [e.g., female]—Garg et al. [2018])
or associations between dimensions of concepts (e.g., affluence and education—
Kozlowski et al. [2019]), but not the typicality of a particular object in a concept
(e.g., the typicality of a worker in the teacher concept).

What sets apart our approach from earlier approaches to typicality measurement
concerns the nature of the data used to construct typicality measures. First, we
construct typicality from textual descriptions of objects. Prior work generally did
not analyze feature values of objects, only categorizations (Hsu 2006; Hsu, Hannan,
and Koçak 2009; Pontikes and Hannan 2014; Kovács and Hannan 2015; Pontikes
2022) (but see Kovács and Johnson 2014). This is a severe limitation because, due
to lack of better information, this work assumes zero probability of categorization
in all unassigned concepts, and thus minimal typicality in these concepts. For
example, Kovács and Hannan (2010) studied categorizations of restaurants, and
they assumed that a restaurant that was classified as French and Japanese would
have zero (minimal) typicality in all other cuisines such as Mexican or Californian.
Second, our approach is also applicable in empirical settings in which objects can
have at most one label. Typicality measures that do not rely on features but only
on categorization would produce only two levels of typicality in such settings,
rendering typicality measures discrete, just like categorizations. This is inconsistent
with the definition of typicality as a graded construct (a measure of the degree to
which an object/agent/situation exemplifies the focal concept). Relying on deep-
learning NLP allows for fine-grained measurement of typicality because the text
data it uses are less coarse than the categorical assignments used in prior research.

Prior work has measured similarity between objects, represented as vectors of
feature values, using a similarity function such as cosine similarity or Jaccard simi-
larity. A simple way to construct a typicality measure based on such an approach
starts by defining the position of (the center of) a concept in feature space as the
average position of objects categorized as instances of this concept and then defines
the typicality of an object in the concept in terms of the similarity between the object
and the center of the concept (e.g., Smith 2011; Pontikes and Hannan 2014; Durand
and Kremp 2016).2 A related approach computes the similarity between the object
and known instances of the concept and then takes the average as the typicality
measure.3 These two approaches implicitly give the same weight to all feature
dimensions. By contrast, our approach gives more weight to features that matter
more for categorization and typicality judgments. This is because our approach
constructs a feature space optimized for categorization performance. In compar-
isons of the fit of competing typicality measures with human typicality ratings, we
will see that this characteristic of our approach is key to its superior ability to reflect
human typicality ratings.

Our work also differs from articles that used BERT classifiers to label large quan-
tities of text data (more than humanly possible; see Bonikowski, Luo, and Stuhler
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[2022] and Schöll, Gallego, and Le Mens [2023] for recent examples). Whereas this
work has used discrete predictions by machine learning classifiers, we use the con-
tinuous predictions of such models (i.e., the predicted categorization probabilities)
to construct a graded measure of the extent to which an object exemplifies the focal
concept.

The article is organized as follows. In the section Concepts, Categories, and
Typicality, we sketch the theoretical background needed to motivate our approach.
The core idea is that categorization, the act of applying a concept to an object,
can be seen as probabilistic inference. An agent observes the features of an object
and uses them (along with prior beliefs) to infer the probability that the object is
an instance of the concept. We define the typicality of an object in a concept in
terms of such categorization probability. We will say that an object is typical of
a concept if, given its features, it is likely to be an instance of this concept. The
empirical challenge to measuring typicality then becomes a challenge to measuring
categorization probabilities.

In Using a Probabilistic Classifier to Measure the Typicality of Objects in a
Concept, we explain how a standard class of machine-learning models, probabilistic
classifiers, can contribute to solving this challenge when a researcher has access to
feature-based descriptions of objects and their categorizations. This approach is only
applicable when a feature space is available to represent objects and concepts. This
is not the case when objects consist of text documents. We address this challenge in
the following section.

Then, in Measuring the Typicality of Text Documents with a BERT Probabilistic
Classifier, we explain how deep-learning NLP can be used to construct a feature-
based description of text documents and produce categorization probabilities that
are, in turn, used to construct the typicality of each document in the focal concept.
Our text-categorization model uses the BERT language representation to construct
a feature space adapted to categorization in the focal concept. We call the resulting
measure BERT typicality.

In Validation of the BERT Typicality Measure, we apply our approach to a
particular empirical setting: we measure the typicality of books with respect to
literary genres from analysis of book descriptions from Goodreads.com. We show
that the BERT typicality is highly correlated with human typicality ratings, providing
validation that this measure could be used as a substitute for human typicality
ratings when these are difficult or impossible to obtain directly.

Finally, in Benchmarking: Comparing BERT Typicalities with Typicalities Ob-
tained with Other Probabilistic Classifiers or with Label Assignments, we compare
the BERT typicality with other model-based typicality measures that rely on other
language representations such as GloVe (Global Vectors for Word Representation)
word embeddings or bag-of-words representations and typicality measures pro-
duced by techniques that do not rely on training a probabilistic classifier (e.g., cosine
similarity in pre-trained embedding space) and approaches that rely on sets of labels
given to objects. We will see that the BERT typicality reflects human typicality ratings
better than other approaches. We attribute this performance to a combination of
two factors: the construction of a feature space adapted to categorization in the
focal concept, and the definition of typicality in terms of categorization probabilities
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produced by a probabilistic classifier that gives more weight to the features that
matter more for categorization. Arguably, the method we advance in this article
allows the construction of a feature space and a typicality function that jointly
provide a mathematical representation of concepts that reflects humans’ mental
representation of concepts. This is why we claim in the title that our approach
“uncovers the semantics of concepts.”

Concepts, Categories, and Typicality

The contemporary view of concepts on which we build sees them as mental rep-
resentations with no clear boundaries (Anderson 1991; Ashby and Alfonso-Reese
1995; Feldman, Griffiths, and Morgan 2009; Hannan 2010; Sanborn, Griffiths, and
Shiffrin 2010). Consequently, there is often vagueness in judgments about which
concepts, if any, apply to an object. Psychologists characterize the extent to which
an object fits a concept as the typicality of the object in the concept. Nearly 50 years
of research, initiated by Rosch (1973), have shown that concepts are structured by
typicality. For instance, apple is a highly typical fruit, grape is moderately typical, and
tomato is highly atypical. Recent research has shown that typicality affects valuation;
people generally place more value on more typical objects (e.g., Vogel et al. 2018).

In this section, we provide a formal definition of typicality that we will use to
construct the empirical measure of typicality we propose in the next two sections.
We begin with definitions of concepts and categorization probabilities.

Concepts

Following the modern approach to concepts in cognitive psychology, we model
concepts as probability distributions over a feature space—a space of feature values
in which the meaning of a concept is expressed. Its dimensions are the features that
a focal person uses in forming a mental representation of the concept. When we
turn to thinking about the categorization of objects, then this is also the space for
the mental representations of the objects. Each object is represented as a position in
this feature space—a particular combination of values of the relevant features. We
denote the focal agent’s feature space by G.

Concepts specify which positions in feature space are more likely than others
for objects that “belong” to a concept. The key formal notion is concept likelihood,
πG(x|c), which gives the subjective probability (or belief) that an object known to be
an instance of the concept c has some particular combination of values of relevant
features (is at position x in the feature space G).

Categorization Probabilities

We define categorization as the act of applying a concept to an object. We model
categorization in a probabilistic way. We denote the probability that an agent who
perceives an object to be at position x in feature space categorizes it as a c by P(c | x).

The Bayesian approach to categorization (on which we build) holds that the
categorization probability is a function of the concept likelihood, the prior belief on
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position, and the prior belief that the object is a c as follows:

P(c | x) = πG(x|c) P(c)
PG(x)

, (1)

where P(c) denotes the subjective probability that an object is a c based on back-
ground information about the categorization context, but without any information
about the position of the object in feature space, and PG(x) denotes the subjective
probability that an object is at position x in feature space G if its category is not
known.

Typicality

As we mentioned in the introductory section, Rosch (1973) proposed that concepts
have an internal structure that can be represented in terms of typicality as goodness
of representation of a concept. Despite its importance, typicality has been treated
largely as a primitive notion, and researchers have generally measured typicality by
asking people to tell how “typical” of some concept are each of a set of subconcepts
(apples and fruit, for instance). Here we focus on the typicality of individual objects (a
particular apple) (Vogel et al. 2018; Hannan et al. 2019), rather than of subconcepts.

Suppose that an object has a set of features x relevant for categorization in the
focal concept. In a setting where objects are text descriptions, x could be a sequence
of words. In a setting where objects are images, x could be the red, green, and
blue luminance values for all the pixels that form an image. In a choice between
customer products, x could be a feature of technical specifications. Hannan et al.
(2019) employ the intuition that a position is highly typical for a concept if the
concept likelihood is high. Here we deploy a slightly different intuition, that an
object is highly typical of a concept if its features make it a very likely member of
this concept—if P(c | x) is high. In particular, we expect the feature combination x to
be all the more typical of the concept if it increases the probability of c significantly
above the baseline value, P(c), that is, if P(c | x) is greater than P(c). In this article,
we build on this intuition and define the typicality of an object with features x as
follows:4

τc(x) ≡ log
P(c | x)

P(c)
, (2)

where P(c) is the prior on membership in the concept c, the subjective probability
that an object taken at random in the domain will be an instance of c. As is common
in Bayesian models of categorization, we assume that the prior is given by the
empirical proportion of objects in the domain that are cs.

We think that the proposed formulation in Equation (2) provides a more in-
tuitive rendering of typicality than defining typicality as the concept likelihood
or its logarithm (as in Hannan et al. [2019]). The following stylized example
provides an illustration. The context is that of restaurants in Germany. The fea-
ture space contains just one binary-valued dimension such that x = vegetarian
if the focal restaurant is entirely vegetarian, offering no meat item on the menu,
and x = non-vegetarian otherwise. The focal concept is Indian restaurant. A small
proportion of all restaurants are Indian such that P(Indian) = 0.05. Most Indian
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restaurants have some meat items. Yet 30 percent of them are entirely vegetarian
such that P(vegetarian | Indian) = 0.3. Now consider all restaurants in Germany:
a small proportion of them are vegetarian, whereas most offer some meat item on
their menus, that is, P(vegetarian) = 0.1. With these numbers, Bayes’ rule implies
P(Indian | vegetarian) = 0.15 and P(Indian | non-vegetarian) = 0.04. Even though
most vegetarian restaurants are not members of the Indian restaurant concept, know-
ing that a restaurant is vegetarian makes it more than three times more likely to be
an Indian restaurant, and knowing that a restaurant is non-vegetarian makes it slightly
less likely to be an Indian restaurant. Consistent with this pattern, the typicality of the
vegetarian position in the Indian restaurant concept (log(0.15/0.05) = 1.1) is higher
than the typicality of the x = non-vegetarian position (log(0.04/0.05) = −0.25).

By contrast, the definition of typicality as the concept likelihood (used in Hannan
et al. [2019]) implies the opposite ranking of typicality values. Because P(vegetarian |
Indian) = 0.3 and P(non-vegetarian | Indian) = 0.7, the typicality of the vegetarian
position in the Indian concept would be lower than the typicality of the non-vegetarian
position. This ranking seems to clash with intuition.

With the definition of typicality in terms of categorization probability, the main
empirical challenge in measuring the typicality of an object in a concept pertains
to estimating the categorization probability of this object in the focal concept. In
research on cognitive psychology, categorization probabilities are treated as latent
psychological variables that depend on agents’ concepts and their perceptions
of objects’ positions in the relevant feature space. Unless the agents are directly
asked to provide categorization probability judgments, these quantities are not
observable, as is the case with archival data. Of course, sociologists could follow
psychologists in asking agents to provide typicality judgments about the objects
of interest, eliminating the need for estimating categorization probabilities. This is
unfeasible for the analysis of archival data and or very large data sets.

Using a Probabilistic Classifier to Measure the Typicality
of Objects in a Concept

We consider a setting in which a researcher wants to measure the typicality of an
object o in a concept c. The researcher has access to categorization data D of N
objects in concept c. The feature space used to represent objects has H dimensions.
Each observation in the categorization data consists of the vector of feature values
of the object x = (x1, . . . , xH) and a dummy variable that takes a value of 1 if the
object has been categorized as a c or a value of 0 otherwise.

A probabilistic classifier is a function fc that, given a vector of feature values
x, returns the probability that an object represented by vector x is an instance of
concept c:

fc(x) = P(c | x). (3)

The central proposition of this article is that the researcher can produce typi-
cality measures that reflect human typicality judgments from the categorization
probabilities produced by a machine-learning “probabilistic classifier” constructed
from the data.5
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According to this conjecture, an analyst who has access to a probabilistic classi-
fier can measure the typicality of objects in concepts by applying Equation (2). We
call such a typicality measure PC typicality. The challenge of typicality measure-
ment thus becomes a challenge of constructing a probabilistic classifier from the
available categorization data.

PC typicalities will reflect human typicality judgments if the probabilistic classi-
fier on which they are built is sensitive to the same feature combination as humans
who judge typicality. And if the feature combinations that best explain catego-
rization in the input data are the same as those that explain human typicality
judgments, the goal becomes one of identifying the feature combinations that cap-
ture categorization in the data. The field of machine learning has developed a
robust methodology for this purpose. The procedure proceeds in several stages and
relies on three disjoint data sets: training set, validation set, and prediction set. The
training set and validation set are subsets of the available categorization data D.

The first stage consists of specifying the probabilistic classifier fc as a function
whose outputs depends on the input (the vector x of feature values) and a set
of model parameters. A simple example likely familiar to most readers consists
of a logistic regression model that returns the logistic transformation of a linear
combination of the feature values. The model parameters here are the regression
weights.

The second stage consists of using the categorization data to find the best fitting
parameters. In the field of machine learning, this is called “model training” and
is achieved by minimizing a loss function using numerical optimization routines.
A frequently used loss function for training classifiers is the opposite of the log-
likelihood of the data (called “categorical cross-entropy”). In this case, the loss
associated to an observation at position x can take two values depending on the
ground truth. If the object is an instance of the concept, the loss is equal to−log P(c |
x). If the object is not an instance of the concept, the loss is equal to −log(1− P(c |
x)). With the categorical cross-entropy loss function, model training is the same
as what is called maximum-likelihood estimation in econometrics and statistics.
Model training thus requires some input data in the form of a table of feature values
(Xtrain: a table of Ntrain rows and H columns) and some ground truth categorization
data that indicate whether each observation belongs to the focal concept c (Ytrain: a
vector of Ntrain rows and populated with 0s and 1s).

The numerical optimization routines used to minimize the loss function on the
training data frequently have some so-called training parameters that have to be set
manually by the researcher (e.g., learning rates, step size, stopping criterion, . . . ).
Moreover, the classifier might also have some other parameters that are set manually
(e.g., “number of hidden nodes”) before launching the loss minimization routine.
Training the model also generally encompasses finding the best combination of
such manually set model parameters. Because machine-learning models frequently
have many parameters (several millions in the case of BERT classifiers), there is
always a risk of overfitting the model to the training data, meaning that the model
will capture some pattern in the training data that does not exist in the prediction
data. Overfitting hurts generalization performance and thus the quality of model
predictions on data not included in the training set.
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The machine-learning approach for dealing with this issue consists of evaluating
the performance of trained models on the validation set. This is the third stage. It
requires that the validation set has the same structure as the training set: an input
table that contains the feature values for each observation in the validation data
(Xval: a table of Nval rows and H columns) and the ground truth categorization
data (Yval: a vector of Nval rows populated with 0s and 1s). A standard approach in
constructing the training set and the validation set consists of randomly splitting
the input data D into these two sets (e.g., 95 percent of the data go to the training
set and five percent to the validation set).6

The objective of training is to produce a model that achieves maximal perfor-
mance when applied to the validation set (i.e., minimizing the validation loss).
This is achieved by looping over the training and validation stages until validation
performance cannot be further improved. The validation loss generally goes down
with the amount of model training and at some point starts to go up while the
training loss keeps going down. This is a signal that at this point the model starts to
overfit the data: it identifies patterns in the training data that are not present in the
validation data. This harms the model’s generalization performance. Therefore, we
stop training at the point at which the validation loss begins to increase.

Finally, the trained model is applied on the prediction set. The prediction
data must include vectors of feature values for each observation (Xpred: a table of
Npred rows and H columns), but it need not contain ground truth categorization
data. This is one of the advantages of the approach set forth in this article, as
compared with the frequently used label-based approach described in Comparison
with Label-Based Approaches to Measuring Typicality. For each vector of feature
values x ∈ Xpred, the trained model returns a categorization probability in the focal
concept c: P(c | x). This categorization probability is then used to construct the PC
typicality using Equation (2).

Measuring the Typicality of Text Documents with a BERT
Probabilistic Classifier

In the previous section, we assumed that a feature space was available and that ob-
jects were represented as vectors in this space. Text documents consist of sequences
of words, and their representation in computer code does not generally correspond
to a vector of feature values. In this section, we explain how deep learning not only
can transform text documents into vectors of feature values but also automatically
constructs a feature space optimized for classification performance.

A distinctive characteristic of the deep-learning approach we advocate is that it
constructs a feature space especially adapted to the categorization of text documents
in the focal concept c through training of a probabilistic classifier based on the input
data D specified in the previous section. This classifier is made of two distinct but
interacting components:

1. A representation component that takes text documents and represents them
as points in a feature space H = RH (where R denotes real numbers). This
component is an artificial neural network that consists of a set of functions
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Figure 2: Structure of the BERT-based deep learning categorization model

1. The BERT Language Representation. BERT takes a sequence of tokens as input and outputs a 768

dimension vector of real values that represents the position of a text document in semantic space

H = R768:

x = (x1,x2, · · · ,x767,x768) .

This number of dimensions (768) was not chosen by the authors of the present paper, but instead this

is a characteristics of the pre-trained model we used (BERT-Multilingual-Cased).

The BERT block is made of a stack of 12 Transformer layers (Vaswani et al., 2017). Discussion of

the internal structure of the BERT block goes beyond the scope of this paper and we refer interested

readers to the original paper for formal details (Devlin et al., 2018).

2. A fully connected layer. This layer takes the position of the text document in the semantic space H
and outputs a 2 dimensional vector of real values:

a = (anotc,ac) ,

where anotc and ac are linear combinations of the inputs (x1, . . . ,x768). We denote by f c
H(x) the func-

tion that returns ac. It has 768 + 1 parameters: one “bias” parameter (constant term) and one coeffi-

cient for each of 768 dimensions in the input.
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BERT typicalities

The typicality of a text document text in concept c is computed from eq. 3 by inserting BERT’s estimate of

pc(x):

tc(x) = log
pc(x)
p(c)

, (5)

tc = log
pc

p(c)
, (6)

where p(c) is the proportion of text documents from the training data in c.

Next, we illustrate how training a BERT probabilistic classifier can be used to measure the typicality

of book descriptions in certain genres (mystery, romance, etc.), even if the input data only includes binary

categorizations.

5 Validation of the BERT Typicality measure

In this section, we validate the method we proposed to construct typicality measures from the categorization

probabilities produced by a BERT probabilistic classifier. We collect human typicality ratings of book

descriptions and show that BERT typicalities have a very good correspondence with human judgments.

5.1 Data: labels and book descriptions from Goodreads.com

We obtained book labeling data from Goodreads.com, the largest user-contributed book review website,

covering more than a million books. We used the 2018 version of the Goodreads database, made publicly

available by UCSD11 (Wan and McAuley, 2018; Wan, Misra, Nakashole, and McAuley, 2019). We analyze

all English-language books that have a short description in English of up to 300 words, that have been

labeled by readers as one of 36 genre labels. Our sample contains 738,451 books.12

The textual book were generally taken from the cover jacket text. Originally, when Goodreads.com

started in 2007, the description texts were uploaded by the authors/publishers themselves. But since 2013,

when Amazon bought Goodreads, short descriptions of books are pulled from Amazon.com’s description.

See the Appendix for an example of a book’s short description.

The book labeling at Goodreads.com is outsourced to Goodreads users (i.e., book readers). Readers can

11https://sites.google.com/eng.ucsd.edu/ucsdbookgraph/home
12For computational reasons, we excluded books whose descriptions exceed 300 words. These are about 4.6% of the data. The

original sample contained 768,249 books.
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Probabilistic Text Classification

This is implemented in the neural network by means of two layers: A fully connected layer and a softmax

layer.

Fully connected layer. This layer takes the position of the text document in the feature space H and

outputs a pair of real values, a = (anot�c,ac) , where anot�c and ac are linear combinations of the inputs

(x1, . . . ,x768). We denote by f c
H(x) the function that returns ac. It has 768+1 parameters: one “bias” param-

eter (constant term) and one coefficient for each of 768 dimensions in the input. This layer characterizes the

similarity of a text document, represented as a position in space H, to category c.

Softmax layer. This applies the following softmax function to the pair of category scores (anot�c,ac) and

outputs a vector of categorization probabilities. Specifically:

pc =
eac

eac + eanot�c
, pnot�c = 1� pc,

The combination of the fully connected layer and of the softmax layer specifies a logit model. To make

explicit the dependence of categorization probabilities on positions in the feature space x 2 H, we rewrite

the categorization probabilities as follows:

pc(x) =
1

1+ e�( f c
H(x)� f not�c

H (x))
.

BERT typicality

The typicality of a text document text in concept c is computed from eq. 3 by inserting BERT’s estimate of

pc(x):

typc(text) = tc(x) = log
pc(x)
p(c)

, (5)

where p(c) is the proportion of text documents from the training data in c.

Model Training

The model is trained on categorization data following the procedure described in section 3. A categorical

cross-entropy loss function is used. It takes the average of the log of the predicted probability for the ground

truth label. Model training aims to optimize model parameters so as to minimize the loss value computed

over the validation set.

The process of training the model is called deep-learning. “Deep” in this context refers to the fact

that the artificial neural network that makes the representation stage has many layers; “learning” means

that the many weights of the linear functions (often several millions) of this model component are learned

from the data in the training stage. When training the model, not only the parameters of the categorization

12

Figure 1: Structure of the BERT probabilistic classifier.

that operate in sequence on the inputs and are often represented in terms of a
vertical stack of linear functions (layers) with some nonlinear intermediary
steps (activation functions).

2. A categorization component that takes positions in the feature space as in-
puts and produces a vector of categorization probabilities as outputs. This
component can be as simple as a logistic regression model.

Figure 1 summarizes our probabilistic classifier. The representation component
involves the BERT model (Devlin et al. 2018). Thus, we call this classifier a “BERT
probabilistic classifier.” It takes as input a text document and returns the probability
of categorization in the focal concept pc, which is then transformed in a typicality
measure: the BERT typicality. Next, we describe the representation and categorization
components of the model.
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Representation Component: BERT

The representation component of the BERT probabilistic classifier is made of two
sub-components: text preparation and the BERT model itself.

Text preparation. Text documents need to be represented in a numerical format
to be used as inputs to the BERT model. Figure 1 shows the standard processing
operations used in our empirical applications. There is an optional pre-processing
stage that removes parts of the document deemed irrelevant by the analyst. The in-
dispensable component of the text preparation consists of tokenization, as described
in Text Tokenization in Appendix: Methodological Details. Similar operations are
frequently used to prepare inputs to other machine-learning techniques that take
text as input. The output of the text preparation stage applied to a text document is
called a tokenized document. This consists of an L-long sequence of indices where
L is a parameter that characterizes the maximal length of text documents that can
be processed by the model (in terms of number of tokens). Documents that contain
more than L tokens are truncated.7

BERT model. BERT consists of an artificial neural network with many layers (it
is a deep neural network) that takes a sequence of tokens as input and outputs a
768-dimension vector of real values that represents the position of a text document
in feature space H = R768: x = (x1, x2, . . . , x767, x768). This number of dimensions
(768) was not chosen by the authors of the present article but instead is a charac-
teristic of the pre-trained model we used (BERT-base-cased). The BERT model is
made of a stack of 12 transformer layers (Vaswani et al. 2017). Discussion of the
internal structure of the BERT block goes beyond the scope of this article, and we
refer interested readers to the original paper for formal details (Devlin et al. 2018).

A distinctive advantage of applying BERT to a text is that this produces a
representation sensitive to the sequence of words in the entire text. This goes beyond
models that rely on a bag-of-words approach, for example, the naive Bayes classifier
(Maron 1961). Even though the sensitivity to word sequences is noteworthy, it
is not unique to BERT but is shared with previous models such as deep-learning
categorization models based on a long short-term memory (LSTM) layer (Hochreiter
and Schmidhuber 1997).8 The crucial innovation is that BERT constructs word
representations that are contextual: the mathematical representation of a word
depends on the words that come before and after the focal word. The model is thus
sensitive to the fact that the meaning of a word depends on the words that come
before and after it (possibly long before and longer after). It is widely accepted
that this ability to capture bidirectional dependency in word meaning is one of the
factors that make BERT perform so well.9

Categorization Component: Probabilistic Text Classification

This is implemented in the neural network by means of two layers: a fully connected
layer and a softmax layer.

Fully connected layer. This layer takes the position of the text document in the
feature space H and outputs a pair of real values, α = (αnot-c, αc) , where αnot-c
and αc are linear combinations of the inputs (x1, . . . , x768). We denote by f c

H(x)
the function that returns αc. It has 768 + 1 parameters: one “bias” parameter
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(constant term) and one coefficient for each of 768 dimensions in the input. This
layer characterizes the similarity of a text document, represented as a position in
space H, to concept c.

Softmax layer. This applies the following softmax function to the pair of category
scores (αnot-c, αc) and outputs a vector of categorization probabilities. Specifically,

pc =
eαc

eαc + eαnot-c
, pnot-c = 1− pc.

The combination of the fully connected layer and the softmax layer specifies
a logit model. To make explicit the dependence of categorization probabilities on
positions in the feature space x ∈H, we rewrite the categorization probabilities as
follows:

pc(x) =
1

1 + e−( f c
H
(x)− f not-c

H
(x))

.

BERT Typicality

The BERT typicality of a text document text in concept c is computed from Equa-
tion (2) by inserting BERT’s estimate of p(c | x):

typc(text) = τc(x) = log
pc(x)
p(c)

, (4)

where p(c) is the proportion of text documents from the training data in c.

Adjusting Model Parameters Using Data: Model Training

The model is trained on categorization data following the procedure described in
Using a Probabilistic Classifier to Measure the Typicality of Objects in a Concept. A
categorical cross-entropy loss function is used. It takes the average of the log of the
predicted probability for the ground truth label. Model training aims to optimize
model parameters to minimize the loss value computed over the validation set.

The process of training the model is called deep learning. “Deep” in this context
refers to the fact that the artificial neural network that makes the representation
component has many layers; “learning” means that the many weights of the linear
functions (often several millions) of this model component are learned from the
data in the training stage. When training the model, not only the parameters of the
categorization component but also the parameters of the representation component
are adjusted so as to minimize the loss (and thus maximize classification perfor-
mance). Therefore the representation of text documents is adapted to maximize
classification performance. If the task were different (e.g., the set of candidate
categories changes), then the trained representation component would be different,
and text documents would be represented by different vectors of feature values.
The training process essentially constructs features that are useful for categoriza-
tion and ensures that the predicted category is sensitive to these features. Model
training occurs via sophisticated numerical optimization algorithms that have been
designed to efficiently process extremely large quantities of data (e.g., millions of
text documents, images, or voice recordings).
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A distinctive advantage of using BERT to represent text documents is that
several BERT models that have been pre-trained on vast amounts of text (hundreds
of gigabytes) to learn a generic language representation are publicly available and
free for researchers to use. Such pre-trained language representation can then be
fine-tuned for specific tasks like categorization, question answering, text generation,
or translation. Pre-training does not involve categorization in the focal concept c
but another task that has been chosen by the creators of the BERT model because it
allows the model to learn language regularities that are useful for a variety of tasks,
such as categorization, but also question answering, translation, entity recognition,
et cetera.10 The BERT model we use (BERT-base-cased) has been trained on a large
corpus of English texts.11

Most prior text-categorization models based on machine-learning techniques are
trained from scratch on a particular data set. This is the case for bag-of-words–based
approaches, such as naive Bayesian categorization models (Maron 1961). This is also
the case for more sophisticated deep-learning models sensitive to word sequences.
The basic approach to training such categorization models uses only information
from the data at hand to learn all the model parameters. If the training data set is of
limited size, performance will suffer.

The process that consists of fine-tuning a pre-trained model allows for high per-
formance on specific tasks even if the training data set is of limited size. Fine-tuning
consists of updating the parameters of the language representation component of
the model (BERT) as well as the parameters of the categorization component using
the data for the task at hand (categorization data). The combination of pre-training
and fine-tuning allows the model to learn general language regularities from vast
amounts of data while at the same time adapting the language representation to
a specific application using the data of the particular study. This aspect of the
approach is particularly germane to research in the social sciences because it fre-
quently focuses on settings with domain-specific, idiosyncratic languages. Later
in the article, we compare the ability of fine-tuned and non–fine-tuned language
representations to reflect human typicality judgments.

Next, we apply the approach presented in this section to the computation of
the BERT typicality of book descriptions in certain literary genres (Mystery, Romance),
based on training data that consist of binary categorizations.

Validation of the BERT Typicality Measure

In this section, we compare the BERT typicality of book descriptions in two literary
genres (Mystery and Romance) with typicality ratings provided by human participants.

Data: Labels and Book Descriptions from Goodreads.com

We obtained book labeling data from Goodreads.com, the largest user-contributed
book review website, covering more than a million books. We used the 2018 version
of the Goodreads database, made publicly available by the University of Califor-
nia San Diego (https://sites.google.com/eng.ucsd.edu/ucsdbookgraph/home;
Wan and McAuley 2018; Wan et al. 2019). We analyze all English-language books
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that have a short description in English of up to 300 words and that have been
labeled by readers as one of 36 genre labels. Our sample contains 738,451 books.12

The text descriptions were generally taken from the cover-jacket text. Originally,
when Goodreads.com started in 2007, the description texts were uploaded by the
authors/publishers themselves. But since 2013, when Amazon bought Goodreads,
short descriptions of books have been pulled from Amazon.com’s description. See
Appendix: Goodreads.com Data for an example of a book’s short description.

The book labeling at Goodreads.com is outsourced to Goodreads users (i.e.,
book readers). Readers can tag books with any labels and put books on (virtual)
named shelves.13 Although there is no predefined set of labels (e.g., no drop-down
menu or autocomplete), readers tend to use genre labels for shelving, although not
exclusively. Shelves such as “to-read” or “read-in-school” are also common. In this
article, we focus on the genre labels. Specifically, we use the 36 main genre labels as
listed on the Goodreads search page (https://www.goodreads.com/genres?ref=
nav_brws_genres). These include labels such as Sports, Fantasy, Suspense, Travel, Humor
and Comedy, Mystery, and Memoir (see Appendix: Goodreads.com Data for the full list of
labels, along with their frequency). Importantly, this set of labels defines a cohort
of concepts as defined above: there is no hierarchical embedding among labels.
Together these labels cover most English-language books in the Goodreads data (93
percent).

The available data provide for each book the distribution of genre assignments—
a vector of proportions. Most of our analysis assesses the extent to which typicality
measures based on the predictions by a BERT-based probabilistic classifier trained
on binary categorization data match human typicality judgments. For this part
of the analysis, we collapse the data to create a binary distinction that associates
each book with its most commonly assigned genre. In the section Comparison with
Label-Based Approaches to Measuring Typicality we use the full set of proportions
of assignments. See Table A in Appendix: Goodreads.com Data for the proportion
of each genre.

Because collecting human typicality judgments on 36 genres would require a
very large number of participants, we decided to focus on two genres: Mystery and
Romance. We chose them because they are two of the most popular genres in our
data, and we expected that people who read books would be familiar enough with
them to be able to provide typicality judgments of books in these genres. For both
genres, we created training, validation, and prediction data sets. In each case, the
prediction sets consist of 500 book descriptions of Mystery books and 500 descriptions
of other books. These were randomly selected from the sample, stratifying by length
of book description. The remaining observations were split into a validation set
(Nval ∼ 50, 000) and a training set (Ntrain ∼ 680, 000).

Training the BERT Classifier

We trained separate BERT classifiers for Mystery and Romance using the approach
presented in the sections Using a Probabilistic Classifier to Measure the Typicality of
Objects in a Concept and Measuring the Typicality of Text Documents with a BERT
Probabilistic Classifier. Model training does not aim to maximize categorization
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Table 1: Confusion matrices for the trained BERT classifiers on the validation sets

Predicted Mystery Predicted Romance

No Yes Sum No Yes Sum

Mystery
(ground truth)

No 0.93 0.01 0.94 Romance
(ground truth)

No 0.84 0.04 0.88
Yes 0.02 0.04 0.06 Yes 0.03 0.09 0.12

Sum 0.94 0.06 1.00 Sum 0.87 0.13 1.00

Notes: Left: for Mystery (N = 47, 699). Right: for Romance (N = 47, 697).

Table 2: Categorization performance of the BERT classifiers on the validation sets

BERT

Mystery Romance
Accuracy 0.97 0.93
Precision 0.74 0.70
Recall 0.68 0.77
F1 score 0.71 0.73
Mean loss per observation 0.09 0.16

Notes: “Precision” is the percentage, out of all the objects predicted to be in the focal category, that actually
are in this category. “Recall” is the percentage, out of all the objects that are in the focal category, that
are predicted to be in this category. F1 score is the harmonic mean of precision and recall. Mean loss per
observation is the average per observation loss, computed using the categorical cross-entropy loss function.

accuracy but instead minimizes the cross-entropy categorization loss. The difference
between these two criteria is that the cross-entropy categorization loss gives a large
penalty to big mistakes (e.g., the model gives a low probability of being a Mystery
book to a book that is actually a Mystery book). Yet, to get an intuitive sense of the cat-
egorization performance of the trained model, it is useful to examine categorization
accuracy. The trained classifiers were very accurate, reaching classification accuracy
on the validation sets of 0.97 (Mystery) and 0.93 (Romance).14

Note that, because the proportion of books in any focal genre is relatively small,
a simplistic strategy that would categorize all books as not belonging to the focal
genre would achieve a high accuracy. To account for this, we use other metrics, such
as recall and precision, which can be computed based on the confusion matrices (see
Tables 1 and 2). Overall, the categorization performance of the model is excellent
for both genres. We invite interested readers to download the “compute_typicality”
folder from the project’s Open Science Framework page and experiment with model
training and predictions.15

Constructing BERT Typicality Measures on the Prediction Set

We computed the BERT typicality in the Mystery genre for each book description in
the prediction set by using the formula in Equation (4) applied to the categorization
probability in the Mystery genre produced by the trained BERT classifier. We did the
same for the book descriptions in the prediction set used for the Romance genre.
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Typicality Ratings by Human Participants

For typicality ratings in the Mystery genre, we split the prediction set of 1,000 books
(500 Mystery books and 500 other books) in 50 subsets of 20 books (each with 10
Mystery books). Four hundred ninety-seven Prolific participants rated the typicality
of a subset of 20 book descriptions in the Mystery genre. For each book description,
they responded to the question “How typical is this book to the mystery genre?”
using a 0 to 100 slider (centered at 50 when the page appears on the screen). Each
book excerpt received about 10 typicality ratings (with a minimum of seven and
maximum of 12).16 For each book, we computed an average of the typicality ratings
across the participants who rated it. We call this quantity the human typicality.

We followed the same procedure for the 1,000 books of the prediction set used
for Romance. Five hundred two Prolific participants provided typicality ratings for
20 book descriptions in the Romance genre.

Validation: Comparing BERT Typicality with Human Typicality
Ratings

The BERT typicality is highly correlated with the human typicality, at 0.87 for the
Mystery genre and 0.86 for the Romance genre. We see this performance as excellent
and in any case good enough to use BERT typicality measures as substitutes for
human typicality ratings in empirical studies that require measuring the typicality
of objects into concepts.

A skeptical reader might wonder if the high correlation between BERT typicality
and human typicality is directly implied by the excellent categorization performance
of the BERT classifier, or if the BERT typicality reflects something more than correct
classification. If the correlation was mostly driven by the model’s making binary
or quasi-binary predictions (either very high or very low typicalities, with few
in-between predictions), then the model could perform well according to this metric
but would fail to reflect graded differences in typicality. This is not the case, as
shown by the scatter plots of Figure 2. In particular, the upper-right panel reveals
that, among Mystery books (as determined by our ground truth), there exists a strong
positive association between human typicality and BERT typicality (ρ = 0.63). The
positive association also holds among Non-Mystery books (ρ = 0.67). A similar pattern
holds for the Romance genre, as revealed by the lower-right panel (Romance books:
ρ = 0.54; Non-Romance books: ρ = 0.72). The model therefore reflects between-book
differences in human typicality beyond differences in category membership.

Typicality Measures Based on Other BERT Models

To develop an intuition for what explains the very good fit of the BERT typical-
ity with human typicality, we proceed to a set of comparisons with three other
BERT-based typicality measures. As explained in sections Using a Probabilistic
Classifier to Measure the Typicality of Objects in a Concept and Measuring the Typ-
icality of Text Documents with a BERT Probabilistic Classifier, the BERT classifier
used to construct the BERT typicality involves two distinct components (language
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Figure 2: There exists a strong positive association between BERT typicality and human
typicality. Upper left: All books in the prediction data for the Mystery genre. Upper
right: The positive association holds for Mystery and Non-Mystery books. Lower left:
All books in the prediction data for the Romance genre. Lower right: The positive
association holds for Romance and Non-Romance books.

representation—the mapping of text documents into vector of coordinates in fea-
ture space—and categorization) that each have a set of free parameters that are
adjusted during model training. Here, we aim to unpack the contributions of these
two components. The very good fit could come from the fact that model training
allowed the construction of a language representation adapted to the judgment
task (providing a typicality rating in the focal concept). It could also come from the
definition of the typicality measure in terms of the categorization probabilities pro-
duced by the trained categorization component. This is because the categorization
component includes many free parameters (several hundreds) that are adjusted
during model training to give more weight to the feature dimensions that matter
more for categorization. If the features that matter more for categorization (in the
ground truth data) are also the features that matter more for typicality judgment
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(by humans), defining the typicality based on the categorization probability likely
contributes to high correlation with human typicality.

The three additional BERT-based typicality measures we consider in this analysis
take one or both of these characteristics away. More specifically, we consider the
following four BERT-based typicality measures:

1. Baseline BERT typicality: Fine-tuned BERT representation; typicality measure
is based on categorization probabilities produced by the trained categorization
component.

2. Fine-tuned BERT representation; typicality measure is constructed with no
free parameter.

3. Pre-trained BERT representation; typicality measure is based on categorization
probabilities produced by the trained categorization component.

4. Pre-trained BERT representation; typicality measure is constructed with no
free parameter.

We obtain version 2 by using the BERT language representation fine-tuned in
the construction of the baseline BERT typicality, but with a different formula for
typicality. Instead of defining the typicality of an object in the focal concept as a
transformation of the categorization probability of the object in the concept, we use
the cosine similarity (i.e., correlation) between the position of object in the feature
space and position of the concept prototype (the average position of objects that are
instances of the concept in the training data; see Kozlowski et al. [2019] for a similar
formulation). This definition gives the same weight to all 768 feature dimensions of
the fine-tuned language representation.17

Version 3 uses the same definition of typicality in terms of categorization prob-
abilities as in the baseline BERT typicality (Eq. [4]) but differs in how the BERT
classifier is trained. The BERT language representation is not fine-tuned: the param-
eters of the BERT representation are “frozen” at their initial (pre-trained) values.
Therefore the language representation is not adapted to the specific categorization
task in the focal genre. Only the parameters of the categorization component are
adjusted during training. Model training adjusts these parameters in a way that
gives more weight to the features that matter more for classification (as in a logistic
regression).

Finally, we obtain version 4 by calculating the cosine similarity between object
and prototype, using the positions in the feature space produced by the pre-trained
BERT language representation. This typicality measure does not involve the adjust-
ment of any free parameter. It gives the same weight to all feature dimensions of
the pre-trained language representation.

The results obtained with the four approaches are reported in the first four rows
of Tables 3 and 4. For both genres, the performance of the baseline BERT typicality
(version 1) is the best, in terms of both overall correlation with human typicality
and correlation within category. The performance of the typicality measure that
does not involve any free parameter (version 4) is poor and in any case much
lower than that of the three other versions. The two versions that involve either a
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fine-tuned representation (with typicality defined in terms of the cosine similarity
with the prototype) or the pre-trained representation with typicality defined in
terms of the categorization probabilities achieve a fairly high performance. Both
versions involve the training of a probabilistic classifier to fine-tune the language
representation (even version 2, which defines typicality in terms of cosine similarity
in feature space rather than in terms of categorization probabilities).

We conclude from the comparison of these four BERT-based typicality measures
that the crucial ingredient necessary for BERT-based typicalities to reflect human
typicality judgments lies in training a probabilistic classifier. Model training allows
for the construction of a language representation adapted to the task at hand, or the
identification of features that matter most for categorization, or both. Achieving
one of these two goals seems sufficient to obtain a typicality measure that reflects
human judgments well, but achieving both allows for even better performance. The
resulting combination of a feature space adapted to the categorization task and
typicality function provides a mathematical representation of concepts that reflects
humans’ mental representation of concepts. In other words, this approach uncovers
the semantics of concepts.

Typicality Based on Training a Multiclass BERT Classifier

In the sections Using a Probabilistic Classifier to Measure the Typicality of Objects
in a Concept and Measuring the Typicality of Text Documents with a BERT Proba-
bilistic Classifier, we proposed that the text classifier be trained on data that include
binary labels: ground truth categorization data that indicate whether each observa-
tion belongs to the focal concept c (Ytrain: a vector of Ntrain rows and populated with
0s and 1s). In a setting like Goodreads.com, there are many candidate genres (36 of
them). Our proposed approach implies that the nature of the genres that are not the
focal genre (e.g., those other than Mystery) is ignored. All observations that are not
instances of the focal genre are labeled “other” in the training and validation data.

An alternative approach would train a classifier that predicts the genre of a book
description among the 36 candidates. Such a classifier would output a vector of
36 categorization probabilities for each book description. We trained the model
with the same training sets used for the construction of the baseline BERT typicality,
except that Ytrain was now a matrix of Ntrain rows and 36 columns, with each row
indicating the genre of the corresponding book description. The results obtained
using this multiclass classifier are almost the same as those obtained with the
baseline BERT typicality (see row “BERT fine-tuned / categorization probability 36”
in Tables 3 and 4).

This analysis suggests that jointly training the model to output categorization
probabilities for many candidate genres does not substantially hurt the correspon-
dence of the BERT-based typicality measure with the human typicality, as compared
with what is obtained with a narrower focus on the focal genre. From a practical
standpoint, this is good news. This suggests that, to measure the typicality of objects
in many concepts, the analyst does not have to train one probabilistic classifier per
concept but can do just as well by training one model. Given that each model train-
ing can take several hours (if the data have several hundred thousand observations,
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as the Goodreads.com data used in this section), this implies considerable savings
in computing time.

Benchmarking: Comparing BERT Typicalities with Typ-
icalities Obtained with Other Probabilistic Classifiers or
with Label Assignments

Typicality Based on GloVe Embeddings

We replicated the comparison of the four BERT-based typicality measures using
word embeddings as a language representation instead of the BERT language rep-
resentation. More precisely, we used a word-embedding layer with pre-trained
weights in our classifiers instead of the BERT language representation. (See Ap-
pendix: Methodological Details for further details). We employed GloVe word
embeddings (Pennington, Socher, and Manning 2014) to transform text documents
into vectors. GloVe is a word-embedding model, not a text-embedding model. Ac-
cordingly, we needed to combine word positions in the embedding space to create
a unique position for text documents (book descriptions from Goodreads.com). We
used the average position of the words in the book description as the position of
the book description in feature space.

The results obtained with the four GloVe-based typicality measures are reported
in Tables 3 and 4. The overall performance of the GloVe-based typicality measures
is very good, although not as high as that obtained with the BERT language rep-
resentation. Because the BERT classifier is sensitive to bidirectional dependencies
between words but the GloVe classifier is not, this unsurprisingly suggests that
typicality judgments are also sensitive to such dependencies.

Comparison of the performance of the four GloVe-based typicality measures
leads to the same conclusion as that obtained from comparing the four BERT-based
typicality measures: what is crucial in achieving a good performance is that measure
construction involves training a probabilistic classifier.

Typicality Based on Bag-of-Words Representations of Text Documents

We also used a standard machine-learning text classifier based on a bag-of-words
(BoW) representation of text documents: the naive Bayes classifier (Maron 1961).
This machine-learning classifier produces categorization probabilities based on
word co-occurrences. It is computationally undemanding, but its representation of
text documents is not sensitive to the order of words in sentences. Also the represen-
tation of words does not depend on their semantic similarity. We call the typicality
measure constructed by applying Equation (2) to the resulting categorization proba-
bilities the word frequency categorization probability typicality. Because of the simpler
nature of the language representation used in the classifier, we expected that this
typicality measure would provide a lower fit to human typicality judgments than
the BERT typicality.
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Results reported in Tables 3 and 4 confirm this prediction. It is noteworthy that
despite the simplicity of the classifier used here, the resulting typicality measure is
fairly highly correlated with human typicality.

In additional analyses, we used a version of the BoW representation that does not
rely on simple word frequencies but weighs them by diminishing the importance
of words that occur in many text documents. This approach is known as term
frequency–inverse document frequency, or TF-IDF (Jones 1972). We constructed
two typicality measures based on this representation. The first one is based on
the categorization probabilities produced by a naive Bayes classifier that uses the
TF-IDF representation (instead of simple word frequencies). We call it the TF-IDF
categorization probability typicality. The second measure uses the cosine similarity
between vectors of weighted frequencies that correspond to text documents and
the prototype (just as we did with BERT and GloVe embedding representations).
We call it the TF-IDF correlation with prototype typicality.

Results reported in Tables 3 and 4 show that the performance of the TF-IDF cate-
gorization probability typicality is better than that of the word frequency categorization
probability typicality, but not as high as that of the BERT typicality. The performance
of the TF-IDF correlation with prototype typicality measure is poor. This is not surpris-
ing, because this typicality measure relies on a generic language representation, and
the transformation of positions in the feature space into typicality does not have
free parameters that are adjusted via model training.

Comparison with Label-Based Approaches to Measuring Typicality

As explained in the introductory section, a central motivation for the development
of typicality measures based on the predictions of machine-learning probabilistic
classifiers is that these classifiers can produce typicality measures in settings in
which the data source includes only binary information about concept membership
(e.g., a book is either a Mystery or not). In such settings, the widely used approach to
measuring typicality using label proportions (Pontikes 2008; Kovács and Hannan
2015) cannot be used. Therefore, the BERT typicality measure we proposed in earlier
sections offers a clear benefit.

Yet, the reader might wonder if the benefit of our approach exclusively resides in
the possibility of constructing typicality measures in settings where prior methods
would not allow this to be done, or if the approach we advocate in this article also
presents benefits in settings where prior methods are also applicable—when label
proportions are available.

The original data source we used for our empirical illustrations (the Goodreads
data set) includes multiple label assignments.18 Next, we use these to construct
measures based on label proportions and assess their fit with human typicality
ratings. We compare performance with the baseline BERT typicality measure and
another version of the BERT typicality that uses label proportions as inputs.

In the first and largely implicit step in devising a measure, the analyst assumes
that objects with only one categorical assignment generally fit better to the concept
than those assigned two concepts. The reasoning then makes a similar assertion
about dual categorization versus triple categorization, and so forth. This reason-
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ing leads to the expectation that the typicality in any assigned concept decreases
monotonically with the number of concepts assigned subject to the condition that it
remain non-negative. Prior research has used the following functional form:

t(c, o) =
pc(o)

∑c′∈κ pc′(o)
. (5)

For example, if reviewers apply the concept c1 to an object eight times and apply
the concepts c2 and c3 each one time, then tc1(o) = 0.8 and tc2(o) = 0.1 = tc3(o).

It seems a priori unfair to compare the performance of BERT typicality with
that of these measures based on label proportions, because the BERT typicality is
based on the predictions of a BERT classifier trained on binary categorization. To
make the comparison more meaningful, we also trained the BERT classifier on
training data that included label proportions. We followed the same approach
as that exposed in Using a Probabilistic Classifier to Measure the Typicality of
Objects in a Concept and Measuring the Typicality of Text Documents with a BERT
Probabilistic Classifier except for a change in the nature of the training data (we
kept the categorical cross-entropy loss function). The training data consist of the
proportions of assignments of each book to the focal genre. In other words, Ytrain is
a vector of Ntrain rows and populated with real values in [0,1], the proportions of
labels that correspond to the focal concept. In Tables 3 and 4 “BERT fined-tuned /
categorization probability proportion” refers to the BERT-based typicality measure
obtained with this different training procedure, and “Label proportion typicality”
refers to the typicality measure defined by Equation (5).

The results are very clear: the label proportion typicality reflects human typicality
less well than BERT-based typicalities, be it the baseline version trained with binary
labeled data or the version trained with label proportions. This is the case in terms
of overall correlation but most crucially in terms of within-category correlations.
The finding that BERT typicalities obtained from coarse categorizations (binary
labeling) are a better fit to human typicality ratings than typicality measures based
on label proportions suggests that the language representation constructed by a
BERT classifier more than compensates for the coarseness of the training data. Even
more so, the quasi absence of difference in performance between the two versions
of the BERT typicalities suggests that there might be little potential gain associated
to more fine-grained training data in the form of label proportions.

In summary, our findings provide evidence that the typicalities based on the
categorization probabilities produced by a BERT classifier trained on data that con-
sist of coarse categorizations (binary labeling) allow us to achieve the objective we
stated in the introductory section to produce fine-grained typicality measurements
that closely match human typicality ratings. More research is clearly needed to
assess the extent to which similar findings would hold in other domains, but the
evidence reported here is an important proof of concept.
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Discussion

In this article, we investigate how deep learning can contribute to the measurement
of typicality of objects in concepts. Although the question of “what belongs” (and
what difference this makes) has interested many thinkers at least since Aristotle,
these thinkers had to rely on anecdotes, literary analyses, smaller scale observational
studies, interviews, surveys, and lab experiments. With the new revolution in data
availability and big-data methods, we can finally embark on systematic exploration
of meanings of concepts, their fuzziness, and how people’s reaction to entities
depends on their typicality.

This article provides a methodological contribution. We illustrate how large-
scale text data can be analyzed for sociological analysis with a deep-learning text-
categorization model. Deep learning is not just a powerful method in machine
learning; its ability to learn high-dimensional feature spaces from natural language
and to produce categorization probabilities for positions in the space directly mirrors
recent theorizing in cognitive psychology that relies on probabilistic representations
of concepts and categories (see Hannan et al. [2019] for a review). This effectively
ties this powerful theoretical approach to the types of issues and data of interest in
sociological analysis.

We obtained a feature space by fine-tuning a BERT language representation for
categorization, taking book descriptions as input, and training the model to predict
the genre of a text. Our model also produces a mapping between positions in the
feature space and categorization probabilities. We then use these categorization
probabilities to measure typicality by direct application of the equation outlined in
the theoretical part of the article (Eq. [2]). The excellent fit of the resulting typicality
measure with human typicality judgments indicates that the joint construction of the
feature space and the mapping between positions and categorization probabilities
results in a mathematical representation of concepts that reflects humans’ mental
representation of the concept (at least with respect to typicality judgments).

Besides providing a general framework that illustrates how machine learning
could be used to construct typicality measures, our article advocates the use of one
specific language representation, BERT, to do so. The initial motivation for this
analysis was that models based on the BERT language representation have proven
to have exceptional performance in solving language tasks. It seemed intuitive
that this class of models would also do a good job in capturing how humans make
typicality judgements. To the best of our knowledge, this article is the first to
provide evidence that this is the case.

We have addressed this question in the context of a sociological problem of judg-
ing the typicalities of books (specifically, their descriptions) with respect to a genre
(agreed-upon concept). We judge performance as the strength of the correlation of
typicalities calculated from BERT with average human typicalities of the same book
descriptions. Our main analysis picks a pair of genres (Mystery, Romance) and trains
BERT separately on each. The correlation of typicalities derived from our trained
model with human judgements is 0.87 for Mystery and 0.86 for Romance.
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We judge these correlations to be sufficiently high to warrant a positive answer
to the question posed in the article’s subtitle: How well do typicalities extracted
from a BERT classifier match human judgments of genre typicalities?19

We find it interesting and important that the use of BERT gives high performance
that goes beyond categorization—whether a book is an instance of a genre. It also
gives useful graded answers. Within subsets of books that the majority of those
making genre assignments regard as an instance of a genre, the procedure we
recommend also does well at matching humans in judging typicality.

This impressive pattern of performance also holds when we vary the categoriza-
tion task and train BERT on the full set of 36 genres and then calculate typicalities
in focal genres for comparison with human judgements. This result suggests that
researchers can begin by training BERT on multiple-concept tasks and, if desired,
later narrow the focus.

None of the other options we tried (variations on typicalities based on word
vectorization, bag-of-words representations, or label-based approaches) perform as
well as BERT especially on capturing between-text-document differences in human
typicality judgements within a focal category. Nonetheless some variations we
tried worked nearly as well as BERT. Our analysis of the performance differences
suggests that using a language model or a trained machine-learning classifier is
necessary to generate even moderately good performance. But using both leads to
even better performance.

Although most social scientists have traditionally focused on hypothesis testing
and cared less about model fit, we do think that even theorists should embrace novel
methodologies with much improved model fit. This is because if the prediction
power of a key theoretical concept such as typicality increases from 64 to 87 percent
(see Table 3). as is the case with the typicalities based on the naive Bayes (bag-of-
words) model, versus BERT typicalities, as found in this article, then the empirical
tests become much more reliable. Therefore, empirical tests will be less likely to
lead down dead-end theoretical paths.

Finally, we think that the empirical application of computing the genre typicality
of books based on their text descriptions is just one of the many potential appli-
cations of the use of BERT classifiers for sociological analysis. One could conduct
similar analyses for films to measure typicalities of scripts, or in the case of music,
lyrics. One could study the menus of restaurants to see how novel dishes spread, or
the abstracts and texts of academic articles to check whether articles that are more
typical of a journal receive more citations. By locating objects in a conceptual space,
one could study the extent to which producers change, for example, by calculating
the distance between the texts of an author’s new and prior books (Kovács, Hsu,
and Sharkey 2021). Analyzing the text of patents, one can measure the extent
to which a patent is groundbreaking (Kelly et al. 2021) or ascertain the extent to
which a firm changed the direction of its innovation. Finally, one could use the
same approach to compute the political orientations of tweets posted by politicians
and, in turn, the political orientation of their online discourse (Le Mens et al. 2020;
Konovalova, Le Mens, and Schöll 2022).
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We believe that social science in general, and the study of categorization specifi-
cally, is on the brink of a revolution rendered possible by the application of deep-
learning methods to big data.
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Appendix: Methodological Details

The script used for training the BERT classifier is available at https://osf.io/
ta273/.

Text Tokenization

Text tokenization consists in identifying the relevant semantic units in the pre-
processed text. Specifically, the implementation of the BERT model we used relies
on the WordPiece tokenizer, which creates a token dictionary with the most frequent
tokens in a text (a token being either a full word or a subset of the characters of a
word). The dictionary is a file that consists of two columns. Elements of first column
are token strings, and elements of the second column are unique token identifiers.
The dictionary for the BERT-base-cased model we used contains 30,000 distinct
tokens and was constructed on the pre-training data set made of BookCorpus, a data
set consisting of 11,038 unpublished books and English Wikipedia (excluding lists,
tables, and headers).20 Applying the WordPiece tokenizer to each text document
produces a sequence of tokens. Consider an example sentence: “The mouse ran
away, but the cat ate the mouse.” The corresponding sequence of tokens is [“The”,
“mouse”, “ran”, “away”, “,”, “but”, “the”, “cat”, “at”, “##e”, “the”, “mouse”]. Each
such sequence is then matched with BERT’s token vocabulary.21 For each text
document, a fixed-length sequence of matched token identifiers is finally returned,
denoted as the tokenized document. The length of each sequence was set to L = 512
tokens, where longer or shorter sequences were respectively trimmed or zero-
padded (zeros were added to the right of the last token identifiers until the sequence
reached a length of L elements).22 The tokenized document for the example sentence
is [10117, 63986, 17044, 14942, 117, 10473, 10105, 41163, 10160, 10112, 10105, 63986, 0,
. . . , 0], where the zeros are added to make the length of the sentence equal to 100
elements.

Parameters of the Optimizer Used for Fine-Tuning the BERT
Classifier

We implemented our BERT categorization model using the TensorFlow machine-
learning library and its higher-level wrapper Keras. We used the Adam optimizer
to minimize the cross-entropy loss function for fine-tuning the model. This amounts
to trying to find the parameters that maximize the likelihood of the true categories
in the training data. We used the following (standard) parameter values:

• Batch size: 64

• Maximum number of tokens: 512 (This is the maximum possible with pre-
trained BERT.)

• Optimizer: Adam

• Loss function: categorical_crossentropy

• Learning rate: 2e-5
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• Epochs: 2

For the frozen BERT we used the same parameter values, except for a faster
learning rate (5e-4) and more epochs (50).

All the models were specified by attaching an average layer on top of the
embedding layer (which computes the mean position of the tokens in the text), a
dense layer with number of nodes equal to the number of categories with a softmax
activation.

GloVe

From the training data we got the top 20,000 most frequent words in the book
descriptions; then we used the GloVe embedding model “glove.6B.300d” (trained
on Wikipedia) to transform each of the 20,000 words into vector positions (all
but 651 words appeared in both our top 20,000 most frequent words and the
GloVe embedding). With this embedding we created a basic deep-learning model
consisting of an embedding layer, a pooling layer, and a dense layer (with softmax
activation).

We trained the model for five epochs with a 2e-3 learning rate, with the task
of classification (using the categorical cross-entropy loss function). The model
parameters were selected after some exploration, maximizing model performance
in terms of loss minimization in the validation set.

Bag-of-Words Models

From the training data, we selected a subset of 50,000 book descriptions and got
the 3,000 most frequent words (we chose 3,000 words due to RAM limitation on
the platform we used to run the computations). We assigned to each word an ID
and transformed all the book descriptions using this ID dictionary. Finally, we fit a
multinomial naive Bayes classifier on all the book descriptions in the training data.

For the construction of the dictionary, we used the sklearn package “CountVec-
torizer,” and to fit the model we used the sklearn package “MultinomialNB.”
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Appendix: Goodreads.com Data

The following is an example of a Goodreads entry (https://www.goodreads.com/
book/show/15806231-calculated-in-death). The counts of categorizations for
this book are Mystery (631), Romance (248 users), Mystery and Crime (152), Fiction
(152), Romance and Romantic Suspense (128), Futuristic (118), Suspense (109),
Science Fiction (83), Thriller (65).

Calculated in Death

J.D. Robb

4.28 [average rating] · 23,205 ratings · 1,469 reviews

On Manhattan’s Upper East Side a woman lies dead at the
bottom of the stairs, stripped of all her valuables. Most cops
might call it a mugging gone wrong, but Lieutenant Eve Dallas
knows better.
A well-off accountant and a beloved wife and mother, Marta
Dickenson doesn’t seem the type to be on anyone’s hit list.
But when Eve and her partner, Peabody, find blood inside the
building, the lieutenant knows Marta’s murder was the work
of a killer who’s trained, but not professional or smart enough
to remove all the evidence.
But when someone steals the files out of Marta’s office, Eve
must immerse herself in her billionaire husband Roarke’s
world of big business to figure out who’s cruel and callous
enough to hire a hit on an innocent woman. And as the killer’s
violent streak begins to escalate, Eve knows she has to draw
him out, even if it means using herself as bait. . .

Published February 26, 2013 by Putnam Adult

Table A: Relative frequencies of assignment by genre for the whole sample

Genre Percent Genre Percent Genre Percent

Romance 12.11 Comics 2.41 Self Help 1.31
Children’s 8.88 Humor and Comedy 2.12 Thriller 1.27
History 7.68 Horror 2.07 Philosophy 1.20
Fantasy 6.95 Religion 1.88 Travel 1.18
Mystery 6.01 Science 1.82 Chick Lit 1.06
Young Adult 5.05 Memoir 1.80 Psychology 0.91
Science Fiction 4.69 Christian 1.73 Suspense 0.9
Contemporary 3.92 Cookbooks 1.70 Sports 0.89
Historical Fiction 3.32 Manga 1.55 Spirituality 0.87
Paranormal 3.06 Classics 1.51 Crime 0.82
Poetry 2.53 Business 1.49 Music 0.82
Biography 2.49 Graphic Novels 1.47 Gay and Lesbian 0.52
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Notes

1 For another sociological application of BERT, see Vincianza, Goldberg, and Srivastava
(2020).

2 Work that has examined the similarity of concepts in word-embedding spaces employs
this kind of averaging (e.g., Kozlowski et al. 2019); so does the work on beauty-in-
averageness (e.g., Vogel et al. 2018).

3 Garg et al. (2018) and Lewis and Lupyan (2020) use this kind of averaging, although
they do not focus on objects but on the typicality of particular words in a concept.

4 Hannan et al. (2019) postulate that ππG
(x | c) = P(x | c). Bayes’ theorem implies that the

new formulation of typicality is increasing in P(x | c):

τc(x) ≡ log
P(c | x)

P(c)
= log

P(x | c)
P(x)

= log
πG(x | c)

P(x)
, (6)

where the last equality holds under the assumption made by Hannan et al. (2019). So both
renderings of intuitions about typicality are increasing in P(x | c). The new definition
offers a clear practical advantage, however, in that the machine-learning classifiers we
use to construct empirical measures of typicality output the categorization probabilities
associated to a position (x), P(c | x), but do not provide access to empirical measures of
the concept likelihood at position x, πG(x | c).

5 This proposition is similar to that of Kozlowski et al. (2019) who proposed that similarity
relations in embedding spaces “reflect widely shared cultural associations” (P. 918).

6 When observations in the available categorization data D are not independent, and the
dependence structure is known, it is advisable to put all dependent observations in one
of the two sets, ensuring independence between the training and validation sets.

7 The maximal L value for use with pre-trained BERT models is 512, which corresponds to
approximately 300 English words.

8 State-of-the-art text-categorization models were based on the LSTM architecture until
the advent of BERT.

9 One of the most widely accepted benchmarks for natural language understanding
models is the GLUE (General Language Understanding Evaluation) benchmark (https:
//gluebenchmark.com/leaderboard). Examination of this ranking reveals that BERT
performs much better than previously introduced models, in particular bag-of-words–
based models (CBOW). Virtually all the models that perform better than the original
BERT are direct extensions of this model.

10 The task used for pre-training is “word-masking”: a small proportion of words in the
input text are masked to the model, and the model has to predict which word has been
masked on the basis of the non-masked words that come before and after the masked
word.

11 BERT-base-cased was trained on Wikipedia and BookCorpus. Other available models
have been pre-trained in other languages (e.g., French, Spanish) or on several languages
at once (BERT-base-multilingual-cased). See HuggingFace.co for a large library of pre-
trained models.

12 For computational reasons, we excluded books whose descriptions exceed 300 words.
These are about 4.6 percent of the data. The original sample contained 768,249 books.

13 We do not have data on the individual shelving events. Our data on categorizations
do not contain information on individual categorization events but provide only the
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aggregated distribution of categorizations (e.g., X people tagged the book as Mystery, Y as
Comedy).

14 For the sake of discussion of classification accuracy, we assume that a book is predicted to
be a Mystery book if the probability of categorization in Mystery is higher than in Non-Mystery.

15 This project is available on the Open Science Framework (OSF) at https://osf.io/
ta273/. The “compute_typicality” folder contains a Python notebook that can be used
to train the model and compute typicalities using dedicated hardware freely available
via the Google Colab service (https://colab.research.google.com), the data set used
to compute the typicalities of books in the Mystery genre, and a Readme file proving
instructions about how to use the notebook.

16 We had 50 experimental conditions each corresponding to a set of 20 book descriptions.
The random allocation of participants in conditions implied some variability in the final
number of participants in each condition.

17 In ancillary analyses, we defined the typicality of an object in a concept by taking the
average of the cosine similarities between the object and all instances of the concept in
the training data. The results obtained with this “exemplar approach” are almost the
same as those obtained with the “prototype approach.”

18 For the sake of illustration of our method, we “impoverished” the training data by
discretizing them: we considered a book as a Mystery book or not.

19 Our claim is not that BERT is the best model ever; indeed, very recent work has already
extended BERT to provide representations that improve on BERT (e.g., RoBERTa, CPT2,
CPT3). Our point is that BERT typicalities are already quite close to human typicality
judgments.

20 The tokenizer function we used is a component of the publicly available transformers
library of language models: https://huggingface.co/transformers/main_classes/
tokenizer.html.

21 Tokens with the same letters but different font cases (e.g., “The” and “the”) are treated as
distinct tokens.

22 L = 512 is the largest number of tokens that can be used with pre-trained BERT. Given
the empirical distribution of the number of tokens for the book descriptions in our data,
0.06 percent of the book descriptions were trimmed. We chose the parameter value
of L = 512 to maximize prediction accuracy at the cost of longer computing time (as
compared with what would be obtained with a smaller L).
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