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Abstract  

Whereas prior innovation and strategy literature studied how attentional and search dynamics 

influence the creation of inventions, we examine how these same processes affect the impact of 

inventions after their creation. We theorize that inventions classified in “high-contrast” 

technological categories garner more attention by potential users and, hence, accrue more 

citations than otherwise-equivalent inventions classified in “low-contrast” categories. We test 

this hypothesis via three studies. First, we estimate citation-count models among all USPTO 

patents granted between 1975 and 2010. Second, we conduct a “twin patents” test comparing 

inventions patented both at the USPTO and at the EPO. Third, we examine minute-by-minute 

search logs from a sample of USPTO examiners. These studies support our hypothesis and 

extend current understandings of attentional and search dynamics in the innovation process. 
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INTRODUCTION 

Building on the concept of bounded rationality (March & Simon, 1958; Nelson & Winter, 1982), 

a considerable body of literature has examined how processes of selective attention allocation 

and information search influence the creation of innovative ideas, products, and technologies (for 

a review, see Eggers & Kaplan, 2013). The point of departure of this literature is that inventions 

are created by recombining existing knowledge (Schumpeter, 1934). Therefore, where actors 

focus their limited attention as they search for the knowledge inputs affects the quality of their 

inventive output (Ghosh et al., 2014; Dahlander et al., 2016). For example, Martin and Mitchell 

(1998) found that most firms have a narrow focus of attention and search for knowledge inputs 

locally, i.e., close to what they already know; however, engaging in distant search helps firms 

develop products that are more unique and innovative. Similarly, Ferguson and Carnabuci (2017) 

argue that searching for knowledge inputs across technological boundaries improves an 

inventor’s chances of identifying superior technological solutions. 

Whereas this line of inquiry leveraged theories of attention and information search to 

illuminate the creation of inventions, it did not examine whether processes of attention allocation 

and information search also affect the impact of an invention after it has been created. 

Unquestionably, inventions of higher technical quality are likely to have greater impact (Moser 

et al., 2018), i.e., to be more widely used and “built upon as technology continues to evolve” 

(Rosenkopf & Nerkar 2001: 291, Fleming, 2001). However, focusing on what happens after an 

invention has been created is important because the impact of an invention does not only depend 

on its inherent technical quality but also on whether potential users become aware of its 

existence and perceive it to be useful as they search for knowledge inputs to build upon (see 

Mokyr, 2002; Furman & Stern, 2010; Bikard, 2018). Because inventions burgeon at a too fast 
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rate for anyone to comprehensively search them all, many technically valuable inventions may 

pass unnoticed and become dead-ends (Fleming, 2001), while technically subpar inventions may 

accrue significant attention and impact (Greve & Seidel, 2015). Consistent with this view, the 

present paper shifts the focus of analysis from the attentional and search dynamics that shape the 

process by which inventions are created, to those that guide the attention of potential users once 

an invention has been created and is ready for use.  

Similar to prior studies, we focus on a particularly important inventive output – patents – 

and measure their impact by tracing the citations they receive from future patents (e.g., 

Rosenkopf & Almeida, 2003). Patents provide an ideal context to investigate our research 

question because patent users1 face considerable information overload, meaning that the volume 

of available information exceeds their cognitive capacity (Lemley, 2001; Kuhn, 2010), and must 

cope with it by allocating their attention selectively. Prior studies show that patent users’ search 

for knowledge inputs is shaped by informational cues related to the status of a patent holder 

(Podolny & Stuart, 1995), and to the institutional (Bikard, 2018) and geographical origins of a 

patent (Bikard & Marx, 2020). This literature suggests that examining where patent users are 

more likely to focus their limited attention is helpful to understand why, net of their technical 

value, some patents accrue more citations than others.  

 
1 Throughout the paper, we will use the expression “patent user” to indicate anyone who is actively involved in the 
patenting process, whether as a patent applicant or as a patent examiner. We are aware that the roles of patent 
applicant and patent examiner are distinct and that, in fact, even more fine grained distinctions (e.g., between 
inventors and patent attorneys) may be relevant when examining the patent citation process. We are also aware that 
there are differences across patent offices, e.g., the EPO and the USPTO. As we explain in more detail later in the 
paper and in the appendix, we devised several approaches to account for these differences; in fact, we leverage some 
of these differences in our empirical tests to further probe our argument. From a theoretical perspective, however, 
our focus is on any expert who actively engages in searching for relevant prior art either during the inventive process 
(e.g., when an inventor draws ideas for a new process or device by scouting existing patents) or the patent 
application process (e.g., when a patent applicant or a patent examiner searches for relevant patents to be listed in a 
patent application document).   
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We contribute to this line of inquiry by arguing that patents classified in high-contrast 

technology classes are more likely to receive attention, and hence to be cited, compared to 

otherwise-equivalent patents classified in low-contrast classes. Our arguments build on and 

extend the work of Zuckerman (1999), who proposed that the industry categories used to classify 

equities effectively delimit the “consideration set” on which stock analysts focus their attention. 

Similarly, we argue that patent classes, by partitioning the stock of existing patents into distinct 

technological categories, enable patent users to narrow down the consideration set on which they 

focus their limited attention when searching for relevant prior art. We recognize that some patent 

classes have high category contrast, i.e., they demarcate a distinctive and well-defined 

technological category, while others have low contrast, meaning that the boundaries separating 

them from neighboring categories are blurred (Hannan, 2010; Carnabuci et al., 2015). Extant 

categorization research suggests that high-contrast categories are more salient and more 

informative than low-contrast ones (e.g., Hsu, 2006a; Negro et al., 2015). As a result, the 

information classified in high-contrast categories receives more attention, whereas that in low-

contrast categories is more likely to pass unnoticed (Rosch, 1975; Murphy, 2004; Hannan, 

2010). Building on this argument, we posit that patent users are more likely to focus their limited 

attention on high-contrast than on low-contrast patent classes when searching for relevant prior 

knowledge. Therefore, holding other things constant, the number of citations a patent receives 

should be greater if it is classified in a high-contrast patent class than in a low-contrast one. 

Testing our theory poses a methodological challenge. Our goal is to isolate the effect of 

category contrast on patent citations from possible confounding factors, including patents’ 

unobservable technical quality. We address this challenge by conducting three related studies. In 

Study 1, we establish the plausibility of our hypothesis by estimating a set of panel count models 
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with patent and year fixed effects, using the entire record of utility patents granted by the United 

States Patent and Trademark Office (USPTO) between 1975 and 2010. We find a strong and 

robust effect of patent class contrast on patent citations. To more conclusively isolate the causal 

effect of category contrast on patent citation, in Study 2 we conduct a “patent twins” case-control 

design (Bikard, 2020) leveraging cases of identical inventions patented in two distinct patent 

offices – the USPTO and the European Patent Office (EPO). Because these patent twins refer to 

the exact same invention, which is subject to parallel assignments to multiple classification 

systems, this identification strategy enables us to tease out the effect of patent class contrast on 

patent citations while perfectly controlling for the underlying technological quality and other 

unobservable time-varying factors. We find that patent class contrast continues to exhibit a 

sizeable and robust positive effect on patent citations even when matching patent twins in a case-

control design.  

Study 1 and Study 2 provide compelling empirical support for the hypothesis that 

inventions classified in higher-contrast classes receive more citations, but they do not enable us 

to directly observe the attention allocation and search mechanisms that we postulate to drive this 

effect. Whereas micro-level search behavior data is exceedingly rare, it does exist for at least one 

kind of patent users – patent examiners – enabling us to probe our theorized mechanisms more 

directly. Thus, in Study 3, we analyze a unique, minute-by-minute data set obtained from the 

search log records of 610,764 queries conducted by USPTO patent examiners searching for 

relevant prior art for 17,373 patent applications. We find that the search behaviors of this subset 

of patent users confirm the mechanism postulated by our theory. First, patent examiners are 

significantly more likely to focus their prior art searches on high-contrast than on low-contrast 

patent classes. Second, the higher the contrast of a patent class, the more likely are patent 
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examiners to delimit the scope of their prior art search to patents just inside that class. Third, 

when patent examiners search for prior art in high-contrast classes, their searches are more 

efficient, i.e., they add more citations in less time. 

This study contributes to the literature by extending current understandings of attentional 

and search dynamics in the innovation process. Prior innovation and strategy literature examined 

how attentional and search processes influence the creation of inventions, finding that those who 

search for knowledge inputs across technological boundaries are more likely to identify superior 

technological solutions. Shifting the focus analysis from the creators to the users of inventions, 

conversely, we highlight how inventions classified within clear-cut, high-contrast technological 

boundaries tend to garner more attention and, therefore, exert greater impact on future 

technological developments. By demonstrating that a seemingly neutral and inconsequential 

classification decision may systematically influence the future impact of an invention, our study 

contributes new insight into the growing body of literature that examines what drives a patent’s 

future use, and hence value as a knowledge asset, over and beyond a patent’s inherent technical 

quality (Murray & O’Mahony, 2007; Ferguson & Carnabuci, 2017; Bikard, 2018; Polidoro, 

2020). On a more programmatic level, our study underlines the importance of categorization 

processes in strategy and innovation research (e.g., Pontikes, 2018).  

 

THEORETICAL BACKGROUND 

The number of citations a patent receives ultimately depends on whether patent users find it as 

they search for relevant prior art. How, then, do patent users search for relevant prior art across 

the overwhelming stock of patented knowledge? Since March and Simon (1958), we know that 

people cope with information overload by engaging in heuristic search for satisfactory rather 
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than optimal solutions. Research in strategy (Stuart & Podolny, 1996; Katila & Ahuja 2002; 

Rosenkopf & Almeida, 2003), innovation studies (Fleming, 2001; Arthur, 1989), and psychology 

(Newell & Simon, 1972; Gigerenzer et al., 1999) has consistently shown that people are 

boundedly rational and manage information overload by taking cognitive shortcuts, or 

“heuristics” (Kahneman et al., 1982), which focus their attention on a selected subset of the 

available information. The extent to which people rely on cognitive shortcuts may vary 

depending on how much prior domain knowledge a person has; however, as Simon (1971, 1986) 

and subsequent studies have compellingly shown, even experts cope with information overload 

through a selective attention allocation process (for a comprehensive review, see Campitelli & 

Gobet, 2010). For example, Bikard (2018) examined how R&D scientists identify relevant 

academic research among the stock of articles published in academic journals. Leveraging a 

“paper twin” analysis, he compared independent publications of the very same discovery, such 

that the likelihood of being cited should be exactly equivalent for both paper and “twin.” He 

found that R&D scientists use the papers’ institutional origin as a cognitive shortcut when 

choosing where to allocate their scarce attention. This, in turn, leads them to selectively focus on 

certain publications while systematically disregarding others that are equally relevant. 

Categories play a particularly important role in focusing people’s selective attention 

during information processing tasks (Hannan et al., 2007; Zuckerman, 1999; Ruef & Patterson, 

2009). By breaking down the stock of available information into subsets of related information, 

categories reduce the “consideration set” to be searched by users and orient their focus (Posner & 

Petersen, 1990; see also Helfat & Peteraf, 2015). Research in a broad variety of settings 

including the stock market (Zuckerman, 1999), films (Hsu, 2006a, 2006b), music (Montauti & 

Wezel, 2016), and restaurants (Kovács & Hannan, 2010) has shown that categories shape where 
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people allocate their attention, investments, and resources. More recently, this line of inquiry 

expanded to examine the role of a particular type of category – patent classes – finding that they 

affect firms’ technological entry decisions (Carnabuci et al., 2015), the ways in which the 

portfolio of investments of technology startups is evaluated by venture capitalists (Wry & 

Lounsbury, 2013; Wry et al. 2014), and the likelihood of patent rejections (Ferguson & 

Carnabuci, 2017). As we articulate in the next section, we expect patent classes to also affect the 

likelihood that a patent will be cited by future patents.  

  

Hypothesis development  

Just like scholars constantly search for relevant academic literature, a primary task of 

every patent user – be it an inventor, patent examiner or patent attorney – is to identify relevant 

prior art. At the time of this writing, there are over 11 million patents in the USPTO alone. In the 

absence of a patent classification system, finding relevant prior art across the stock of patented 

knowledge would be akin to finding a needle in the haystack. Patent classes sort related patents 

into technological categories, and in so doing they greatly simplify the search for relevant prior 

art, making it pragmatically manageable (Kuhn, 2010). Building on Zuckerman’s (1999) 

argument that categories narrow down users’ “consideration sets,” we argue that patent classes 

work as an “information infrastructure” (Bowker & Starr, 2000) that channels the attention of 

patent users and selectively focus their search for prior art2.  

 

2 This purpose of the patent classification system is also explicitly stated in USPTO documents. For example, the 
document titled “Overview of the U.S. Patent Classification System (USPC)” states that “The USPC serves (…) to 
facilitate the efficient retrieval of related technical documents” (see page I-2, 
https://www.uspto.gov/sites/default/files/patents/resources/classification/overview.pdf) 
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Extant research posits that the degree to which a category channels users’ attention varies 

with its contrast, defined as the extent to which a category contains unique and distinctive 

information that sets it apart from neighboring categories (Hsu, 2006a; Negro et al., 2015; 

Kovács & Hannan, 2010; Hannan et al., 2019). In the context of our study, specifically, a patent 

class exhibits high category contrast if most of the patents categorized therein belong only to that 

class. Conversely, a patent class is low-contrast if its categorical boundaries are unclear, that is, 

many of the patents categorized therein are also categorized in other classes. Building on 

categorization theory (e.g., Hannan et al., 2007), we propose that high-contrast classes are more 

likely to delimit patent users’ consideration sets because they are both more salient and more 

informative than low-contrast ones. They are more salient because, being clearly different from 

neighboring classes, they “stand out from the rest” (Hannan, 2010; Hannan et al. 2019). They are 

more informative because they effectively bracket most of the potentially relevant prior art and, 

therefore, they provide a useful indication of the boundaries within which patent users should 

focus their search. Low-contrast classes, on the other hand, do not univocally demarcate the 

boundaries within which patent users should search for relevant prior art because they comprise a 

larger share of patents that are concurrently categorized in one or more neighboring classes. 

Hence, they are both a less salient informational cue and a less useful heuristic for focusing the 

scope of patent users’ searches.  

These arguments suggest two reasons why, holding other things constant, patents 

classified in high-contrast classes are more likely to be identified as relevant prior art and, hence, 

accrue more citations than patents in low-contrast classes. First, patent users are more likely to 

start their prior art search in high-contrast patent classes rather than on low-contrast ones because 

the former, being clearly distinct from neighboring classes, provide a clear indication of the 
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“consideration set” within which prior art should be searched. Conversely, low-contrast classes 

do not provide a clear indication of where patent examiners should focus their attention because 

they are less distinguishable from other potentially relevant classes. In fact, in cases of extremely 

low category contrast, classes provide no heuristic value at all, similar to a situation where there 

is no classification. Second, when searching for prior art within a high-contrast class, patent 

users are more likely to focus the scope of their search within the boundaries of the class itself, 

rather than dispersing their attention across multiple classes. Such narrow focus is cognitively 

efficient (Castiello & Umiltà, 1990) and, therefore, increases the likelihood that relevant patents 

classified therein will be identified within the patent users’ limited time budget. Conversely, 

when patent class contrast is low, patent users must spread their attention more broadly and 

search for potentially relevant citations across multiple classes. Such lack of attentional focus 

does not only reduce the time3 patent users can devote to each class searched, but also the 

efficiency, and hence the returns, of the search process. Evidence indicates that dispersing one’s 

attention across multiple classes is cognitively inefficient and drastically diminishes the chances 

of finding relevant information (e.g., see Cowan, 2016). Hence, when patent users search for 

prior art in a low-contrast class, the likelihood that relevant prior art will pass unnoticed – and 

hence will not be cited – increases sharply.  

To embed these theoretical arguments within the reality of the patenting process, it may 

be useful to consider the following thought experiment. Imagine a patent examiner tasked with 

finding relevant prior art for a patent application4. In the spirit of a counterfactual analysis, let us 

 
3 Research has documented that examiners typically have one or at most a few hours per application for prior art 
search (Frakes & Wasserman, 2017).  
4 The thought experiment focuses on patent examiners, but it could be readily applied to any patent user searching 
for relevant prior art, e.g., an inventor trying to map the body of existing knowledge around a new device she has 
been working on. 
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compare two identical scenarios where the only difference is in the category within which 

patents are classified. Because of this difference, the category contrast of the patent class in 

question is high in one scenario and low in the other. For simplicity, let us use the shorthand 

Class x to denote the high-contrast scenario and Class y to denote the low-contrast one. While 

these are hypothetical counterfactual scenarios, we note that the statistics used to describe 

represent the 10th and 90th percentiles of the observed distributions. 

Scenario x: With a category contrast score of 0.89, Class x is one of the highest-contrast 

classes and, therefore, it is clearly distinguishable from neighboring classes. For example, 78% 

of the patents classified in x are classified only within x. Furthermore, 73% of the prior art 

citations from patents classified in x reference earlier patents within the class itself. That is, class 

x contains most of the relevant prior art for patents therein.  

Scenario y: With a category contrast score of 0.65, class y is one of the lowest-contrast 

classes. Class y is hardly distinguishable from neighboring classes k, j and z because many 

patents classified in y (64%) are concurrently classified in k, j and z. Furthermore, a large share 

of the relevant prior art cited by patents classified in y comes from other classes, with y 

bracketing on average only 38% of the relevant prior art.  

How would our hypothetical examiner behave in these counterfactual scenarios? Our 

argument is that, because x is clearly distinguishable from its neighboring classes, it is more 

salient and therefore likely to catch the examiner's attention as she sets out to define her 

“consideration set” and start her search for prior art. Furthermore, x is informative: if our 

examiner decides to begin searching within x, she is likely to find that most relevant prior art is 

classified therein. Therefore, she will likely deepen her search within the class rather than 

spreading her attention across other classes. Because focusing on a single class increases the 
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cognitive efficiency of the search process, chances that our examiner will be able to identify 

relevant prior art given her limited time budget are higher. For these reasons, any relevant patent 

that is classified in x stands a comparatively high chance of being cited. 

The situation is markedly different in the counterfactual scenario where the relevant class 

is y. First, because y has low category contrast, it is not clear where its boundaries stop and 

where the boundaries of neighboring classes k, j and z begin. Hence, the examiner would have to 

first ask herself where to begin her prior art search. Class y might be a candidate, but it certainly 

does not stand out as the only one. Because most of the patents in y are concurrently classified in 

k, j and z, these other classes are good candidates, too. Thus, compared to class x, class y 

provides a feebler informational cue of where our examiner should delimit her “consideration 

set” at the outset of her prior art search. Second, even if our examiner did decide to initially focus 

her attention on y, she would soon realize that doing so is not particularly helpful in terms of 

delimiting the boundaries of her search scope because much of the relevant prior art resides 

outside of y. As a result, she would have to spread her search thinly across multiple patent 

classes, which reduces the cognitive efficiency of the search process and, therefore, increases the 

likelihood that our examiner will miss potentially relevant prior art. 

In synthesis, we posit two reasons why, ceteris paribus, patents classified in high-contrast 

classes are likely to accrue more citations than patents in low-contrast classes. First, patent users 

are more likely to start their search and focus their attention on high-contrast than low-contrast 

patent classes. Second, patent users are cognitively more efficient when searching for prior art in 

high-contrast rather than low-contrast classes and, hence, they are more likely to identify 

relevant prior art in the former than in the latter. These arguments lead to the central hypothesis 

of the paper. 
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Hypothesis: The higher the contrast of a patent class, the higher the 

number of citations the patents categorized therein will receive. 

 

OVERVIEW OF THE THREE STUDIES 

Because patents are not assigned to patent classes randomly, demonstrating the effect of patent 

class contrast on patent citation poses an identification challenge. Most notably, it is possible that 

the patents classified in high-contrast classes are qualitatively different (e.g., better) than those in 

low-contrast classes. To address this challenge, we conducted three related studies. Table 1 

provides an overview of the three studies and how they relate to each other. We discuss each 

study’s logic, sampling strategy and methodology in the next sections. 

 

-------------------------------- Insert Table 1 Here -------------------------------- 

 

To gain a better insight into the classification and patent citing processes, we conducted a 

number of field interviews. Specifically, we interviewed three current USPTO patent examiners, 

a former head of the patent classification office at the USPTO, and a senior patent attorney who 

has worked with Silicon Valley startups and large hardware/tech firms. The interviews were 

conducted via Skype and lasted around 45-60 minutes each. The interviews followed a semi-

structured format, in which we asked questions about (i) the experience of the interviewee with 

patenting, (ii) the patenting process and prior art search at the USPTO and (iii) the potential for 

strategic behaviors from the side of applicants. In addition to the interviews, the first author 
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completed the first step of the patent examiner training at the USPTO, which provided further 

understanding of the setting and of the interpretation of the examiner search data used in Study 3. 

 

STUDY 1 

In Study 1, we model patent impact as a patent’s yearly citation count and estimate a set 

of panel count models with patent and year fixed effects. We note that this is a statistically more 

conservative approach relative to most existing studies of patent citation. Most prior studies 

primarily controlled for patent heterogeneity by measuring observable characteristics, such as 

number of prior art citations, technological breadth, component familiarity, combination 

familiarity, scientific references, patent’s primary industry, number of inventors, or age, status 

and size of the patent assignee (see Fleming, 2001; Fleming & Sorenson, 2004; Carnabuci et al., 

2015 for details on these variables). By estimating a patent-level fixed effects model, we remove 

any observable and unobservable differences across patents, including all the characteristics 

controlled for by prior studies (Alcácer & Gittelman, 2006). Furthermore, by including year 

fixed effects, we control for possible time trends and time-vary shocks that may affect all patents 

simultaneously, such as economic cycles or changes in patenting policy and regulations of the 

patent office. For example, the USPTO changed patent examiners’ remuneration policy and 

moved to a new headquarters in 2005. Such changes are hard to trace comprehensively but can 

be effectively controlled for by including year fixed effects. 

 

Data and sample 

In Study 1, we analyze all utility patents granted by the USPTO between 1975 and 2010. 

The year 1975 was chosen as a starting point because since that year the records are made 
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available in digitized format (Jaffe & Trajtenberg, 2002). Our data end with the patents granted 

before or in 2010 because in 2011 the USPTO started to introduce a new classification system, 

CPC, which went into effect in 2013. To provide a clean test of the effect of patent class contrast, 

we restrict our sample to patents that were not reclassified until the end of our observation 

window, resulting in a final sample of 3,260,030 patents. In Study 1, we utilize the patent dataset 

made available by the USPTO at Patentsview.org. 

 

Measures 

Patent Citations. This is our primary dependent variable in Studies 1 and 2. Following a 

consolidated practice (Hall et al., 2005), we calculate patent impact yearly, based on the citations 

it receives from patents applied for in a given year. In the USPTO, patent citations can be added 

by either patent applicants or patent examiners. In Study 1, we measure patent impact as “total 

citations received” regardless of who inserts the citations. This is for two main reasons. First, this 

is the dependent variable on which most prior patent impact studies are based, which increases 

the comparability of our findings to previous work. Second, the USPTO did not record, for most 

of our observation period (1975-2000), who added the citations. As we will show later, the 

results presented are robust to alternative time windows and specifications, such as taking the 

2001-2010 subsample or focusing on examiner added citations only.  

Patent Class Contrast. Testing our hypothesis requires a measure of the contrast of each 

patent class. To this end, we build on the conceptualization of Hannan and colleagues (2007) and 

operationalize contrast through the measure developed by Carnabuci and colleagues (2015)5. The 

measure is constructed in two steps. Step 1 leverages the fact that, whereas in the USPTO each 

 
5 In the appendix, we report analyses based on different measurement approaches and find that our results remain 
highly consistent irrespective of measurement approach. 
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patent can only be classified in one primary class, the technological subclasses assigned to the 

patent may belong either to the primary class itself or to other classes. This design feature 

enables us to build a patent-level “recombinativeness” score that measures the proportion of 

technological subclasses assigned to a patent that do not belong to the primary class within 

which the patent is classified (Carnabuci et al., 2015).6 The recombinativeness measure ranges 

from 1/n to 1, where n denotes the number of classes the patent is assigned to. In step 2, we 

calculate the contrast of each patent class as one minus the average recombinativeness of the 

patents assigned to the focal class in a given year. Thus, a patent class has a category contrast of 

one when all the patents classified therein are exclusively classified in that class and no other. 

However, the more the patents classified in a class combine technological subclasses belonging 

to other primary classes, the closer class contrast approaches zero.7  

As new patents are granted every year, this measure is updated yearly. We measure 

contrast in terms of flow rather than stock to capture the possibility that a patent that belongs to a 

low contrast category today might actually gain visibility over time as the class gains contrast 

(and vice versa). Nonetheless, while patent class contrast does vary over time, the 5-year 

autocorrelation value of 0.62 indicates its relative stability in the short- and medium-term. Table 

2 provides illustrations of patent classes by listing the primary classes with the 10 highest 

 
6 For example, US patent 4,836,431 is granted for a “Semi-automatic loading paper feed tractor” that is “provided 
with an endless belt which travels in a triangular path and a drive shaft.” In laypeople’s terms, this is the belt 
mechanism that moves along the printing paper in the matrix printer (the printer with perforated holes, popular in the 
1980s and 1990s, still used at some airports). This innovation draws on two bodies of knowledge: printers and belt-
mechanisms. Reflecting the underlying technological recombination, this patent is classified as 226/74 “Advancing 
material of indeterminate length” and 400/616 “Typewriters”, with the primary classification being 226. Because 
one (226) out of the two classes (226 and 400) is the same as the patent’s primary class, the patent’s 
recombinativeness value is 0.5. An example for a non-recombinative patent is US patent 6,652,318 “Cross-talk 
canceling technique for high speed electrical connectors,” which is an innovation that provides a new configuration 
for electrical connectors and is classified only in primary class 439 (“Electrical connectors”). Therefore, this patent’s 
recombinativeness score is 0. 
7 We also estimated our models with alternative specifications of the contrast variable, see the results in Tables A1-
A3 in the Appendix. 
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average contrast class (e.g., “Static information storage and retrieval” or “Electrical Connectors”) 

to the 10 lowest average contrast class (e.g., “Synthetic Resins or Natural Rubbers” or 

“Concentrating evaporators”). Figure 1 shows how category contrast changes over time for three 

randomly selected patent classes. 

Control variables. In addition to incorporating patent-level and year fixed effects, we 

control for two time-varying changes at the patent-class level that prior studies have identified as 

affecting the citations received by a patent. Specifically, as patent classes vary in popularity and 

R&D investments, we control for class-specific technological fertility and growth rates (Fleming, 

2001; Fleming & Sorenson, 2004; Carnabuci & Bruggeman, 2009). Following common practice 

in the innovation literature, we measure Technological fertility as the mean number of citations 

received by the patents that are classified in the primary class in the given year. Additionally, we 

control for the yearly number of patents granted in each class (Class size) as previous studies 

found that citation growth rates are related to patent class size (Carnabuci, 2013; Lafond & Kim, 

2017). Note that because the models presented include patent fixed effects, we do not need to 

(and may not) include additional controls for factors that are constant for a given patent, such as 

the count of inventors, the count of claims, its degree of recombinativeness, the count of 

scientific references, or the nationality and size of the assignee.  

 

-------------------------------- Insert Figure 1 and Tables 2 and 3 Here ---------------------------- 

 

Estimation method 

We estimate variations of the following equation: 

EQ (1): 	𝜃i,t+1 = f (εi,t+1; αt+1 +  ∂i+ gi,t + βi,t,j ),    



18 
 

where the index i and t identifies the patent and the year, 𝜃i,t denotes the dependent 

variable, the count of citations patent i receives in year t; αt is a year fixed effect, ∂i is a patent 

fixed effect, gi,t is the contrast of the patent’s primary class. βi,t,j captures relevant control 

variables, such as the fertility of patent class and the size of the patent class. All independent 

variables are lagged by one year. Because these are patent fixed-effects models, and because 

each patent belongs to a single primary patent class, these models leverage the over-time 

variance in patent class contrast. We report standard errors clustered on patents, but we note that 

the results are robust to other standard error calculations as well, such as robust standard errors 

or clustering on year and patent classes (Wooldridge, 2002; Mehta et al., 2010). 

 

Results 

 Table 3a reports descriptive statistics and pairwise correlations between the main 

variables. Of particular note here is the positive correlation between patent class contrast and 

future citations. This provides a prima facie evidence of a positive relationship between class 

contrast and citation counts8. Table 4 reports results obtained from multiple specifications of 

equation (1) above. Model 1 is a log-linear specification (where the DV is the logged value of 

one plus the count of forward citations made to the patent). Model 2 is a Poisson model, while 

Model 3 is a negative binomial model.  

 We begin by pointing out that about 43% of the overall variance is explained by the 

patent fixed effects. This is likely to reflect underlying differences in patent quality, in line with 

the intuition that technically better inventions are more cited. Controlling for this heterogeneity is 

exactly the reason why we included patent fixed effects. Net of such patent-level differences, the 

 
8 We thank an anonymous reviewer for pointing this out. 
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estimated effect of patent class contrast is positive and statistically significant across all three 

models. In terms of effect size, the results show that one standard deviation increase in the 

patent’s class contrast leads to between 1.7% and 2.6% increase in citation in the following year 

(based on the estimates from Table 4, Models 4 and 6). It is hard to directly compare this effect 

size to those reported by prior studies because most prior studies did not include patent fixed 

effects. Nevertheless, we notice that the effect size of class contrast is likely to be larger than that 

of, for example, combination familiarity (0.6%, see Fleming, 2001) and cumulative combination 

usage (0.1%, see Fleming, 2001), while it is likely smaller than the effect of using scientific 

literature in the inventive process (3.8%, see Fleming & Sorenson, 2004) and knowledge breadth 

(5.6%, see Fleming & Sorenson, 2004). 

 As robustness checks, we conducted analyses with alternative specifications of patent 

class contrast and found that the effect of this variable remains consistent across multiple 

specifications, such as when using a contrast value smoothened in different ways or when 

resorting to alternative measures of patent class contrast (see Table A1 in the Appendix). Taken 

together, these results provide robust evidence for our hypothesis and show that patents classified 

in higher-contrast patent classes tend to receive more citations. 

 

-------------------------------- Insert Table 3a and 4 Here -------------------------------- 

 

STUDY 2 

The patent and year fixed-effects specifications of Study 1 control for time-invariant 

patent-level heterogeneity as well as for time-varying factors that affect all patents similarly. 

However, citation patterns may reflect life-cycle differences across technologies and patent 
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types. For example, the citation trajectories of “Electrical” and “Manufacturing” patents peak 

two years earlier than that of “Drug” patents (Mehta et al, 2010). Simple patent-fixed effects do 

not pick up such effects, nor do they pick up more complex interaction effects between time-

invariant patent characteristics (e.g., number of inventors, number of classes, assignee size etc.) 

and technological trajectories. To overcome this problem and more conclusively identify the 

causal effect of class contrast, in Study 2 we rely on a twin-design (Bikard, 2020). Specifically, 

we use a “patent twins” case-control design in which we exploit cases of identical patents that 

are granted both at the USPTO and at the EPO and, therefore, are subject to parallel assignments 

into two classification systems. Because these patent twins refer to the exact same underlying 

technological invention, this identification strategy enables us to tease out the effect of class 

contrast on patent citation while perfectly controlling for the quality and other unobservable 

traits of a given patent, as well as their interactions with technological trajectories.  

 

Data, sample and additional measures 

Like Study 1, Study 2 analyzes patent citations in a yearly-panel format. However, the 

sample in Study 2 differs from Study 1’s sample in three ways. First, we restrict our attention to 

patents that were submitted simultaneously to the USPTO and EPO and were granted at both 

patent offices. This subset allows us to build a control group of “twin patents” that we can match 

with our focal patents. To identify the sample, we rely on the patent family information provided 

in the Triadic Patent Database (Dernis & Khan, 2004)9. Since patent families sometimes 

 
9 Triadic patents are not a random subset of all patents at the USPTO. As Kovács (2017) demonstrates, 

USPTO patent applications that are also submitted to EPO, in comparison with USPTO patent applications that not 
submitted to the EPO, (i) are assigned to more subclasses, (ii) are less focused, (iii) have more independent claims, 
(iv) have more inventors, (v) are less likely to be a small entity, (vi) are less likely to be US-domestic, (vii) more 
likely to be maintained, and (viii) receive fewer citations if accepted. The lack of representativeness of this subset of 
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consolidate multiple related patents, in order to ensure exact matches, we only analyze patent 

pairs that (1) have a 1-to-1 match between the USPTO and EPO version, (2) have the exact same 

title in both the USPTO and the EPO, and (3) were not reclassified either in the USPTO or at the 

EPO. Second, unlike at the USPTO, at the EPO citations can only be added by patent examiners 

whereas patent applicants are not allowed to add citations. To maximize comparability between 

the two offices, when counting the number of citations received by a patent in the USPTO, we 

focus on examiner-added citations only and disregard applicant-added citations.10 Focusing on 

examiner-added citations also allows us to get a cleaner test of our proposed mechanism because 

examiners' primary task is to find and cite all relevant prior art (USPTO Manual of Patent 

Examination, 2015), while applicant-added citations may be biased by multiple strategic 

motivations (Lampe, 2012). Third, because data on examiner-added citations at the USPTO are 

only available from 2001, we restricted our sample to patents granted by both the USPTO and 

the EPO between 2000 and 2010. The one-year difference is because the variables are lagged.  

A total of 67,389 patent-twins satisfy the three sample inclusion criteria. These patent-

twins translate into 621,925 patent-twin/year observations. The panel, as in Study 1, is 

unbalanced. 

 

 

 

 
patents, however, is less of a worry here, as the goal of these tests is to demonstrate the marginal effect of changes in 
category contrast among a set of identical-invention pairs. 

We also acknowledge that the USPTO and the EPO differ not only in their classification system, but also in 
other aspects such as the overall number of prior-art citations. While these are relevant differences, what matters for 
the purpose of our test is that citation counts capture impact in both settings – a claim that is undisputed in the 
patenting literature. By modeling patent-twin fixed effects (i.e., technology fixed effects), our tests adequately 
control for differences in citation (and other) practices as long as the difference between the two patent offices are 
somewhat stable over time.  

10 The results remain consistent when using total citations instead of only examiner-added ones (see Table A4). 
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The logic of the patent twin test and estimation methods 

Many prior studies have assumed that the number of citations a patent receives reflects its 

(unobserved) quality, that is, “better” patents receive more citations. A primary goal of our 

patent-twins test is to isolate the effect of category contrast from any unobserved quality 

differences that may exist across patents. Let 𝑋! stand for the citations the patents would receive 

in a year t in an ideal world without contrast and other non-technical influences. 𝑋! is a property 

of the patented invention and, as such, is identical both at the USPTO and at the EPO. On the 

contrary, patent class characteristics that may affect patent citation, such as patent class contrast, 

size and fertility, differ between the USPTO and the EPO. We can therefore express an 

invention’s citation counts in year t at the USPTO and its patent twin at the EPO as follows: 

 

Eq(2): 𝑈𝑆!"#$#"%&(#()) = 𝛽+ + 𝛽)𝑋# + 𝛽,𝑈𝑆!-$..!%&#/$.# + 𝛽0𝑈𝑆!-$..."12 + 𝛽3𝑈𝑆!-$..42/#"-"#5 + ε   

 

Eq(3): 𝐸𝑃𝑂!"#$#"%&(#()) = 𝛾+ + 𝛾)𝑋# + 𝛾,𝐸𝑃𝑂!-$..!%&#/$.# + 𝛾0𝐸𝑃𝑂!-$..."12 + 𝛾3𝐸𝑃𝑂!-$..42/#"-"#5 + 	ε 

 

All these quantities are observable except 𝑋!, the unobserved quality. The goal of the patent twin 

design is to take X out of the picture. We achieve this by algebraically reorganizing Eq(3) to 

Eq(4): 

 𝑋! = (𝐸𝑃𝑂"#!$!#%&(!()) − 𝛾+ − 𝛾,𝐸𝑃𝑂"-$.."%&!/$.! − 𝛾0𝐸𝑃𝑂"-$...#12 − 𝛾3𝐸𝑃𝑂"-$..42/!#-#!5)/𝛾) + ε  

 

Then we substitute this to Eq(2) and we get: 

Eq(5): 

𝑈𝑆!"#$#"%&(#()) = 𝛽+ + 𝛽)/𝛾)(𝐸𝑃𝑂!"#$#"%&(#()) − 𝛾+ − 𝛾,𝐸𝑃𝑂!-$..!%&#/$.# − 𝛾0𝐸𝑃𝑂!-$..."12 −

𝛾0𝐸𝑃𝑂!-$..42/#"-"#5) + 𝛽,𝑈𝑆!-$..!%&#/$.# + 𝛽0𝑈𝑆!-$..."12 + 𝛽3𝑈𝑆!-$..42/#"-"#5 + 	ε  
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Note that this equation only contains observed quantities and therefore can be estimated directly. 

Because in the above equations the coefficient estimates are just placeholders, the equation 

simplifies to Eq (6) (we use 𝛼 to denote that these coefficient values are not the same as in the 

equations above). 

Eq (6): 

𝑈𝑆!"#$#"%&(#()) = 𝛼+ + 𝛼)𝑈𝑆!-$..!%&#/$.# + 𝛼,𝑈𝑆!-$..."12 + 𝛼0𝑈𝑆!-$..42/#"-"#5 + 𝛼3𝐸𝑃𝑂!"#$#"%&(#())

− 𝛼6𝐸𝑃𝑂!-$..!%&#/$.# − 𝛼7𝐸𝑃𝑂!-$..."12 − 𝛼8𝐸𝑃𝑂!-$..42/#"-"#5 + 	ε 

We estimate equation (6), with the addition of year fixed effects and patent-dyad fixed effects to 

control for any additional unobserved heterogeneity. We report standard errors clustered by 

patent twin, but we note that the results are robust to other standard error calculations as well, 

such as robust standard errors (Wooldridge, 2002; Mehta et al., 2010). 

 

Calculating the EPO variables 

Twin patent’s yearly patent citation count at the EPO. This variable measures the count of 

citations the EPO twin received at the EPO, all of which are added by examiners. 

Class contrast at the EPO. The measure of patent class contrast we use in the USPTO 

sample cannot be directly applied to the EPO one: whereas the USPTO assigns each patent to a 

single primary class based on patent’s “main inventive content,” the EPO assigns patents to 

multiple primary classes. We therefore devised a close alternative measure of contrast for EPO 

patents. First, we calculated the recombinativeness of patents at the EPO by calculating the 

Herfindahl index based on their four-digit IPC class assignments. Second, for each IPC4 class in 

each year, we calculated the mean of the Herfindahl index of the patent applications in that year.  

Third, for each EPO patent, we averaged these contrast values for the classes the patent is 
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assigned to (for a similar approach, see Kovacs & Hannan, 2010). 

Class size and class fertility at the EPO. As said, the EPO assigns patents to multiple 

primary classes. While the class size and class fertility variables at the USPTO are specific to 

each primary class, for the EPO patent twins we calculated them as the average of the size and 

fertility of the classes to which the patent is assigned to. As in Study 1, Class size and class 

fertility are time-varying. Table 3b reports descriptive statistics and pairwise correlations 

between the main variables. 

 

-------------------------------- Insert Table 3b Here -------------------------------- 

 

Results 

Table 5 shows the results of six model specifications of Eq. (6). Models 1 and 2 are log-

linear regressions using the logged count of citations in a given year as an outcome variable, 

while models 3 to 6 use raw citation counts as dependent variable, estimated via Poisson and 

negative binomial regressions, respectively. Models 1, 3, and 5 use the same specifications as 

presented in Study 1, while Models 2, 4, and 6 add the EPO controls to these specifications. All 

models include patent-twin-level and citation year fixed effects.  

Before we look at the results, it may be useful to specify our priors. Based on Eq(6), we 

expect EPO and USPTO citation counts to be positively correlated. This is because a patent’s 

unobserved quality should increase patent citations regardless of where a patent is classified. 

Additionally, we expect the other EPO class characteristics (EPO class contrast, EPO class size, 

EPO class fertility) to have the opposite sign as what we observe for the corresponding USPTO 

class characteristics. This is because, due to the transformations leading to Eq(6), those 
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coefficients have a minus sign. Lastly, and this is our core hypothesis, we expect the effect of 

USPTO patent class contrast to be positive. This is exactly what we find. 

We note that, even though these models are estimated on the patent-twin subsample, the 

coefficient estimates in Table 5’s Models 1, 3, and 5 are similar in magnitude to the estimates in 

Table 4’s Models 2, 4, and 6. Table 5 shows that the coefficient estimate of USPTO patent class 

contrast on US citations is positive across all models. This effect remains statistically significant 

after controlling for patent class contrast at the EPO and for other EPO-level variables. This 

robust set of results provides compelling support for our argument that patent class contrast 

increases patent citations net of any possible technical differences across patents. Based on the 

negative binomial model estimates (Table 5 Model 6), one standard deviation increase in contrast 

leads, on average, to 3.5% more citations. Taking into consideration the full range of observed 

patent class contrasts (0.04 to 1.000), this translates to a 34.6% difference in predicted citations 

between the lowest and highest-contrast patent classes. Given that patents receive on average 

15.8 citations during their lifetime of 20 years, this translates to a difference of roughly 5 

citations.11 Taken together, these findings provide compelling evidence that patent class contrast 

has an independent effect on patent citation over and beyond the effects that might be attributed 

to differences in underlying quality or other unobserved technological factors. In the Appendix 

(Table A2), we check the robustness of our results by estimating a range of alternative model 

specifications and contrast measures. The results remain consistent with those discussed above.12 

 
11 The control variables are also in line with our expectations. In line with prior findings (Carnabuci et al., 2015, 
Table 7), we find that the size of the primary class within which a patent is classified has a negative effect on 
citations. We also find a positive effect of patent class fertility on the count of citations the patent receives in a given 
year, in line with prior studies (Fleming, 2001; Fleming & Sorenson, 2004; Carnabuci et al., 2015). 
12 Note that the twin patents approach also allows us to test whether there is any sorting effects, e.g., whether better 
patents are systematically sorted into higher contrast classes. We test for sorting by estimating Eq(4) and using the 
predicted quality in Eq(3), which we reorganize so that US contrast is on the left-hand side. We estimated this model 
on a sample that contained one observation per patent. Specifically, for each patent, we took values of contrast, 
fertility, etc. in the granting year of the patent because that is when the sorting would happen. We did not find a 
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-------------------------------- Insert Table 5 Here -------------------------------- 

 

STUDY 3 

While Studies 1 and 2 demonstrate the hypothesized effect of patent class contrast on 

patent citations, neither study enables us to directly observe the mechanisms behind this effect. 

To gather more direct evidence of these mechanisms, in Study 3 we analyze an original, minute-

by-minute data set on the prior art search behavior of a selected subset of patent users for which 

such micro-level data exists. Specifically, we analyze USPTO search log records of the queries 

conducted by patent examiners while searching for relevant prior art for patent applications.  

 

Data, sample, and methods 

See Figure 2 for an example of a patent examiner search log, conducted during the prior 

art search for patent application #11000808. The search is conducted through the EAST 

platform, which is available to all patent examiners and stands for Examiner Automated Search 

Tool. The first column “Ref” simply refers to the order of the queries conducted by the examiner 

within the search section. The third column “Search query” is the actual query the examiner 

typed in (this is akin to academics’ Google Scholar searches), and the second column “Hits” 

shows how many results (i.e., prior patents) the system found that satisfied the search criteria. 

The column “DBs” refers to the databases searched; “default operator” can be “OR” or “AND;” 

“plurals” refers to whether the search allows for plural versions of the searched words. Finally, 

the last column contains the date and time when the query was conducted.  

 
significant relationship between patent quality as predicted from the EPO sample and the category contrast of the US 
patent class to which the patent was classified originally. We interpret this evidence as indicating that there is no 
sorting effect. 
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-------------------------------- Insert Figure 2 Here -------------------------------- 

 

We collected and coded the search logs of all the 610,764 queries made by UPSTO patent 

examiners who searched for relevant prior art for all the 17,373 patent applications during the 

month of February 2006. The USPTO provides the search logs in a PDF format, which then need 

to be scanned, cleaned, and transformed to an analyzable data format.  

Our tests are at the patent application level. Note that patents are assigned to a primary 

class by the Office of Patent Application Processing (OPAP) before the patent is assigned to an 

examiner. In other words, when the examiner receives the patent application, the patent 

application is already classified (see the “Background information on the process of class 

allocation at the USPTO and the EPO” section in the Appendix for more details on the 

classification process at the USPTO and the EPO). 

Testing the hypothesized mechanisms 

We derived the central hypothesis of this paper – that patent users are more likely to cite 

a patent if it is classified in a high-contrast patent class – from several theoretical arguments. 

Below we provide a set of tests designed to probe these arguments empirically. Before 

commenting on the results, we first introduce the independent and control variables employed in 

these models and subsequently we elaborate on the specific rationale and dependent variable of 

each test. 

Independent and control variables. The main independent variable in Table 6 is the 

contrast of the primary class to which the application is assigned. Contrast values are calculated 

in the same way as in Studies 1 and 2. As in Studies 1 and 2, we control for the size and fertility 

of the primary class of the patent by using the lagged values of these variables from year 2005. 



28 
 

We also add controls for application-level factors that may influence patent search, such as (1) 

the number of queries in the prior art search, (2) whether the patent application represents a 

continuation application, (3) has a foreign priority, (4) is submitted by a small entity (as defined 

by the USPTO), and (5) patent team size, as indicated by the count of inventors on the patent. 

Note that we intentionally do not control for other patent-level variables commonly used in the 

literature, such as scientific citations or number of claims, because these are outcomes (not 

antecedents) of the search process. To control for possible examiner heterogeneity, we present 

models with examiner random effects13. As all search sessions take place in February 2006, we 

do not need to control for year trends. Table 3c provides descriptive statistics and correlations of 

the variables used in the models. 

 

-------------------------------- Insert Table 3c Here -------------------------------- 

  

Table 6 shows the results of six tests of the proposed mechanisms behind the contrast 

effect. First, we theorized that patent classes are more likely to channel patent users’ attention 

and search for prior art when category contrast is high than when it is low. One way to probe this 

argument is by analyzing how examiners’ search strategies change as a function of patent class 

contrast. We expect that the higher is the contrast of a patent class, the more likely is the 

 
13 Note that the data sampling approach followed in this paper is not suitable to including examiner fixed effects 
because within the month of February 2006 (a) examiners typically work within one main class (71% of the 
examiners in our sample review applications only within one primary class during the observation window, 20% 
reviews in two primary classes, 5.5% in three, and only 2% in four or more) and (b) class contrast is constant. Yet, 
because the Hausman models indicate that the independence assumptions of the random effects models do not hold, 
in additional analyses (see Table A5) we re-estimated the models of Table 6 on the subset of patent applications that 
are handled by examiners who worked in more than one primary class and handled at least 10 applications. In these 
models, we could add examiner fixed effects. While the number of observations drops significantly, the results are 
mostly robust to these specifications, and the effect of contrast turns insignificant only for the last model where the 
DV is examiner-added citation counts. Note however that in the much larger sample in Study 2, the effect of contrast 
on examiner-added citation count is consistently positive and significant. 
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examiner to use classification-based search as opposed to searching for prior art without the aid 

of patent classifications (such as, for instance, by keywords). To test this argument, we built a 

variable labelled Classification-based search. This is a binary 0/1 variable that captures if 

examiners use classification-based searches in any of the search queries within a particular 

search session. For this, we focus on the “Search query” column and code whether the query is a 

classification-based search (e.g., “235/375.ccls”) or not. “ccls” stands for “current classification,” 

and the first query in Figure 2 means that the examiner is asking the search platform to list all 

prior art (patents and patent applications) that are classified in the primary class 235 and subclass 

375 and whose text contain the word “wine.” Model 1 in Table 6 reports the estimates of a logit 

model that predicts the likelihood that an examiner uses classification-based search as opposed to 

searching for prior art without the aid of patent classifications (see, e.g., the fourth line of the 

query session in Figure 2). In support of our theorized mechanism, we find that the likelihood 

that an examiner relies on a class-based search to find relevant prior art is higher for applications 

in high-contrast classes than for applications in low-contrast classes.  

Second, we argued that patent users are more likely to start their prior art search by 

focusing on high-contrast patent classes rather than on low-contrast ones. If this argument is true, 

we should find that examiners are more likely to initiate their queries by searching for prior art 

categorized within the class itself (as opposed to prior art categorized in other classes) when a 

patent is classified in a high-contrast class. To test this argument, we built a variable labelled 

First searched class is same as patent’s primary class. The variable is a binary 0/1 measure 

indicating whether, upon receiving a patent application, examiners start by searching for prior art 

within the patent’s primary class itself. For example, for the patent application shown on Figure 

2, this variable takes on the value 1 because the patent is classified in class 235 and the first 
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classification-based prior art search query executed by the patent examiner is within class 235 

itself. Focusing on the subsample of search sessions with at least one classification-based query, 

Model 2 investigates whether patent examiners are more likely to start prior art searches by 

focusing on high-contrast classes rather than low-contrast ones. In line with our proposed 

argument, we find that when the primary class is high contrast, examiners are more likely to start 

their search within the primary class of the patent application. Conversely, at low patent class 

contrast, examiners are more likely to start their prior art search by focusing on other patent 

classes.  

Third, we argued that high-contrast classes enable patent users to focus a greater part of 

their prior art searches within the class itself, whereas low-contrast classes require spreading 

attention across several classes. To examine if this argument is true, we shift the focus of 

analysis from where examiners start their search to where they focus their attention in the 

subsequent search queries. Specifically, we built a variable labelled Proportion of classes 

searched that are the same as the patent’s primary class to measure the extent to which an 

examiner focuses her search within the boundaries of the class or, conversely, broadens the scope 

of her search across patent classes. This variable, like the previous one, is only defined on the 

subset of search sessions that contain at least one classification-based searches. Model 3 in Table 

6 finds that the higher is patent class contrast, the more likely are examiners to restrict the scope 

of their prior art searches to patents classified within the boundaries of the patent class itself. On 

the contrary, the lower patent class contrast is, the more likely examiners search for relevant 

prior art beyond the focal class. This finding is consistent with our arguments.   

Fourth, we argued that it is cognitively more efficient to search for relevant prior art in 

high-contrast than in low-contrast classes. We broke down this argument in three parts and tested 
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each. We first measured the Amount of search14 conducted by examiners as the (logged) count of 

search queries they execute in a particular search session. If our efficiency argument is true, we 

should find that examiners need fewer search queries to find relevant information when 

examining patents categorized in high- (rather than low-) contrast classes. The estimates reported 

in Model 4 in Table 6 align with this expectation. Second, we built a variable labelled Search 

precision, measured as the (logged) average number of “hits” generated by a search query. We 

expect that when examiners search for prior art in a high-contrast class, their search queries 

should be more “on target” and, hence, they should return fewer “hits”. For example, the search 

query shown in Figure 2 shows that the query in line 1 “235/375.ccls and wine” on February 2nd, 

2006 returned 12 hits, while the more specific search query in line 2, which adds the condition 

that the word “wine” needs to be followed by “making” or “manufacture”, only returns 2 hits. In 

line with our argument, Model 5 in Table 6 shows that search queries are on average more “on 

target” – they return a smaller set of hits – when examiners look for prior art in high-contrast 

class. In synthesis, these two last tests show that, when examiners search for prior art in a high-

contrast class, they tend to make fewer search queries and each of those queries yields a 

narrower set of hits. While both these findings are indicative of cognitive efficiency, a more 

conclusive test requires checking whether these search queries also yield more prior art citations. 

Model 6 in Table 6 tests whether examiners searching for prior art in high contrast-classes tend 

to add more citations (this is the same DV as used in Study 2). In line with our argument, we find 

that this is the case – examiners add more prior art citations when searching high-contrast classes 

than when searching low-contrast ones.  

 
14 We thank an anonymous reviewer for suggesting this and the following test. 
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In synthesis, these tests indicate that when searching high-contrast classes, examiners 

search less, search more on target, and add more prior art citations per search session. This 

pattern of results supports the argument that search for relevant prior art is cognitively more 

efficient in a high-contrast than in a low-contrast class.  

 

------------ Insert Table 6 here ----------- 

 

Table A3 in the Appendix examines the robustness of these results to alternative contrast 

measures; the results obtained from these specifications are similar to those discussed so far. 

Taken together, this set of findings provides substantial support for our theoretical arguments 

concerning the mechanism the effect of contrast on the amount of citations a patent receives. 

 

DISCUSSION 

Drawing insights from theories of attention and information search, this paper argued that 

patents are more likely to receive attention, and hence citations, if they are classified in high-

contrast patent classes than if they are classified in low-contrast ones. To test this hypothesis, we 

carried out a series of three related studies. First, we estimated a set of panel count models with 

patent and year fixed effects using the entire record of utility patents granted by the USPTO 

between 1975 and 2010, enabling us to establish the plausibility of our hypothesis in a large-

scale sample. We found a strong and robust effect of patent class contrast on patent citations. 

Second, to more compellingly isolate the effect of class contrast from possible confounding 

effects, we estimated a case-control “twin patents” model using cases where the very same 

invention was patented in both the USPTO and in the European Patent Office. We found that 
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patent class contrast continues to exhibit a sizeable and robust positive effect on patent citations 

even when matching patent twins in a case-control design. Third, we probed the micro-level 

mechanisms through which patent class contrast influences the patent citation process by 

analyzing minute-by-minute prior art search logs from a sample of USPTO patent examiners. In 

accordance with our proposed theoretical mechanism, we found that examiners are more likely to 

rely on high-contrast classes than on low-contrast ones when searching for relevant prior art. 

Furthermore, when dealing with high-contrast classes, their prior art searches tend to remain 

confined within the boundaries of the class itself and are more efficient, i.e., they yield more 

citations in less time. Conversely, when relying on low-contrast classes, patent examiners are 

more likely to spread their attention across other classes and less likely to find relevant prior art. 

Taken together, these three studies provide compelling evidence in support of our hypothesis that 

patents categorized in high-contrast classes tend to accrue significantly more citations that 

otherwise-equivalent patents categorized in low-contrast classes.  

 

Contributions to the innovation and strategy literatures 

This paper contributes to the innovation and strategy literature by extending current 

understanding of attentional and search dynamics in the innovation process. Prior studies 

examined in considerable depth the role of attention and search dynamics in the creation of 

inventions. Complementing this perspective, we argued that the impact of an invention does not 

only depend on its inherent technical quality but also on whether potential users become aware 

of its existence and perceive it to be useful as they search for knowledge inputs (see, e.g., Mokyr 

2002; Furman & Stern 2010). In line with this view, we shifted the focus of analysis from the 

creators to the users of inventions and examined how processes of attention allocation and search 
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affect the impact of inventions after their creation. The results of our study reveal patent class 

contrast as a novel and unexplored driver of patent impact. In addition to providing a more 

complete picture of the drivers of patent citations, this result highlights an interesting theoretical 

tension with respect to the costs and benefits of boundary spanning. Whereas a key finding of 

earlier studies is that searching for knowledge inputs across technological boundaries leads to 

creating better inventions, we demonstrate that patent users are more likely to identify an 

invention as relevant if it is classified within the boundaries of a well-defined, high-contrast 

technological category. We see the contrasting effects of boundary spanning during and after the 

creation of inventions as a potentially generative area of inquiry and hope that our study will 

inspire research in this direction. 

Given the importance of patents as a competitive asset in contemporary knowledge-based 

organizations, the finding that many technically valuable patents end up “gathering dust in the 

corporate legal office” (Rivette & Klein, 2000, p. 162) while others obtain a great deal of 

attention and shape the evolution of entire industries, has attracted a great deal of research among 

strategy scholars (Wang et al., 2016; Corsino et al. 2019). As Podolny and Stuart (1995, p. 1225) 

explain, “it is frequently observed that the “best” technologies…are not necessarily the most 

successful ones, and this means that technical specifications alone may not be sufficient to gauge 

the likelihood of technological success (Katz and Shapiro 1984; Farrell and Saloner 1985; Arthur 

1988).” Taking this observation as our point of departure, our study adds new insight into the 

growing body of literature that examines what drives a patent’s future use, and hence value as a 

knowledge asset, over and beyond a patent’s inherent technical quality (Bikard, 2018; Bikard & 

Marx, 2020; Ferguson & Carnabuci, 2017; Polidoro, 2020). Integrating ideas from Zuckerman’s 

seminal model (1999) and recent categorization research (Hannan et al., 2019), we contributed to 
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this line of work by showing that the number of citations accruing to a patent depends on the 

contrast of the patent class within which it is categorized. The arguments advanced in this paper 

contribute to the call for exploring the cognitive and institutional reality within which the patent 

citation process unfolds (Murray & O’Mahony, 2007; Furman & Stern, 2010). Observed citation 

patterns reflect the expert work of a large community of patent users – inventors, patent 

examiners, and patent attorneys. Not unlike academics, patent users face constant information 

overload and rely on heuristic attention allocation processes and informational cues to cope with 

it (Bikard, 2018). In line with this perspective, we showed that seemingly neutral and 

inconsequential classification decisions systematically shape where patent users focus their 

search for prior art and, as a result, have a systematic and sizeable impact on how many citations 

a patent will receive.  

While we have focused on citations counts as our core outcome variable, our theoretical 

model may offer new insights into other important aspects of the patenting process, too. In 

particular, patent class contrast may affect patent acceptance time because, as we have argued, 

search in high-contrast categories is cognitively more efficient. Prior innovation research argued 

that patent acceptance time is an important dimension of the patenting process that has economic 

and strategic consequences (Harhoff & Wagner, 2009). While conducting a compelling test of 

our conjecture is beyond the scope of this paper, initial unreported analyses based on our data 

show that patents classified in high contrast classes are accepted faster (one standard deviation in 

class contrast translates into a roughly 100-120 days faster acceptance). Such a shortened 

processing time has downstream consequences for firm funding and survival: for example, Farre-

Mensa and colleagues (2020) show that startups that get their patent accepted faster have higher 

employment growth and higher sales growth (see also Polidoro, 2020). In light of our 
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encouraging initial results, we look forward to future research that extends our model to this and 

other aspects of the patenting process. 

The results of our analyses also have practical implications. Since economists have 

tended to treat patent citation counts as merely a proxy of a patent’s underlying technical quality 

(for a review see, e.g., Jaffee & de Rassenfosse, 2017), one may wonder if the citations received 

by a patent because of classification decisions, as opposed to its inherent technical merits, hold 

any economic value for the patent holder. Recent research suggests that the answer to this 

question is affirmative. Extant studies found that the prior art citations accruing to a patent 

effectively add to a patent’s economic and strategic value in at least two ways that have little to 

do with the patent’s underlying technology: first, they amplify its appeal and perceived worth in 

the market for technology (Mazloumian et al., 2011) and, second, they reduce the risk of costly 

litigation by helping to delimit the legal boundaries that protect an invention from undue 

appropriation (Shane, 2008; Lampe, 2012). The evidence we presented indicates that patents are 

less likely to escape patent users’ attention if they are classified in high-contrast patent classes 

than if they are classified in low-contrast ones. Thus, although a quantification of the monetary 

value of contrast-driven citations goes beyond the scope of our paper, it seems likely that 

inventions classified in high-contrast classes will on average end up generating more economic 

value relative to otherwise-equivalent inventions classified in low-contrast classes.  

This consideration suggests a thus far unknown arbitrage opportunity for patent owners. 

In cases where the classification of an invention is not straightforward, patent owners have an 

incentive to strategically nudge it towards high-contrast patent classes and away from low-

contrast ones15. The extent to which such strategic behaviors might be feasible in practice 

 
15 This prompts the question whether patent applicants can reasonably predict the future contrast of a class. We 
suggest that applicants could use contrast at the time of patent application to proxy contrast in the near/medium 
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requires further investigation. Although patent offices have rules regulating the patenting 

process, our field interviews with a patent attorney and several patent examiners indicated that 

patent attorneys and experienced patent applicants do have significant leeway in influencing 

where their patent will be classified. For example, they may explicitly indicate in the patent 

application document which “prior art unit” they would like to examine the application, or they 

may choose a particular framing and keyword set that emphasizes linkages with a particular 

patent class. By so doing, patent applicants might effectively increase the likelihood that their 

patents will accrue more citations and will be duly referenced as prior art by future patents.16 

Switching to a policy perspective, it is worth noticing that a key institutional mandate of 

patent offices is to ensure that relevant prior art be easily found and properly acknowledged (see, 

e.g., USPTO’s Manual of Patent Examination, 2015). While to the best of our knowledge there 

exists no precise estimate of how often patents fail to be duly recognized as relevant prior art, 

most commentators agree that the occurrence of false negatives or Type II errors in prior art 

referencing is likely to be significant (Marx & Fuegi, 2019). Our arguments and evidence 

suggest that, to reduce such errors, it is important to keep patent class contrast as high as possible 

across the whole classification system. Some degree of fluctuation in patent class contrast is 

inevitable given that technologies evolve continuously and no classification scheme can capture 

such evolutions perfectly and timely. However, we suggest that time-varying measures of patent 

 
future because in the short term the contrast values are relatively stable and the 5 year autocorrelation in contrast is 
around 0.6. This suggests that applicants could reasonably predict contrast in the short term. This short term stability 
is important because most technologies typically exert most of their impact in the shorter term, e.g., the peak of the 
future citations is in 1-3 years after granting (Mehta et al, 2010). 
16 This argument assumes that patent assignees want to get their patents known and utilized. There could be reasons 
that patent owners would want to hide their patents so that others do not discover it and build on it. For example, 
while the exact patent technology cannot be reused without paying licensing fees (that is the main reason for getting 
a patent), often other firms can get ideas for their own research and patent it in a way that does not violate existing 
patents. Ultimately, if an inventor really wants to hide their invention hidden, they will not even patent it, such as in 
the famous case of the Coca Cola recipe (Lobel, 2013). 
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class contrast such as the ones used in this or prior studies can easily be automated and updated 

in a timely fashion. Patent offices, such as the USPTO and EPO, might consider using such 

measures and instructing patent officers to assess how their patent classification decisions may 

affect levels of category contrast among affected patent classes. 

 

Contributions to the broader management literature 

While we applied our theoretical arguments to the particular context of innovations, 

category contrast is likely to affect search dynamics in a variety of other contexts as well. The 

kernel of our explanatory model is quite general: we proposed that category contrast influences 

decision maker’s focus and cognitive efficiency when searching for information. Since the scope 

conditions of this argument – information overload, limited attention, and bounded rationality – 

apply rather widely, it is easy to envision opportunities for useful theoretical extensions.  

A line of future research that we consider especially promising pertains to the strategic 

use of categories (e.g., Pontikes 2018), particularly for platform companies for which product 

classifications work as an interface between firms and users. For example, Netflix classifies 

movies according to genres such as “Action” or “Documentaries”, while Amazon.com products 

are organized into categories such as “Books” or “Toys.” Our paper suggests that higher contrast 

categories are more useful for users to navigate the product space available on such platforms, 

which in its turn may affect user reactions as well as product positioning strategies. While other 

ways exist to search the product space (e.g., keyword-based search or AI-based recommendation 

systems), our paper is a reminder that people are boundedly rational and heavily rely on 

category-based heuristics to process information.  
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Our proposed explanatory framework also offers interesting connections to other 

disciplines. While popularized in the management field by Zuckerman (1999), the idea that 

categories delimit users’ “consideration set” originates from a marketing model designed to 

explain how consumers choose among products (Shocker et al, 1991). Similar types of models 

are becoming popular among economists studying revealed preferences and price setting 

behaviors (see e.g., Manzini & Mariotti, 2014). By illuminating the role of categories in shaping 

the attention and information search of users, our paper has the potential to yield productive 

cross-fertilizations with these literatures. We hope that the model presented here will serve as a 

basis and an invitation to do more research in this direction.  
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FIGURES AND TABLES  
 
 

Figure 1: The evolution of category contrast for three randomly selected patent classes 

 
Figure 2: An example of a USPTO search log (application 11000808, search date 2006-02-06) 
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Table 1. Overview of the three studies 
 

 Study 1 Study 2 Study 3 
Goal of the study  To provide evidence 

of the effect of 
category contrast on 
future citations on the 
widest possible 
sample 

To better identify the 
causal effect by 
controlling for 
citations to the patent 
twin at the EPO  

To provide micro-
level evidence that 
patent examiners use 
high-contrast classes 
to search for prior art 

Observed time period 1975-2010 2001-2010 2006 February 
DVs All yearly patent 

citations at the 
USPTO 

Yearly patent 
citations added by 
examiners at the 
USPTO 

Likelihood of using 
patent class for prior 
art search 
Proportion of prior art 
search focused within 
class boundaries 
Search query length 
Search query 
precision 
Examiner-added 
citation count 

Modeling approach Log-linear, Poisson, 
and negative binomial 
models with patent 
and year fixed effects  

Log-linear, Poisson, 
and negative 
binomial models 
with patent -dyad 
and year fixed 
effects 

Logit and OLS 
models with examiner 
random/fixed effects 

Sample All utility patents 
granted between 
1975-2010 that were 
not reclassified 

All utility patents 
granted between 
2001-2010 that were 
not reclassified and 
have a patent twin at 
the EPO 

All prior art search 
conducted in 2006 
February 

Number of 
observations 

N(patent)=3,260,030 
N(patent-year)= 
49,731,673.  
 

N(Patent-dyad)= 
67,389 
N(Patent dyad-
year)= 621,925.  

N(search sessions)= 
17,373 
N(search 
queries)=610,764  
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Table 2. The primary classes with the 10 highest and lowest average contrast values between 
2001-2010.  

USPC 
primary 
class 

Class title Contrast Proportion 
of patents in 
class only 
classified in 
this class 

Average 
proportion of 
backward 
citations 
within class 

Class size  
(number of 
patents in the 
primary 
class) 

452 Butchering 0.9489 0.8965 0.7550 374 

365 Static information storage and retrieval 0.9470 0.8908 0.7543 24101 

439 Electrical connectors 0.9449 0.8883 0.7929 16511 

84 Music 0.9435 0.8833 0.8145 3024 

369 Dynamic information storage or retrieval 0.9416 0.8599 0.8398 10479 

157 Wheelwright machines 0.9405 0.8857 0.6871 155 

36 Boots, shoes, and leggings 0.9383 0.8807 0.7547 2224 

241 Solid material comminution or 
disintegration 

0.9349 0.8740 0.8359 2088 

343 Communications: radio wave antennas 0.9334 0.8673 0.6524 7417 

473 Games using tangible projectile 0.9330 0.8631 0.8425 5038 

… …… …. …. …. …. 

202 Distillation: apparatus 0.5666 0.2194 0.3602 217 

252 Compositions 0.5561 0.2159 0.4572 5109 

281 Books, strips, and leaves 0.5559 0.2836 0.4187 318 

23 Chemistry: physical processes 0.5519 0.3376 0.2302 126 

51 Abrasive tool making process, material, 
or composition 

0.5194 0.2219 0.4902 711 

48 Gas: heating and illuminating 0.5102 0.2045 0.2792 471 

516 Colloid systems and wetting agents 0.5069 0.2232 0.2373 462 

523 Synthetic resins or natural rubbers 0.4980 0.2286 0.3071 2222 

95 Gas separation: processes 0.4761 0.1582 0.4169 2072 

159 Concentrating evaporators 0.4255 0.0670 0.3754 197 
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Table 3. Descriptive statistics and correlations  

 
(Table 3a) Study 1: Sample: All utility patents granted between 1975-2010 that were not reclassified 

Variable Mean Std. Dev. Min Max (1) (2) (3) 

(1) Yearly citation count (USPTO) [t+1] 0.838 2.433 0.000 376.000    

(2) Primary class contrast (USPTO) [t] 0.783 0.094 0.040 1.000 0.032   

(3) Primary class size (USPTO), logged [t] 6.171 1.132 0.693 8.993 0.093 -0.024  

(4) Primary class fertility (USPTO), logged [t] 0.539 0.261 0.000 2.876 0.263 0.117 0.451 
N(patent-year)=49,731,673. N(patent)=3,260,030 

 
 (Table 3b) Study 2: Sample: Patent twins that are granted at both the USPTO and EPO between 2000-2010. 
 

Variable Mean Std. dev Min Max (1) (2) (3) (4) (5) (6) (7) 

(1) Yearly citation count by examiners (USPTO) [t+1] 0.384 0.815 0 24 
       

(2) Primary class contrast (USPTO) 0.792 0.096 0.067 1 0.053 
      

(3) Primary class size (USPTO), logged 6.487 1.074 0.693 8.639 0.052 -0.05 
     

(4) Primary class fertility (USPTO), logged 0.702 0.286 0 2.304 0.145 0.075 0.361 
    

(5) Yearly citation count by examiners (EPO) [t+1] 0.053 0.292 0 19 0.085 0.012 0.014 0.01 
   

(6) Average contrast of the patent’s classes (EPO) 0.602 0.093 0.234 1 0.01 0.428 -0.066 0.166 -0.009 
  

(7) Average size of the patent’s classes (EPO), logged 7.062 1.083 0.693 9.429 0.051 -0.184 0.432 0.358 -0.004 -0.111 
 

(8) Average fertility of the patent’s classes (EPO), logged 0.289 0.129 0 1.946 -0.093 0.155 -0.069 -0.217 0.01 0.334 -0.276 

N(dyad-year)=621,925. N(dyad)= 67,389 
 

(Table 3c) Study 3: Sample: All prior art search conducted in 2006 February 
 

Variable Obs Mean Std. Dev. Min Max (1) (2) (3) (4) (5) (6) (7) (8) 

(1) Primary class fertility (USPTO), logged 17,373 -0.45 0.43 -2.64 2.91 
        

(2) Primary class size (USPTO), logged 17,373 4.11 1.39 0.00 6.84 0.05 
       

(3) Primary class contrast (USPTO) 17,373 0.78 0.12 0.22 1.00 -0.06 0.17 
      

(4) Number of queries in the search session 17,373 3.01 1.10 0.69 6.72 0.07 -0.04 -0.07 
     

(5) Average number of hits per search, logged 17,373 9.64 4.22 0.00 29.35 0.04 0.02 -0.05 0.57 
    

(6) Classification-based search used 17,373 0.69 0.46 0.00 1.00 0.04 -0.01 0.06 0.41 0.26 
   

(7)  Proportion of classification-based search  
       queries to all queries 

11,210b 0.71 0.33 0.00 1.00 0.03 0.07 0.15 -0.11 -0.05 N/Aa 
  

(8) Whether the first classification-based  
     search is within the patent’s primary class 

11,210b 0.81 0.39 0.00 1.00 0.03 0.09 0.11 -0.07 -0.03 N/Aa 0.61 
 

(9) Count of examiner added citations 12,984c 7.14 6.45 0.00 97.00 0.05 -0.11 -0.01 0.13 0.04 0.06 -0.02 -0.03 

a Correlation is not defined because this variable is only defined for search session with at least one classification-based search. 
b Only defined for search sessions with at least one classification based search  
c Only available for granted patents 
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Table 4: Study 1, Patent fixed effects models on yearly citation counts. See Table A1 for robustness 
checks. 

  
M1 M2 M3 M4 M5 M6 

Model type Log-linear Poisson Negative binomial 
DV(t+1) ln(citation count) Citation count Citation count 
Contrastt 0.1658 0.0778 0.8007 0.1784 0.5053 0.2764  

(0.0016) (0.0017) (0.0043) (0.0044) (0.0048) (0.0048) 
Ln(classsizet) 

 
-0.0074 

 
0.0592 

 
0.0022 

  
(0.0002) 

 
(0.0005) 

 
(0.0005) 

Ln(fertilityt) 
 

0.4853 
 

1.2520 
 

0.8891 
  

(0.0008) 
 

(0.0013) 
 

(0.0017) 
Constant 0.2460 0.2358 

 
 -0.0362 -0.1336  

(0.0019) (0.0022) 
 

 (0.0074) (0.0079) 
N 48,309,345 48,309,345 48,309,345 48,309,345 48,309,345 48,309,345 
Log-likelihood -2.8458e+07 -2.8241e+07 -4.4969e+07 -4.4506e+07 -4.0952e+07 -4.0820e+07 

 
Year range: 1975-2010. All models include patent fixed effects and citing year fixed effects. 
Standard errors (in parentheses) clustered on patents. 
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Table 5: Study 2, Patent-twin tests: yearly forward citations added by examiners at the USPTO as a 
function of primary class contrast at the USPTO, while controlling for citations to the same 
technology (patent twin) at the EPO. See Table A2 for robustness checks. 

  
M1 M2 M3 M4 M5 M6 

Model type Log-linear Poisson Negative binomial 
DV(t+1) US_ln(citations) US Count of citations US Count of citations 
US_Contrastt 0.1076 0.1028 0.2978 0.3243 0.3298 0.3686 
 

(0.0156) (0.0156) (0.0746) (0.0746) (0.0760) (0.0757) 
US_Ln(classsizet) -0.0644 -0.0586 -0.0864 -0.0793 -0.0663 -0.0737 
 

(0.0019) (0.0019) (0.0079) (0.0081) (0.0080) (0.0081) 
US_Ln(fertilityt) 0.1094 0.1043 0.5847 0.4764 0.6040 0.4828  

(0.0053) (0.0054) (0.0226) (0.0233) (0.0231) (0.0241) 
EPO_citationcount(t+1)  0.0354  0.0863  0.0888 
  (0.0017)  (0.0055)  (0.0060) 
EPO_classsizeyeart  0.0187  0.3209  0.1963 
  (0.0042)  (0.0208)  (0.0154) 
EPO_contrastt  -0.2985  -0.4954  -0.2938 
  (0.0201)  (0.1040)  (0.1039) 
EPO_fertilityt  -0.1112  -0.5590  -0.7107 
  (0.0105)  (0.0555)  (0.0555) 
Constant 0.6146 0.6373 

 
 1.7205 0.7765 

 
(0.0179) (0.0358) 

 
 (0.0889) (0.1398) 

N 621,925 621,925 536,311 536,311 536,311 536,311 
Log-likelihood -193,870 -193,402 -312,494 -312,067 -310,859 -310,502 

 
Year range: 2001-2010. All models include patent-twins fixed effects and citing year fixed effects. 
Standard errors (in parentheses) clustered on patents. 
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Table 6. Study 3: Logit and OLS models on whether the search query contain classification-based 
search, how contrast influences the amount the examiner searches, the number of hits these searches 
return, and the count of the citations examiners end up adding. See Tables A3 and A5 for robustness 
checks. 
  

M1 M2 M3 M4 M5 M6 

DV Use class First class 
same as 
main class 

Prop class-based 
searches 
within main 

Ln(total 
line +1 ) 

Ln(hit 
count + 1) 

Ln(examiner 
added 
citation 
count+1) 

Type of model Logit Logit OLS OLS OLS OLS 

Contrast 4.8058 3.8270 0.7776 -0.4393 -1.5320 3.8264 
 

(0.5432) (0.3835) (0.0489) (0.1412) (0.5035) (0.9620) 

Ln(totalline) 1.4466 -0.2177 -0.0394  0.0304 0.0163 
 

(0.0365) (0.0313) (0.0034)  (0.0006) (0.0012) 

Ln(classsize) -0.0149 0.0925 -0.0001 -0.0149 0.0756 -0.5132 
 

(0.0355) (0.0241) (0.0030) (0.0092) (0.0331) (0.0633) 

Ln(fertility) 0.1141 0.1063 0.0146 0.0929 0.2458 0.7596 
 

(0.1084) (0.0771) (0.0094) (0.0284) (0.1014) (0.1905) 

Continuation patent -0.2995 -0.1285 -0.0124 -0.0351 -0.1590 -0.6854 

 (0.0573) (0.0566) (0.0061) (0.0139) (0.0468) (0.0977) 

Has foreign priority 0.0828 0.0689 0.0082 -0.0524 0.2196 -0.7132 

 (0.0594) (0.0583) (0.0062) (0.0142) (0.0479) (0.1010) 

Small entity -0.0574 0.0043 -0.0178 -0.0695 -0.2936 -0.2279 

 (0.0869) (0.0853) (0.0092) (0.0209) (0.0702) (0.1349) 

Inventor count -0.0374 -0.0110 0.0010 0.0032 -0.0075 -0.0211 

 (0.0146) (0.0146) (0.0016) (0.0036) (0.0122) (0.0253) 

Constant -6.3321 -0.9156 0.2232 3.5026 9.5195 6.7722 
 

(0.4601) (0.3318) (0.0421) (0.1156) (0.4140) (0.7875) 

N 17,366 11,204* 11,204* 17366 17364 12978 

 
All models contain examiner random effects. Robust standard errors in parentheses. 
* Note that Models 2 and 3 are run on the subset of patent applications in which the examiner conducts 
at least one classification-based search. 
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APPENDIX 
 

Results with alternative operationalizations of the contrast variable 
 
Moving average 
The set of patents based on which we calculate patent class contrast are changing yearly, but one 
may argue that contrast has a longer-lasting effect and that past values of contrast may also matter 
for attention. Therefore, we also calculate two alternative, smoothened versions of the contrast 
values that take past into account. First, we calculate a smoothened version by taking a three-year 
moving average of the contrast of the class, weighted by the number of patents in that year and class. 
For example, if class 205 has a 100 patents and a contrast value of 0.8 in 2005, 50 patents and 
contrast of 0.7 in 2004, and 40 patents and 0.75 contrast in 2003, then the weighted moving average 
for year 2005 will be (0.8*100+0.7*50+0.75*40)/(100+50+40)=0.763. Note that these values will be 
left censored and undefined for years 1975 and 1976.  
 
LOWESS smoothing 

As a second alternative, we calculate the LOWESS smoothed values of contrast. The 
LOWESS smoothening (which stands for locally weighted scatterplot smoothing), is a local 
regression-based smoothing (see Cleveland & Devlin 1988), which takes a moving window of 
observations and estimates a linear regression and then instead of the observed value, for smoothing 
it uses the values predicted by the regression. We use the LOWESS smoothing with 0.25 bandwidth, 
meaning that the observations used for the smoothing regression use 25% [moving window] of the 
contrast values for each class. 
 
Proportion of patents in the main class that are only classified into that class 
 
A third alternative operationalization to capture class contrast is the “Proportion of patents in the 
main class that are only classified into that class.”  
 
Average proportion of backward citations to patents within the primary class 
 
A fourth alternative way to capture class contrast is to calculate the average proportion of backward 
citations to patents within the same primary class. This measure, by definition, can only use patents 
that have at least one backward citations. 
 
Please see the pairwise correlation values below. 
  

Contrast Contrast_ 
movingavg3 

Contrast_ 
lowess 

Contrast_ 
binary 

Contrast_ 
mean_propbwciteswithin 

Contrast 1 
    

Contrast_ 
movingavg3 

0.8408 1 
   

Contrast_ 
lowess 

0.8524 0.9064 1 
  

Contrast_ 
binary 

0.9051 0.7994 0.788 1 
 

Contrast_ 
mean_propbwciteswithin 

0.3381 0.361 0.3383 0.3383 1 
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Table A1: Robustness checks to Study 1. Patent fixed effects models on yearly citation counts, using 
alternative specifications to the contrast measure. 

 

 M1 M2 M3 M4 M5 M6 

Model type Log-linear Poisson NBREG Log-linear Poisson NBREG 

DV(t+1) ln(cites) cites cites ln(cites) cites cites 

Contrast measure 
Moving average of contrast values in  

years t, t-1, and t-2 
LOWESS smoothing with 0.25 bandwidth 

Contrastt 0.1004 0.2424 0.3356 0.1449 0.3551 0.4314 

 (0.0021) (0.0055) (0.0057) (0.0032) (0.0086) (0.0072) 

Ln(classsizet) -0.0108 0.0472 -0.0057 -0.0099 0.0439 -0.0036 

 (0.0002) (0.0005) (0.0005) (0.0002) (0.0005) (0.0005) 

Ln(fertilityt) 0.4845 1.2573 0.8946 0.4850 1.2537 0.8955 

 (0.0008) (0.0014) (0.0018) (0.0008) (0.0015) (0.0018) 

Constant 0.2309  -0.0598 0.2011  -0.1937 

 (0.0023)  (0.0074) (0.0029)  (0.0088) 

N 44,784,368 44,784,368 44,784,368 44,974,047 44,974,047 44,974,047 

Log-likelihood -2.6069e+07 -4.0939e+07 -3.7684e+07 -2.6167e+07 -4.1095e+07 -3.7827e+07 
  

M7 M8 M9 M10 M11 M12 

Model type Log-linear Poisson NBREG Log-linear Poisson NBREG 

DV(t+1) ln(cites) cites cites ln(cites) cites cites 

Contrast measure Proportion of patents only classified into  
this main class 

Average proportion of backward citations  
to patents within the primary class 

Contrastt 0.0311 0.0672 0.1053 0.1155 0.4418 0.3775 
 

(0.0009) (0.0024) (0.0026) (0.0015) (0.0044) (0.0042) 

Ln(classsizet) -0.0041 0.0665 0.0090 -0.0057 0.0625 0.0065 
 

(0.0002) (0.0005) (0.0005) (0.0002) (0.0005) (0.0005) 

Ln(fertilityt) 0.4840 1.2532 0.8877 0.4830 1.2480 0.8893 
 

(0.0008) (0.0013) (0.0017) (0.0008) (0.0013) (0.0017) 

Constant 0.2465 
 

0.0401 0.1877 
 

-0.1577 
 

(0.0016) 
 

(0.0070) (0.0018) 
 

(0.0075) 

N 48,288,569 48,288,569 48,288,569 48,288,569 48,288,569 48,288,569 

Log-likelihood -2.8235e+07 -4.4493e+07 -4.0810e+07 -2.8232e+07 -4.4488e+07 -4.0807e+07 

 
Year range: 1975-2010. All models include patent fixed effects and citing year fixed effects. Standard errors (in 
parentheses) clustered on patents. 
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Table A2: Robustness checks to Study 2, Patent-twin tests: yearly forward citations added by examiners at the 
USPTO as a function of primary class contrast at the USPTO, while controlling for citations to the same 
technology (patent twin) at the EPO, using alternative specifications to the contrast measure.  

  
M1 M2 M3 M4 M5 M6 

Model type Log-linear Poisson NBREG Log-linear Poisson NBREG 

DV(t+1) US_ln(cites) US cites US cites US_ln(cites) US cites US cites 

Contrast measure Moving average of contrast values in  
years t, t-1, and t-2 

LOWESS smoothing with 0.25 bandwidth 

US_Contrastt 0.1567 0.5857 0.6194 0.2181 0.6247 0.6689 
 

(0.0155) (0.0936) (0.0910) (0.0326) (0.1824) (0.1539) 

US_Ln(classsizet) -0.0513 -0.1271 -0.1043 -0.0506 -0.1124 -0.0943 
 

(0.0015) (0.0083) (0.0081) (0.0015) (0.0077) (0.0076) 

US_Ln(fertilityt) 0.0605 0.3681 0.3804 0.0608 0.3718 0.3831 
 

(0.0043) (0.0229) (0.0233) (0.0043) (0.0230) (0.0233) 

EPO_citationcount(t+1) 0.0226 0.0711 0.0712 0.0226 0.0706 0.0708 

 (0.0013) (0.0055) (0.0059) (0.0013) (0.0054) (0.0059) 

EPO_classsizeyeart 0.0000 0.0001 0.0001 0.0000 0.0001 0.0001 

 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

EPO_contrastt -0.2610 -0.4744 -0.4249 -0.2673 -0.5324 -0.4738 

 (0.0146) (0.0909) (0.0906) (0.0146) (0.0906) (0.0906) 

EPO_fertilityt -0.0417 -0.4241 -0.4308 -0.0408 -0.4224 -0.4297 

 (0.0032) (0.0262) (0.0270) (0.0032) (0.0262) (0.0270) 

Constant 0.5456 
 

1.9490 0.4960 
 

1.8712 
 

(0.0177) 
 

(0.1056) (0.0280) 
 

(0.1387) 

N 1,074,312 827,866 827,866 1,074,372 827,947 827,947 

Log-likelihood -224137.4386 -433178.5289 -431706.9644 -224210.8333 -433270.4487 -431792.7607 

 
 
(CONTINUED ON NEXT PAGE) 
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(CONTINUED FROM PREVIOUS PAGE) 
  

M7 M8 M9 M10 M11 M12 

Model type Log-linear Poisson NBREG Log-linear Poisson NBREG 

DV(t+1) US_ln(cites) US cites US cites US_ln(cites) US cites US cites 

Contrast measure Proportion of patents only classified into  
this main class 

Average proportion of backward citations  
to patents within the primary class 

US_Contrastt 0.0555 0.2228 0.2341 0.0439 0.2542 0.3196 
 

(0.0082) (0.0486) (0.0418) (0.0147) (0.0948) (0.0784) 

US_Ln(classsizet) -0.0576 -0.0779 -0.0725 -0.0582 -0.0811 -0.0751 
 

(0.0019) (0.0099) (0.0081) (0.0019) (0.0099) (0.0080) 

US_Ln(fertilityt) 0.0999 0.4749 0.4823 0.1018 0.4817 0.4885 
 

(0.0056) (0.0289) (0.0241) (0.0056) (0.0289) (0.0240) 

EPO_citationcount(t+1) 0.0351 0.0863 0.0888 0.0351 0.0863 0.0888 

 (0.0022) (0.0067) (0.0060) (0.0022) (0.0067) (0.0060) 

EPO_classsizeyeart 0.0149 0.3208 0.1965 0.0144 0.3166 0.1968 

 (0.0039) (0.0249) (0.0154) (0.0039) (0.0249) (0.0154) 

EPO_contrastt -0.2978 -0.4883 -0.2916 -0.3029 -0.5127 -0.3163 

 (0.0180) (0.1213) (0.1039) (0.0180) (0.1213) (0.1043) 

EPO_fertilityt -0.1051 -0.5575 -0.7091 -0.1057 -0.5587 -0.7052 

 (0.0094) (0.0633) (0.0555) (0.0094) (0.0633) (0.0555) 

Constant 0.6928 
 

0.9283 0.7067 
 

0.8980 
 

(0.0323) 
 

(0.1271) (0.0328) 
 

(0.1327) 

N 656,443 536,309 536,309 656,443 536,309 536,309 

Log-likelihood -186955.6357 -312062.3843 -310499.0143 -186976.6368 -312071.9667 -310506.4020 

 
Year range: 2001-2010. All models include patent fixed effects and citing year fixed effects. Standard errors (in 
parentheses) clustered on patents. 
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Table A3. Robustness check to Study 3: Logit and OLS models on whether the search query contain 
classification-based search, how contrast influences the amount the examiner searches, the number of 
hits these searches return, and the count of the citations examiners end up adding. Compares to Table 
6 but models in this table use alternative specifications to the contrast measure.  
 
 

 
 

M1 M2 M3 M4 M5 M6 

  DV 

 
 

Use class First class 
same as 
main class 

Prop class-based 
searches 
within main 

Ln (total 
line +1 ) 

Ln (hit 
count + 1) 

Ln(examiner 
added citation 
count+1) 

  Type of model 

  Logit Logit OLS OLS OLS OLS 

A
lte

rn
at

iv
e 

co
nt

ra
st

 m
ea

su
re

s u
se

d  

Contrast calculated as class 
size-weighted moving 
average of contrast values in 
years t, t-1, and t-2. 

5.1745 4.1463 0.8119 -0.4104 -1.5553 4.1049 
(0.5557) (0.3914) (0.0499) (0.1443) (0.5152) (0.9827) 

Contrast calculated as 
LOWESS  
smoothened contrast with 
alpha=0.25 

5.5830 4.3213 0.8445 -0.4551 -1.7249 4.2428 
(0.5826) (0.4148) (0.0526) (0.1524) (0.5448) (1.0266) 

Contrast calculated as 
Proportion of patents only 
classified into this main class 

2.8127 2.0138 0.4044 -0.2262 -0.8027 2.0726 
(0.2892) (0.2104) (0.0267) (0.0762) (0.2723) (0.5162) 

Contrast calculated as the 
Average proportion of 
backward citations 
to patents within the primary 
class 

1.9731 1.3570 0.3615 -0.7850 -2.1748 0.7285 
(0.3970) (0.2703) (0.0344) (0.1008) (0.3618) (0.6884) 

        

Notes: Each cell is based on a separate regression model and shows the effect of contrast on the 
respective dependent variables. All models contain examiner random effects and the set of controls 
used in Table 6. Estimates for the control variables are not shown here but full estimates tables are 
available from the authors. Robust standard errors in parentheses. 
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Table A4: Study 2, Patent-twin tests, DV: count of total yearly forward citations as a function of 
primary class contrast at the USPTO, while controlling for citations to the same technology (patent 
twin) at the EPO.  

  
M1 M2 M3 M4 M5 M6 

Model type Log-linear Poisson Negative binomial 

DV(t+1) US_ln(citations) US Count of citations US Count of citations 

US_Contrastt 0.1042 0.1151 0.2840 0.3305 0.2026 0.2132 
 

(0.0217) (0.0217) (0.0427) (0.0427) (0.0444) (0.0454) 

US_Ln(classsizet) -0.0318 -0.0327 -0.0503 -0.0598 -0.0448 -0.0481 
 

(0.0026) (0.0026) (0.0046) (0.0047) (0.0045) (0.0047) 

US_Ln(fertilityt) 0.4126 0.3747 0.9633 0.8468 0.6659 0.5879 
 

(0.0074) (0.0076) (0.0113) (0.0118) (0.0133) (0.0141) 

EPO_citationcount(t+1)  0.0533  0.0743  0.0955 

  (0.0024)  (0.0033)  (0.0046) 

EPO_classsizeyeart  0.0823  0.2273  0.0099 

  (0.0059)  (0.0122)  (0.0064) 

EPO_contrastt  0.0524  0.5759  0.4224 

  (0.0280)  (0.0599)  (0.0589) 

EPO_fertilityt  -0.1037  -0.5429  -0.7085 

  (0.0147)  (0.0323)  (0.0358) 

Constant 0.3010 -0.2684 
 

 0.2410 0.1456 
 

(0.0248) (0.0498) 
 

 (0.0480) (0.0675) 

N 621925 621925 621925 621925 621925 621925 

Log-likelihood -398989 -398417 -630714 -629833 -582008 -581561 

 
Year range: 2001-2010. All models include patent-dyad fixed effects and citing year fixed effects. 
Standard errors (in parentheses) clustered on patents. 
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Table A5. Study 3: Logit and OLS models on whether the search query contain classification-based 
search, how contrast influences the amount the examiner searches, the number of hits these searches 
return, and the count of the citations examiners end up adding. This table compares to Table 6, but this 
models are with examiner FE and are estimated on the subsample of patent examiners who handled 
patents in at least two different primary classes and handled at least 10 applications. 
  

M1 M2 M3 M4 M5 M6 

DV Use class First 
class 
same as 
main 
class 

Prop class-based 
searches 
within main 

Ln(total line 
+1 ) 

Ln(hit 
count + 1) 

Ln(examiner 
added 
citation 
count+1) 

Type of model Logit Logit OLS OLS OLS OLS 

Contrast 4.1660 3.8115 0.3363 -0.6528 -2.8090 0.4412 
 

(1.6688) (1.3437) (0.1661) (0.3611) (1.0263) (2.4668) 

Ln(totalline) 1.2397 -0.3238 -0.0561  2.0073 0.5935 
 

(0.0872) (0.0801) (0.0092)  (0.0554) (0.1303) 

Ln(classsize) 0.0717 -0.0545 -0.0120 0.0285 0.0644 -0.1833 
 

(0.1080) (0.0845) (0.0104) (0.0243) (0.0689) (0.1695) 

Ln(fertility) 0.2394 -0.3569 0.0098 -0.1337 0.3012 0.9592 
 

(0.3119) (0.2395) (0.0269) (0.0649) (0.1845) (0.4388) 

Continuation patent -0.3050 -0.3083 -0.0291 0.0016 -0.1784 -0.7529 

 (0.1355) (0.1302) (0.0152) (0.0344) (0.0977) (0.2291) 

Has foreign priority 0.0811 0.0628 0.0223 -0.0683 0.1135 -0.6035 

 (0.1437) (0.1322) (0.0155) (0.0352) (0.1001) (0.2373) 

Small entity -0.2816 0.2608 -0.0222 -0.0658 -0.3384 -0.3500 

 (0.2176) (0.2040) (0.0230) (0.0525) (0.1492) (0.3284) 

Inventor count 0.0107 0.0341 0.0016 0.0023 -0.0360 0.0123 

 (0.0309) (0.0298) (0.0036) (0.0084) (0.0238) (0.0555) 

Constant 
 

 0.6431 3.2713 6.0655 6.6717 
  

 (0.1472) (0.3047) (0.8844) (2.1212) 

N 1798 1601 1889 2851 2850 2238 

 
All models contain examiner fixed effects. Robust standard errors in parentheses. 
* Note that Models 2 and 3 are run on the subset of patent applications in which the examiner conducts 
at least one classification-based search. 
  



58 
 

Table A6: Study 2, Patent-twin tests: total yearly forward citations at the USPTO as a function of 
primary class contrast at the USPTO, while controlling for citations to the same technology (patent 
twin) at the EPO. See Table A2 for robustness checks. 

  
M1 M2 M3 M4 M5 M6 

Model type Log-linear Poisson Negative binomial 
DV(t+1) US_ln(citations) US Count of citations US Count of citations 
US_Contrastt 0.1042 0.1151 0.2840 0.3305 0.2026 0.2132 
 

(0.0217) (0.0217) (0.0427) (0.0427) (0.0444) (0.0454) 
US_Ln(classsizet) -0.0318 -0.0327 -0.0503 -0.0598 -0.0448 -0.0481 
 

(0.0026) (0.0026) (0.0046) (0.0047) (0.0045) (0.0047) 
US_Ln(fertilityt) 0.4126 0.3747 0.9633 0.8468 0.6659 0.5879  

(0.0074) (0.0076) (0.0113) (0.0118) (0.0133) (0.0141) 
EPO_citationcount(t+1)  0.0533  0.0743  0.0955 
  (0.0024)  (0.0033)  (0.0046) 
EPO_classsizeyeart  0.0524  0.5759  0.4224 
  (0.0280)  (0.0599)  (0.0589) 
EPO_contrastt  0.0823  0.2273  0.0099 
  (0.0059)  (0.0122)  (0.0064) 
EPO_fertilityt  -0.1037  -0.5429  -0.7085 
  (0.0147)  (0.0323)  (0.0358) 
Constant 0.3010 -0.2684 

 
 0.2410 0.1456 

 
(0.0248) (0.0498) 

 
 (0.0480) (0.0675) 

N 621925 621925 621925 621925 621925 621925 
Log-likelihood -398989 -398417 -630714 -629833 -582008 -581561 

 
Year range: 2001-2010. All models include patent-twin fixed effects and citing year fixed effects. 
Standard errors (in parentheses) clustered on patents. 
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Background information on the process of class allocation at the USPTO and the EPO 

The process is essentially the same at the USPTO and at the EPO: after the application is received by 
the patent office, a pre-sorting office allocates the patent application to an examination unit (called 
“art unit” at the USPTO and “examination division” at the EPO) based on the content of the patent. 
This office also sets a preliminary classification for the application. The pre-sorting and preliminary 
classification has been typically done by trained classification experts (who often had been 
examiners themselves) who since around 2000 are aided by automatic text classification programs. 
In the very recent years, more and more of the pre-sorting and pre-classification tasks are done by 
Artificial Intelligence programs: the program makes a recommended classification, which the 
“human” examiners approve. Once the application is assigned to the examination unit, the unit can 
either take it on (which happens in most of the cases) or they have an option to say that they are not 
the expert in the subject matter and send it back for presorting (with recommendation for alternative 
examination units). If the art unit sends back the application, the pre-sorting office takes a more 
careful view at the application and sends it to an examination unit again. When the application is 
taken on by the examination unit, the head of the unit assigns the application to an examiner, who 
then does the patent examination, the search for prior art, and makes a decision about patentability. If 
and when the patent is approved for granting, the examiner is asked to take a careful look at the 
classification again and may review the original classification provided by the pre-sorting office – 
slight or major changes to the classification may be needed partly because the original classification 
is done cursorily so may not be perfect, but also because the content of the patent may have changed 
during the examination process for example as the claim for novelty was narrowed by the examiner. 
Approving the final classification is an important part of the examiners’ task. In both the USPTO and 
the EPO offices, there is a quality assurance office which randomly selects a few percentages (3-4%) 
of the approved classification and reviews whether the examiner has done a good job.  

 

 

The patent 
application is received 
by the patent office

After checking the that the 
application is formally 
complete, the pre-sorting 
office creates a preliminarily 
classification and assigns the 
application to a tech center 
and art unit

If the art unit agrees that 
the patent application 
belongs to its expertise, it 
takes on the patent, 
otherwise it sends it back 
for reclassification and 
reassignment

The patent is assignment by 
the head of the art unit to 
an examiner within the art 
unit. The examiner 
processes the patent 
application, does the 
searches and decisions.
This may take multiple 
rounds with revisions.

If the patent is granted, the 
examiner must take 
another look at the 
classification and make sure 
that the final classification 
reflects the content of the 
granted patent.

Patent application receives 
a final rejection.


