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1. INTRODUCTION

In ultimatum games two players bargain anonymously to divide a fixed
amount between them, using a computer or human intermediary for commu-
nication. One player (proposer) proposes a division of the “pie” and the other
player (responder) decides whether to accept the proposal. If accepted, the pro-
posal is implemented so both players receive their agreed upon shares; if
rejected, players receive nothing,

Harsanyi and Selten (1972) generalized the Nash equilibrium solution to
provide a unique axiomatic equilibrium solution to this two-person bargain-
ing game with incomplete information. Rubinstein (1985) showed that when
the players try to maximize their own profits, there exists a unique subgame
perfect equilibrium solution to this ultimatum bargaining problem: the pro-
poser demands all but the smallest possible portion of the pie for himself, and
the responder accepts any positive offer. However, the data gathered from most
laboratory experiments on ultimatum or other noncooperative bargaining
games exhibit significant discrepancies from these theoretical equilibrium
solutions. The stylized facts are: proposers offer more than the . minimal
amount; responders reject not only the minimal but often even larger amounts.'

Literature on attempts to close this gap between the theory and data is
large, and expanding fast. We do not attempt a review here.? These attempts
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can be approximately classified into four broad groups.’ One approach is to
consider the boundaries of the game the laboratory subjects are thought to be
playing beyond its formal specification, and even beyond the walls of the
laboratory (e.g., Hoffman et al. 1994, and Bolton and Zwick 1995). In a second
approach subjects’ beliefs and expectations about their environment, and pos-
sible dynamic modifications of these beliefs as the agents act and observe
the results, are considered (e.g., Binmore et al. 1985, Binmore et al. 1995,
Harrison and McCabe 1992, Slonim and Roth 1998, and Ochs and Roth
1989). A third approach is to add social (other regarding) arguments to agent
preferences. These include fairness, envy, reciprocity, trust, intent, etc., e.g.,
Kahneman, Knetsch, and Thaler 1986, Bolton 1991, Bolton and Ockenfels
2000, Rabin 1993, Fehr and Schmidt 1999, Falk and Fischbacher 1998, and
Berg et al. 1995. A fourth approach focuses on understanding and modeling
the indjvidual decision processes (e.g., Camerer et al. 1993, and Samuelson
2001). All these efforts are directed at developing theories to economically
and simultaneously explain the agent behavior in ultimatum, and possibly
other games.

We model the expectations of proposers on the basis of data gathered by
others in several previous experiments.* In this framework, both the equal split
(fairness) solution and the usual subgame perfect solution arise as special
cases from different beliefs that might be held by the proposer. We ask: how
well can a simple and controllable specification of preferences organize the

data and theory in relation to each other by selecting the proposer’s belief
which are consistent with responder’s rejections?

In Section 2, we examine the data from prior experiments, and use it
in Sections 3 and 4 to develop and estimate two static models of the Tespon-
der’s behavior, and assess their effectiveness in organizing the responder data
from previously published experiments. In Section 5, we develop a static
model of optimal response of the proposer to the responder’s behavior, and
examine the ability of this model to organize the data from previously pub-
lished experiments. Section 6 presents some concluding remarks.

2. MODELING BEHAVIOR OF THE RESPONDER

The proposer of the division of the “pie” must assess the decision rule
of the responder. It seems reasonable, a priori, for the proposer to assume that -
whether the responder accepts or rejects the proposal depends on what that
proposal is. What do we know about the proposer’s beliefs about this rela- g
tionship? Subgame perfect predictions are often derived by assuming that the &%
responder will accept any positive amount and reject only those proposals tha
offer her nothing. The rationale for this assumption is that in a single play
game, if payoff from the game is the only argument of the respondér’s pref-',



Using Experimental Data to Model Bargaining Behavior in Ultimatum Games 375

erence function, and preference is increasing in this argument, the responder
is better off accepting any non-zero offer from the proposer. It is possible that
the responder’s preferences include arguments in addition to the absolute
amount offered by the proposer. It is also possible that the responders may
reject such offers to “educate” the population of proposers at large about the
toughness of the responders in general. The issue can be resolved only by ref-
erence to data. We return to this issue in the concluding section after analyz-
-ing data from previously reported laboratory studies.
Slembeck (1999) reports the most extensive data relevant to our inquiry.
In his experiment, Slembeck had 19 pairs of players play 20 consecutive
rounds of a single-play ultimatum game anonymously. Identity and role of
each member of the pairs remained fixed and anonymous through the twenty
rounds.® Figure 1 shows the relative frequencies of responders® acceptance as
a function of the fraction of the total pie' demanded by the proposers for the
entire pooled data set of 380 observations. The range of the proposer’s demand
between 0 and | is divided into ten equal intervals, and each interval is labeled
by its mean value. The number of observations in each interval (from which
relative frequencies are calculated) is shown above each bar. The relative fre-
quency of acceptance is close to 100 percent when the proposer demands 30
percent or less of the total. Beyond this level, the relative frequency of accep-
tance progressively declines to about 10 percent when the proposer demands
more than 90 percent of the pie. We repeated our analysis by partitioning the
data into the early and late (first and last ten) rounds of the experiment to
detect any effects of learning: The general result, that the chances of accep-
tance of the offer by the responder decline as the proposer demands more,
remains unaltered through the early and later rounds.

oS o TR

Frequency of Acceptance by
Responder
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: Fraction Demanded by Proposer

Figure. 1. Frequency of Acceptance in Slembeck (1999) Data (No. of Observations at the
Top-of Each Bar)
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The data reported in the published versions of other studies are not as
detailed as in Slembeck. However, we analyzed the data from several other
studies (Guth et al. (1982), Guth/Tietz (1988), Neelin et al. (1988), Ochs/Roth
(1989)) of ultimatum games (either single play experiments, or from the last
round of the multiple-play experiments). Results of this analysis are shown in
Figure 2 in a format similar to the format of Figure 1. Panels A-E show the analy-
sis of data from individual studies; Panel F shows the same analysis for data
pooled from all five panels. Again, similar to Slembeck’s data, we see a general
pattern of declining relative frequency of acceptance by the responder as the
proportion of the pie demanded by the proposer increases. Statistically, it is
improbable for such a pattern to appear in data by random chance if the actual
probability function matched the standard assumption that the probability of
acceptance by the responder is constant at 1 over0sd; <1 andQatd,=1.

The experimental data from the laboratory suggest that the probability of
the responder accepting a proposal declines with the increase in the fraction
of the pie demanded by the proposer. Is it reasonable to generalize this char-
acteristic from laboratory to the field, and conclude that agents in economi-
cally significant work situations also have such a declining probability of
acceptance? Whether fraction of the pie or the absolute magnitude of the offer
is the relevant argument is not clear. Croson (1996) reports significant differ-
ences in the behavior of both players when proposals are presented in absolute -
versus fraction-of-the-pie amounts; and when the responders are or are not
informed. However, as the size of the pie increases, so does the absolute dollar
cost of rejection. Telser (1995) uses data for contracts of professional baseball
players to show that their salaries and net marginal revenue products are con-
sistent with the Law of Demand.

A second key question is: what should we assume the proposer believes
about the responder’s acceptance probability function.’ There are many can-
didate assumptions to choose from. For example, predictions of the subgame
perfect equilibrium are usually derived from the assumption that the proposer
believes the responder will accept any offer greater than zero. This assump-
tion is illustrated by the solid thick rectangular line marked a = 0 in Figure 3.
Under this specific assessment of the responder’s behavior, the proposer will
demand almost the whole pie (1 — €), and the responder will accept the offer
€, where € represents the smallest possible positive amount.”

Alternatively, we could assume that the proposer’s assessment of the
probability of acceptance by the responder declines, as the proposer demands
a larger share. The class of functions that satisfy this condition is large and
we need further restrictions to define a narrower class. One reasonable restric-
tion would be that the function be non-increasing. An example of such a func-
tion, valued 1 at d = 0, and decreasing linearly to 0 as the demand of the
proposer increases from 0 to 1, is shown by the thick dashed diagonal line in
Figure 3 marked a = 100.2 ¢
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Figure 2. Frequency of Acceptance in Data from Other Prior Studies (No. of the Observations
at the Top of Each Bar)

Given the problem of observability, how do we choose a candidate for
the proposer’s beliefs about the responder’s probability of acceptance from a
countless set of candidate beliefs? We start with Muth’s (1961) rational expec-
tation assumption: if economic agents have the ability to learn from experi-
ence, their beliefs about the probability distribution of their environment
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Figure 3. Hyperbolic Family of Probability of Acceptance Functions (with Parameter )

should come arbitrarily close to the probability distribution of their environ-
ment itself.’

3. A CLASS OF HYPERBOLIC FUNCTIONS FOR
RESPONDER’S PROBABILITY OF ACCEPTANC

and include the rectangular (a = 0 in Figure 3) and linear (@ = o in Fi
3) functions as special cases. In this section we consider the hyperbolic
tions followed by piecewise linear functions in the following section,
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We picked equilateral hyperbola as a function that might have these
2
desired characteristics. Let (f —b)(d —c)=22—, define the functional form

where f is the probability of acceptance by the responder, d is the proposer’s
demand, and 4 and ¢ should be functions of parameter a.

Since all those functions should pass through two points: (0,1) and (1,0),
we can get two equations with two unknowns:

(-b)-e)= 2 M
BM1-c)=2, @

We solve these equations for b and ¢ in terms of a, and derive two solutions
for equilateral hyperbola f

a? 1+~14 242
O s ®)
2(d—-———_" )
2
and
f= az 1~V1+202 ] (4)

+
-V1+242
z(d_l 12+2a ) 2

Equations (3) and (4) define a single parameter family of hyperbolas. Equa-
tion (3) shows a class of concave functions and equation (4) a class of convex
functions.

Figures 1 and 2 suggest that there is little drop in the probability of accep-
tance until the demand of the proposer exceeds 0.40 of the pie. The respon-
der reacts to further increases in the proposer’s demand by reducing the
probability of acceptance. In Figure 3 as parameter a approaches zero, we get
the rectangular function; when it increases without limit, the hyperbola
becomes linear in the limit. We therefore choose the class of concave func-
tion (3) to represent the probability of acceptance as a function of the pro-
poser’s demand. Figure 3 also shows the hyperbolic functions as parameter a
takes value 0, 0.3, 0.5, 0.8, 1, 5, 10, and 100. In the next section, we estimate
(3) from Slembeck’s experimental data.
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(1) Estimating the Probability of Acceptance Function from Experimental
Data

For statistical estimation of parameter a, we classify randomly chosen
one half of Slembeck’s raw data of 380 observations (19 fixed pairs of players
played 20 rounds). We selected 190 observations from the odd-numbered
rounds for odd-numbered pairs and the even-numbered rounds for even-
numbered pairs (henceforth, called the first sub-sample) to estimate model (3).
We then use the other half of the sample (henceforth called the second sub-
sample) to cross validate the ability of the model to predict the behavior of
responders.'®

The observations are indexed i =1, 2,...n. Each observation consists
of a pair (d,, D;), where d; is the fraction of the pie demanded by the proposer,
and D; is the observed decision of the responder to accept Di=1or
reject (D; = 0) the proposer’s proposal. We can rewrite ‘equation (3) as
fi = ¢(d, a), where f; is the model value of the acceptance probability calcu-
lated from equation (3). We can write the sum of squared deviations between

this model value of probability of acceptance and observed decisions of the
responder as

s=i(Di —6(d,,a)) ®)

We can solve this equation for the value of a that minimizes the sum
of squared deviations S. Solver function in computer worksheet Excel is a
convenient tool for doing this. This will give us the least squared error (LSE)
estimate of a, denoted by g

An alternative way to estimate the value of parameter a is using the
maximum likelihood method. Since (3) defines the probability of acceptance

#(d;, a) for each demand, d;, submitted by the proposer, the likelihood func-
tion is given by

L=1T0(d;a)* 1-9(di,a) ™ ©)

i=l

Again, we can solve this equation for the value of g that maximizes the
likelihood L. By using Solver function in computer worksheet Excel, we could
get the Maximum Likelihood Estimate (MLE) of parameter a, denoted by
AmLE.

Figure 4-Panel A shows the relative frequency chart prepared from the
first sub-sample.!’ Acceptance probability functions, corresponding to LSE
and MLE estimates of a (@15 = 1.57 and dypg = 1.46 respectively) given by
equation (3) have been superimposed on the relative frequency chart, Panel B

shows the estimation results for the second sub-sample which yields @i =
1.42 and 5MLE = 1.34.12
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Panel A: Relative Frequency and Estimated Model for First Sub-Sample
(LSE (@) = 1.57, MLE (a) = 1.46)
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Panel B: Relative Frequency and Estimated Model for Second Sub-Sample
(LSE (@) =142, MLE (a) = 1.34)
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Figure 4. Static Model Estimated from Slembeck Data (1999)

(2) Statistical Test of the Model

The LSE and MLE are close to each other. We have arbitrarily chosen
MLE to test whether we can reject the null hypothesis that the two sub-samples
of the Slembeck data are drawn from the same distribution. Substituting MLE
estimate 1.46 from the first sub-sample into (3), the estimated model from the

first half of Slembeck’s experimental data is:
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Panel C: Relative Frequency and Estimated Linear Model for First Sub-Sample
(LSE (a?) = 0.335, MLE (a?) = 0.40)
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Panel D: Relative Frequency and Estimated Linear Model for Second Sub-Sample
(LSE (a*) = 0.347, MLE (aF) = 0.45)
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Figure 4. Continued

~ 1.462 1+4/1+2x1.46°
¢(dha)= 0] +
2(d'_1+«/1+2=«1.46 ) 2

2

1.0658
=01 1.647

We can assess the explanatory power of this model by applying it to the
second sub-sample. In other words, if our model could correctly describe
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Slembeck’s experimental result, the model should explain the variation in D,
of the second sub-sample. The null hypothesis is that the estimated model
should apply to both outside and within the sample from which the estimates
are derived. For-this purpose, we use Chow’s forecast test."® We know 1.26 <
Foor < 1.29. Since 1.01 < Fy;, we could not reject the null hypothesis at 1
percent level of significance, which means the estimated model is applicable
to both the first and the second sub-sample. We also calculate the p-value relat-
ing to F-statistic of 1.01 in Appendix 1. The approximate p-value 0.5 provides
no support for rejecting the null hypothesis, giving us some confidence in the
predictive power of the estimated model."

4. A PIECEWISE LINEAR CLASS OF FUNCTIONS
FOR THE PROBABILITY OF ACCEPTANCE
BY RESPONDERS

A second plausible candidate to describe the observed data can be iden-
tified as a piecewise linear model. Define parameter a” as the critical value of
the relative demand by the proposer. We hypothesize that when the proposer
demands less than a”, the responder accepts the offer with probability 1. On
the other hand, when the proposer demands more than o” , the responder’s prob-

ability of acceptance is a linear decreasing function of the demand. See the
following chart.!

—

Frequency of Acceptance
by Responder

a 1 Fraction Demanded by Proposer

~

This functional form can be written as follows:

f=1 ifde(0,a7)
f= 1 P—l_dap’ ifde[a",l]}

®

l1-a
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Now in order to combine these two linear models into one regression
model, we define two dummy variable b, and b, as follows:

{bl =1, ifde[O,aP) andbz'—-‘l’ l:fde[ap,l]}' (9)

0, otherwise 0, otherwise

The final piecewise linear model will be: f = h + bz(l 1a 7= %F).

This linear model has only one parameter a’ since both b, and b, are
determined by 4 and a”. By using the first sub-sample, we could get the least
squared error and maximum likelihood estimates for o . Define f; = ¢(d;, a¥)
as the estimated probability of acceptance by the responder conditional on
each value of d;. The sum of squared deviation between the model value

(d;, a*) and the observed value D; of the probability of acceptance is written
as:

N =Z{(D,- - ¢(d;,a®)y’ (54)
The likelihood function is written as:
L= E[d’(d;,a" ) (- 9(da™)™ (6A)

The Solver function in Excel helps us find the 0.335 as the LSE
estimate and 0.40 as the MLE estimate. The explanation of the estimates is that
if the proposer demands less than 0.335 (or 0.40 for MLE), the responder
would accept the demand with probability 1; if the proposer demands
0.335 (or 0.40 for MLE) or more, the responder’s probability of acceptance
decreases proportionally with increase in the proposer’s demand according to
(8).

Figure 4-Panel C shows the relative frequency chart prepared from the
first sub-sample. The probabilities of acceptance corresponding to the LSE
and MLE estimates of parameter 4° in the piecewise linear model are super-
imposed to thebar chart. Panel D shows the relative frequency chart prepared
from the second sub-sample which yields 0.347 and 0.45 as the LSE and MLE
estimates of a” respectively.'s

Similar to the hyperbolic model testing, we randomly chose MLE
estimate to test whether we could reject the null hypothesis that both two
sub-samples are drawn from the following distribution:

~

1 d
d,,0.40) = -G
« ) b'+b’(1—-o.40 1—0.40) (10)
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The Chow’s forecast test can be applied here. F-statistics can be calculated as
follows:

(RSSR - RSS] )/(380 -n )I
RSS/(m ~ k) I
(246.0332 -123.91)/(380 — 190)|

= = 09
123.91/(190—1) |=0-9804

|F|=

Since 0.9804 < Fo01, we could not reject the null hypothesis at 1 percent
level of significance. The p-value for F-statistics of 0.9804 is 0.5542 (see
Appendix 1), which reinforces our confidence in the predictive power of the
model.

5. OPTIMAL DEMAND DECISION OF
THE PROPOSER

If the proposer knows that the probability of acceptance of the proposal

by the responder is given by ¢(d, a), and therefore depends on parameter
and their own decision d;, they can choose their decision to maximize their

Let n(d, ¢) be the expected profit of the proposer from demanding d based
on his expectation of the responder’s decision rule:

m(d,$)=d¢(d,a). an

The proposer will choose the optimal demand 4* which meets the first
and second order conditions (12) to maximize the expected profit i(d, ¢):

on(d,¢) _ 0% 7(d,¢)
T—O, andTSO (12)

Using (3), (11), and (12), we get the proposer’s optimal decision rule in
(12A)':

_1+at+1+242 —Va2+a4+'(‘1v2 142472

d*
1++1+242

(124)
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Figure 5 shows the relationship between parameter @ and optimal demand
d*; the upper curve is for (3) and (12A), and the lower dotted curve for (4)
and (12B). Under (3), the optimal demand of the proposer, d*, is a decreas-
ing function of 4. Intuitively, parameter a can be explained as a “toughness”
parameter about the proposer’s assessment of the responder’s bargaining
posture. Greater the value of q, “tougher” the proposer assesses the responder
to be. If the proposer believes that he is playing against a “softer” responder,
he expects the latter to accept a smaller share of the pie, and therefore demands
more for himself. The optimal demand increases as a decreases.!®

We consider two extreme cases to fix ideas. If a is close to zero, the
responder accepts just about any positive offer from the proposer, leading to
the subgame perfect equilibrium as the solution. The other extreme case is
when a increases without bound, and the optimal demand of the proposer con-
verges to the equal-split solution.2°

We compare the optimal decisions of the proposer predicted by the esti-
mated model against the actyal decisions of the proposer. Figure 6 makes this
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Figure 6. Frequency of Acceptance for the Full Slembeck (1999) Sample (Frequency of
Acceptance at the Top of Each Bar) (LSE (a) = 1.49, MLE (a) = 1.40)

for the proposer based on MLE (LSE) estimate of a is 0.62 (0.61). Figure 6A
shows the same data in the form of a cumulative frequency chart (thin line)
of demands submitted by the proposer. Two thick lines (continuous line for
the static model with a,,, = 1.4, and broken line for ¢ = 0 which corresponds
to the assumption that the responder will accept any positive amount) in this
figure are theoretical cumulative frequency charts to serve as benchmarks for
comparison.

Both Figure 6 and Figure 6A suggest that the optimal demand model (12)
captures the central tendency of the demand data. Perhaps we should not
expect more from a static, cross-sectional single parameter model. It is also
clear from these figures that the modal relative demand of the proposer at 50
percent of the pie lies well to the left of this theoretical optimum of the esti-
mated model. About 36 percent of proposer demand lies at 50 percent and
another about 24 percent lies between 50 percent and 62 percent. If the pro-
poser stayed with the optimal demand of 0.62, he would have had an expected
reward of 0.383 after considering the probability of rejection by the respon-
der. Since the proposer deviated from this optimal, they had expected rewards
of only 0.323, which is about 84 percent of the optimal expected reward. The
actual ex post payoff of the proposer was 0.315 on average.

Since model (12) has no error term, there is no meaningful way of com-
paring the empirical relative frequencies in Figure 6 to the optimal prediction
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of 0.62 (0.61). It is possible to add an error process and make comparisons
using, for example, McKelvey and Palfrey’s (1995) quantal response equilib-
rium. However, psychological and economic basis of such decision errors will
require further specification and we do not include this exercise here.

6. CONCLUDING REMARKS

This paper complements theoretical derivation of outcomes from a priori
specification of beliefs and strategies by using experimental data to model
and estimate human behavior in ultimatum bargaining games. The data show
that the responder’s probability of acceptance of an offer from the proposer
declines progressively as the proposer demands a larger share of the pie. There
is only about 10 percent chance that the responder will accept an offer of less
than 10 percent of the pie. The overall acceptance rate by the responder is
much higher. Does the proposer, anticipating rejection of small offers, choose
to offer more? Or does the proposer value a more even split of the pie against
higher personal consumption? We explore the extent to which we might be
able to understand the proposer behavior without adding social arguments to
his preferences.

We specify and estimate two global static models of proposer behavior.”!
The estimates suggest that while the responder rejects smaller offers with
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greater frequency, and the proposer behaves as if he knows this, and offers a
fraction of the pie to the responder which approximates the amount that will
maximize the proposer’s expected reward. The data organizing power of the
global static model dominates the predictions of the equal split (fairness) doc-
trine, as well as subgame perfect equilibrium derived from an extreme assump-
tion about the responder behavior (this extreme assumption could have been,
but is not chosen, by the estimation process). However, the model is far from
organizing the data perfectly. We are currently developing and evaluating
models that drop the global assumption in favor of person-specific parameters
and drop the static assumption in favor of a dynamic adjustment process for
the responder’s rejection threshold and for the proposer’s expectation of the
rejection threshold.

If both the proposers and responders are driven purely by consideration
of fairness in bargaining, 100 percent of the offers made by the proposer
will be 50/50 splits, and all of them would be accepted, leading to 100 percent
efficiency (total money made by the two bargaining agents as a percent of
the maximum possible sum of money the two agents could have made).” In
subgame perfect equilibrium based on the expectation that the responder will
accept any positive amount, efficiency will again be 100 percent. The actual
efficiency in Slembeck’s (1999) data is 61.9 percent, which also matches the
efficiency of the static model because it is fitted to the data. See Figure 7.

Models have different distributive consequences. In the subgame perfect
equilibrium based on expectation of acceptance of minimal rewards by the
responder, virtually 100 percent of the wealth will end up in the hands of the
proposer and nothing with the responder. In a world driven by consideration
of fairness alone, each player will receive 50 percent of total. If the world were
described perfectly by our static model, only 38.3 percent of the maximum
possible wealth will be in the hands of proposers and 23.6 percent in the hands
of the responders (the two percentages add up to the efficiency of 61.9
percent). The actual distribution of wealth observed in Slembeck’s data is more
even, 31.5 pércent to the proposer and 30.4 percent to the responder, See
Figure 8.

If we return to Figure 6A that compares the cumulative frequencies of
the actual proposer decision with the three models, it is clear that the equal
split captures the modal behavior, and the static model covers the central ten-
dency of the data. The subgame perfect equilibrium based on extreme assump-
tion about the behavior of the responder lies at the right extreme, and does not
seem to be a serious contender to organize the data.

One can defend selfishness as the motive for the proposer’s “generosity;”
if the proposer believes, for whatever reason, that the responder will reject an
offer smaller than, say, fifty percent, selfishness is a better explanation of why
he offers that much to the responder. It is not so much that the proposer wants
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to be fair to the responder, but the proposer may expect that the responder may
not want to be at the short end of the stick, and is willing to impose discipline
on the proposer by denying herself the amount offered.

The argument for the responder is more complicated and less clear. First,
there is some evidence in the part of the Slembeck (1999) data we did not
analyze here that the responder has a “tougher” posture (higher probability of
rejection) when she plays repeatedly against the same proposer than in playing
against randomly drawn opponents in each round. Second, establishment of
social norms may be driven by the “big-picture” self-interest of individuals.
The responder may find that making a personal sacrifice by punishing the
greedy proposer now in order to gain longer-term benefits of desirable social
norms is well worth the investment. As Harkavay and Benson ( 1992) put it,
“altruism pays.” Even if the laboratory game is played only once, it is not
unreasonable to recognize the externalities that may exist between even care-
fully designed laboratory games and the life outside the lab. Indeed experi-
mental economics depends on such externalities between lab and the outside
world for its value and validity of results. The responder’s rejection of small
offers can be seen as an investment in the establishment of social norms, a
public good. Third, the responder may have competitive preferences along the
lines suggested by Bolton where a large payoff to the proposer hurts her more
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than zero payoff to herself. Fourth, the responder may act emotionally, not cal-
culatively to maximize personal goals. Perhaps direct observations of brain or
heart physiology may help enlighten us in this regard. In any case, in spite of
repeated observations that the responder rejects nontrivial sums of money, it
is not obvious that faimess is valued for itself, instead of being a means to
more private goals.

One possibility is to develop models in which it is costly to formulate a
set of strategies and to choose one from the set. This cost may arise not only
from cognitive effort, but also from the time and observations necessary to
accumulate data to evaluate the consequences of using a given strategy.?
Given a positive cost, agents would be inclined to reuse a strategy from their
tried and true arsenal in situations that may yield behavior close to Simon’s
(1955) satisficing under bounded rationality. Samuelson (2001) explicitly
defines complexity cost as the limitation on reasoning resources. Without
spelling out where this ‘cost function comes from, he assumes complexity
costs, as a function of the number of states and a shift parameter, directly and
additively enter into individual payoff,
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For the data at issue, our simple model works well, though its generaliz-
ability remains to be explored. Costa-Gomes and Zauner (2001) estimate a
simple model of preferences, which is a linear combination of the monetary
payoff of both the proposer and the responder and an error term, with Roth et
al. (1991) data gathered in Israel, Japan, Slovenia and U.S. Unlike our study
that takes the behavior of the responders as given, their model is more general
in yielding a nested set of hypotheses about both the proposer as well as the
responder behavior. They fail to reject the hypotheses that (1) the regard for
the other player’s payoff is independent of the role, proposer or responder,
assigned to individuals; and (2) the proposers in Israel and Japan have no
regard for responder payoff. They reject the hypotheses that (3) proposers are
altruistic in any country; (4) the proposers in Slovenia and U.S. have no regard
for responder payoff; and (5) responders have no regard for payoffs of pro-
posers. Their result (2) is consistent with our approach, and result (4) contra-
dicts it. They seem to have estimated and validated their model on the same
data and Wwe cannot tell if validating it separately would have made a differ-
ence. Our own results would not have changed much by being validated on
the same sample.

In summary, for organizing laboratory data on proposer behavior in
single-round ultimatum games, it may not be necessary to abandon or weaken
the basic assumptions of individual preferences, and subgame perfect equi-
librium. Using more realistic proposer beliefs about responder behavior seems
to help. It has often been suggested that we must use social and cultural factors
to understand bargaining behavior. People’s beliefs and expectations of what
others will do in a given situation are, perhaps, a good definition of culture
and social norms in social sciences including economics.
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Notes

1. See, for example, Guth et al. (1982), Binmore et al. (1985), Guth and Tietz (1988), Neelin
et al. (1988), and Ochs and Roth (1989).
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10.

12

13.

14.

16.

17.

See Thaler (1988), Guth and Tietz (1990), Roth (1995), and Bolton (1998) for some
ISVIEWS.

The four broad approaches are not exclusive. They are defined in terms of the research
focus on ultimatum games.

In the concluding section, we compare and discuss Costa-Gomes and Zauner (2001),
which also used data for modeling behavior in ultimatum games.

While twenty rounds of repeated play against fixed opponents imparts certain features to
this data not shared with single round games (e.g., Figure 1 versus Figure 2F), these data
do allow us to conduct some preliminary investigations. These investigations will have to
be followed by analysis of single play data.

Note that the probability density of responders’ cutoff points being the first derivative
of acceptance probability, is an equivalent specification. See Henrich and McElreath
(2000), and Henrich and Smith (2000) for analysis based on a two-parameter truncated
gausssian distribution of cutoff points.

This assumption implies that the cutoff points of responders are all concentrated in the
narrow demand interval (1-¢, 1).

This assumption implies that the cutoff points of responders are distributed uniformly in
interval (0,1). Also see Rapoport et al. (1996) for modeling of behavior in ultimatum
games with uncertainty.

A simpler, deterministic version of this assumption is that the proposer’s belief about the
cutoff demand beyond which the responder will reject the proposal equals the cutoff point
the proposer would use if he were a responder instead.

Note that the two sub-samples from this scheme of dividing the sample are not indepen-
dent of each other, We repeated the analysis using mutually independent sub-samples con-
sisting of 10 odd-numbered pairs (henceforth called the first independent sub-sample) for
estimation and 9 even-numbered pairs (henceforth called the second independent
sub-sample) for Chow’s test. Results were essentially the same.

While the figure shows relative frequencies for 10 intervals only, estimation of a was
carried out using 190 individual observations as specified above.

Estimates of a from the first independent sub-sample (see footnote 11 above) are &g =
1.62 and Gyux = 1.53; and &5z = 1.38 and Gyz = 1.28 for the second independent
sub-sample.

In the estimating sub-sample, first part of the data set, n, = 190, After regressing ¢ on 4,
we obtain residual sum of squares RSS, = 32.73. We apply the estimate from the first sub-
sample to the entire data set of 380 observations to obtain RSS; = 66.12. Calculate the
F-statistics as follows:

() = | RSz — RSS,)/(380— m)| _|(66.12 -32.73)/(380~190)] _ Lol
I RsS/m-k) | [ 3273/0%-1 |

From analysis of the second independent sub-sample, we get |[F] = 1.019 which yields the
same statistical inference.

This specification is equivalent to assuming that the responders’ cutoff points are dis-
tributed uniformly over interval (a”,1).

Estimates of a” from the first independent sub-sample (see footnote 11 above) are 67 ¢
=0.321 and &%y = 0.4499, and &% gz = 0.3629 and @ .z = 0.4999 for the second inde-
pendent sub-sample.

Alternative split of the sub-samples (see footnote 11) yields similar results, |[F] =
0.9739. i

If, we used (4) instead of (3), the optimal decision rule would be given by:
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~1-a* +V1+ 24> +Va? +a* -1+ 24°

%=
-1+v1+24?

(12B)

19.  On'the other hand, if we use (4), the proposer assesses the responder to be softer by assign-
ing bigger value of a. Therefore, with small value of @, the proposer could only get smaller
demand accepted by the responder. The optimal demand is decreasing as a decreases.

20.  On the other hand, when we use (4), the optimal demand of the proposer is zero at ¢ = 0
and converges to equal split as a increases without bound. See Figure 5.

2]1. Qualifier global indicates that the models assume that parameter is identical across
players; static indicates that the parameter is assumed not to change with experience.

22. If the responders demanded fairness to the extent that they were willing to reject all
offers of less than 50/50, the proposers who know this about responders would be forced
to make 50/50 offers by their self-interest alone. If proposers valued faimess but the
responders do not, we will see 50/50 splits even when responders accept smaller sums.
Thus the extreme attachment to fairness on part of either or both players implies equal-
split offers.

23.  See Johnson et al. (2001) for evidence of insufficient data gathering and errors by untu-
tored subjects in playing games in which they could do better by doing backward induc-
tion. Instruction in backward induction has significant impact on their behavior.
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APPENDIX 1

By the definition of p-value, we have
P-value (1.01) = Pr (x > 1.01)
Notice here x ~ F(190, 189)
P-value (1.01) = 1 - Pr (x £ 1.01)
LA AN S
Pr(xs1.01)=j_'f‘r( 2 )mnn AR
GO

2
190 189
r(———m;’sg)*onnsﬁ o
oo 190489
r(l-zﬁ)r(%?) (190x +189) 5
190 189
r(ﬁ) 1907 #1897 .
=+ 4282585089554 +10°
120189
(Fr()
=0.527
P-value (1.01) = 1 - 0.527 = 0473
Similarly,
190 189
(20> assr =
Pr(x £ 0.9804) = e S
F(T)I‘(T) (190x+189) 5
=0.4458

P-value (0.1093) = 1 - 0.4458 = 0.5542
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