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Abstract. A valuation system partitions the set of goods to be valued into multiple disjoint
subsets and the current value of the goods is estimated via price indexes covering these
subsets. Efficient valuation systems yield a relatively small economy-wide average of
mean squared errors with respect to the true total current cost of the goods. Several algo-
rithms have been designed to search for efficient valuation systems. These algorithms,
however, do not take advantage of the information contained in the characteristic param-
eters of the goods to be valued. We present the design and test of a search algorithm that is
substantially more efficient than those in the literature. The relative efficiency of the algo-
rithm is gained through the use of information contained in the weights, the expected
values, and the variance-covariance structure of the price changes of the goods.

Résumé. Un systeme d’évaluation subdivise I’ensemble des biens 2 étre évalués en plusieurs
sous-ensembles disjoints et la valeur actuelle des biens est estimée grace & des indices de
prix couvrant ces sous-ensembles. Des systemes d’évaluation efficaces produisent, pour
I’ensemble de 1’économie, une moyenne relativement faible des erreurs moyennes au carré,
par rapport au colt actuel réel total des biens. Plusieurs algorithmes ont été congus pour
découvrir des systémes d’évaluation efficaces. Toutefois, ces algorithmes n’intégrent pas
I'information que renferment les paramétres caractérisant les biens 2 évaluer. Nous pré-
sentons la conception et le test d’un algorithme de recherche qui s’avére considérablement
plus efficace que ceux mentionnés dans les recherches antérieures. Lefficacité relative de
cet algorithme est obtenue gréce a I'intégration de I’information contenue dans les pondéra-
tions, les valeurs espérées et la structure de variance-covariance des fluctuations de prix
des biens.

Introduction

Sunder and Waymire (1983) designed an algorithm to identify relatively accurate
valuation systems. Their algorithm exploited the relationship between the fineness
of a valuation system and its accuracy. This paper presents the design and tests of
an algorithm which is substantially more efficient than the Sunder and Waymire
(1983) algorithm in searching for accurate valuation systems. The gain in
efficiency and speed is accomplished by utilizing the information contained in the
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variance-covariance matrix and the mean vector of relative price changes of
individual assets.

The design of an asset valuation system that uses a given number of price
indexes but sacrifices as little of the accuracy of valuation as possible is the subject
of this paper. There are many ways of partitioning a set of, say, n assets into k
subsets (k = n) to form & price indexes. Unless the change in the price of each asset
is separately measured (that is, a separate price index is constructed exclusively for
each asset) some accuracy is inevitably lost in the aggregation process. Sunder
(1978) showed that, using the economy-wide average of the mean squared error of
valuation (AMSE) for firms (as an inverse measure of accuracy), some aggrega-
tion systems yield more accurate valuations than others; i.e. they sacrifice less
accuracy in the process of aggregation.

The total number of ways in which a set of n goods can be partitioned into k
nonempty, nonoverlapping subsets to construct k price indexes is given by Stirling
Numbers of the Second Kind. These numbers are extremely large even for
moderate values of n and k.! An exhaustive search of all possible partitions to
discover the most efficient partition is too expensive even for modern computers
and generous research budgets. Standard techniques of optimization using calcu-
lus are not helpful in searching for efficient valuation rules over discrete partitions
of sets. Hence, the need arises for a satisfactory search algorithm.

Identification of the efficient set is important for both theoretical and practical
reasons. The practical significance of discovering efficient valuation rules is
obvious: closer approximation of economic value in the sense of reduced error
variance yields better economic decisions.? A valuation rule is an experiment in
the sense of Blackwell (1953) when it gives information about the current value
w'r. Other things being equal, the smaller the conditional variance of a valuation
rule, the more informative or sufficient in the sense of Blackwell is the experiment.
The new algorithm we propose in this paper is able to find valuation rules whose
mean squared error is about 30 percent less than that of the rules found by the
Sunder and Waymire (1983) algorithm.

From a theoretical standpoint we need to investigate the properties, especially
the convexity, of the efficient set. Given the difficulties of analytical approach,
empirical identification of this set provides an attractive alternative route. Design
of fast search algorithms is essential for this purpose.

1 The number of distinct ways of partitioning a set of » distinct elements into k (k < n) nonempty
subsets is given by Stirling Numbers of the Second Kind:

k—1
S(n, k) = ZO (= 1Yk = )Hjttk = pi}
1=

For example, there are 140 ways of forming five indexes from seven goods, 1050 ways from eight
goods, 6951 ways from nine goods and 42,525 ways from ten goods.

One may be tempted to conclude from recent empirical studies that current valuation does not pro-
vide economic gains to shareholders. Lim and Sunder (1985) show that in most economic environ-
ments, current valuation of assets is not the closest approximation of economic value. When
errors of measurement are present, even historical valuation may provide a closer approximation
of economic value than current valuation does.

[\S)
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The next section of the paper defines the notation and the environment, followed
by a section in which an investigation of how the economy-wide average of the
mean squared error of a valuation rule depends on various parameters. The insights
gained through this analysis are given in the form of four theorems which are
discussed in the third section. These insights are used to design the search
algorithm which is the topic of the third section. The testing procedures outlined
and the results of comparing the speed and effectiveness of the new algorithm with
that of the Sunder-Waymire algorithm are presented in the fourth section.
Concluding remarks are offered at the end of the paper.

Accuracy of linear valuation systems

Consider an economy with n distinct goods or assets in quantities given by vector g
and prices given by vectors p® and p' at times 0 and 1 respectively. The relative
abundance of these goods, measured by their dollar value at time 0, in the economy
is given by vector w such that w; = ¢; pPiqp®. The vector of relative price changes
for n goods is r where 1; = (p! — p{¥p?. Ex ante, r is a random vector with
expectation p and variance-covariance matrix 2. Let I be the expectation of rr';
ie. T'=E@) =2+ pp'.

Let an individual firm in the economy be constructed by making an arbitrary
number, say p, multinomial independent random draws with replacement from the
economy’s basket of goods. The relative abundance of goods in this randomly
drawn basket, w, has a multinomial distribution with mean w. Each firm in the
economy is characterized by its vector of relative proportions, w.

The relative change in the value of firm w from time 0 to 1 is w'r. We denote this
change by R,,,. This “true” change in value can be approximated by other valuation
rules that use one or more price indexes.

Other valuation systems can be designed by constructing one or more price
indexes for various (k) subsets of n assets and applying these indexes to the
valuation of corresponding assets in each firm’s basket of goods, w. For example,
a two-index valuation system is created by partitioning the n assets into two
nonempty subsets and calculating the average relative price change for assets in
each subset by using the economy-wide relative weights, w. These two average
relative price changes, or price indexes, when applied to the goods in the firm’s
basket yield an estimate of the relative price change in the value of the whole
basket.

There are many possible ways of forming two nonempty subsets of n(n > 2)
assets.> If there are a total of S(n, 2) ways of doing so, we can create a valuation
system corresponding to each one of these S(n, 2) partitions. Let these valuation
systems or partitions be indexed by i, i = 1, 2, ... S(n, 2). We shall use symbol R,
to denote the two-index valuation system which uses the it of these S(n,2)
partitions. More generally, R;; denotes the i™ of the S(n, k) possible k-index
valuation systems. There is only one way each of creating one index and n indexes
respectively from n assets: S(n, 1) = S(n, n) = 1. For each intermediate value of ,

3 See footnote 1 above.
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there are many different valuation systems because S(n, k) > 1. The purpose of
this paper is to devise a way of identifying which of these S(n, k) valuations for
any given number k yields a relatively more accurate approximation of current
valuation R,,,.

How well the valuation system Ry; approximates R,, can be measured by the
squared difference between these two numbers, (R,; — R,,)>. Since this measure
depends on random vectors w and r, a more tractable question is the size of the
squared distance on average. Taking expectations of the squared difference with
respect to the probability distributions of r and w, Sunder (1978) showed that the
average of mean squared error (AMSE) of R;; is given by:

k
AMSE (Ry;) = (1/p) (w’v - 2 (@L,0)/w,e) ) (1)
where:
e = vector of 1’s of an appropriate size;
o = n-vector of relative weights of » assets in the economy;
w, = n,-vector of relative weights of the assets in index u;
m = n-vector of expected relative price changes for n assets;
K, = n,-vector of expected relative price changes for the assets in index u;

I, = n, X n, submatrix of I corresponding to n, assets included in the « index;

v = diagonal vector of matrix I', of length n;

k = the number of price indexes used in the valuation rule;

p = the number of multinomial trials by which the bundle of assets for individ-
ual firms is randomly drawn with replacement from the economy-wide
bundle.

Since AMSE is an inverse measure of accuracy of a k-index valuation system,
the task is to find that k-index valuation system which has the minimum AMSE.
Since the set of k-index valuation systems is closed and bounded, such a minimum
exists. Let R{ denote the k-index valuation system that minimizes the AMSE.
Then AMSE (R}{) is the lower bound of AMSE (R,). There is one such lower
bound for each value of k, 1 = k < n. The n lower bounds constitute the efficient
frontier.

Search for the efficient frontier

The number of ways in which n goods can be partitioned into k subsets (1 < k < n)
is relatively large even for a moderate value of n. Identifying the efficient frontier
requires that for each value of k (1 < k < n), S(n, k) different valuation rules be
evaluated and compared to discover the one which has the minimum AMSE. The
design of a search algorithm is made more difficult by the fact that this search must
be conducted over discrete partitions instead of a continuous domain and the usual
optimization methods of calculus are not applicable. For any realistic value of n,
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an exhaustive search of all possible valuation systems is not practical even with
fast computers and generous research budgets. The extant search algorithms leave
much to be desired in efficiency and effectiveness. These algorithms follow either
random or fineness search strategies. A random search algorithm uses a random
number generator to partition the n goods into k subsets randomly. Each partition
is examined and the one that generates the smallest AMSE is recorded. This is a
relatively inefficient brute force strategy because it does not exploit any informa-
tion about the properties of the valuation systems.

AMSE of valuation systems necessarily decreases with fineness® of the valua-
tion system (see Sunder (1978) for proof). Sunder and Waymire (1983) utilized
this property to devise an algorithm, which they called the systematic search
algorithm. The algorithm starts out by randomly searching to identify a tentative
frontier and then uses the fineness property to successively improve upon the
tentative frontier. At any stage of execution, the algorithm concentrates its search
for more efficient valuation rules among those partitions which are strictly finer or
strictly coarser than the neighboring partitions on the currently identified tentative
efficient frontier. For example, if at some point in execution of the algorithm,
II;_y ;and I1,,, ; are the best (k — 1) and (k + 1) partitions respectively found
(i.e., are members of the tentative efficient frontier at that stage), search for an
improved k-partition is concentrated among partitions which are strictly finer than
I, _, ;and those that are strictly coarser than Il , ;. Sunder and Waymire (1983,
1984) demonstrated the relative efficiency of this search procedure over the
random search strategy and reported their estimates of the efficient frontier based
on the Producer Price Index database for 199 commodities. However, even the
fineness search leaves too much to chance and does not exploit the information
contained in parameters ®, % and p. We shall call our strategy the “parametric
search” algorithm because it takes advantage of the information contained in the
parameters.

Parametric search
In order to exploit the properties of parameters w (the vector of relative weights), p
(the vector of expected relative price changes), and 2 (the covariance matrix of
relative price changes) to find the efficient frontier, their effect on the AMSE must
be examined. The results of our investigation of these effects are summarized
informally in the following paragraphs. Formal statements of the four theorems
and their proofs are given in the Appendix. These theorems form the basis of our
parametric search algorithm that exploits some of the information contained in the
parameters.

Theorem 1 (Using diagonal elements of 3): Goods with more volatile price
changes should be separated from others and from one another in order to form
price indexes for more accurate valuation systems.

4 Partition I, is finer than partition I, if and only if each subset in Il, is inciuded in some subset
in [1,. For example, partition {(a), (b}, (cd)} is finer than {(ab). (cd)} but is not comparable in
fineness with {(ac), (bd)}.
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Theorem 2 (Using p.): Goods with close expected relative price changes should
be bundled together into a single index ; goods with very different expected relative
price changes should not be placed together in the same index in order to form price
indexes for more accurate valuation systems.

Theorem 3 (Using w): Goods with small weights should be bundled together
into a single index and goods with large weights should be placed in an index each
in order to form price indexes for more accurate valuation rules.

Theorem 4 (Using off-diagonal elements of 3.): Transfer of good j from an index
containing set u of n, goods to an index containing set v of n, goods is more likely
to improve the efficiency of valuation if:

1 the average covariance of good j with goods in subset v is high;
il the average covariance of good j with goods in subset u is low;
i n, + 1> n, and the variance ogj; is high;

iv n, + 1 < n, and the variance oj; is low.

Theorems 1, 2, and 3 suggest that in designing a k-index valuation system, other
things being equal, those goods that have relatively large variances, relatively
large or small expected price changes, or relatively large weights, should have
their exclusive one-good indexes if the covariances are all zero. The intuition
behind these theorems is that those goods that are relatively abundant or whose
price changes are “volatile” or “out of line” with the rest should not be bundled
with other goods because such bundling will have a large adverse effect on the
overall accuracy of the valuation system. Bundling will not cause too much
distortion if, other things being equal, the goods that are bundled have relatively
stable price changes, have mean price changes close to one another or carry
relatively low weights. When price movements of goods are correlated, Theorem
4 suggests that subsets of goods that have high variances or covariances should be
bundled together. This also makes intuitive sense because under these conditions
the prices of these goods are likely to move in the same direction and to the same
extent. Such bundling will not distort the valuation of any of the goods too much
even though each of these goods has a relatively large variance. Bundling one of
these high-variance goods with other low-variance goods, on the other hand,
reduces the accuracy of the valuation system.

The new algorithm

In the following description of the algorithm, indexes i, jand k are used as follows:
i=1,2,...nfor the i™ good in the economy; j = 1, 2, ... k for the j* subset of n
goods out of k subsets; k=1, 2, ... nthe number of nonempty subsets into which n
goods are partitioned.

Step 1 Start with k = 1. (There is only one way of partitioning n goods into 1
subset.)

Step 2 Take the first subset in the current partition, j = 1. Let this subset be
denoted by J and its cardinality by n;.
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Step 3 Calculate the average value of the diagonal elements of I' that correspond
to the current subset.

o= (%)

Step 4 Identify a subset J' of J such that for each element of J', the diagonal
element of I" exceeds f-«, where f is an arbitrarily chosen constant
greater than 1.

Step 5 Take the first element of J', indexed j' and identify all goods ¢, i € J,
i # j', suchthaty;; = f-a. Let the set of these goods be J"(j") and let
w(j") be the total weight of elements of this set in w.

Step 6 Repeat step 5 for each element of J'. Identify good j’, and set J"(j") for
which (') is the largest.

Step 7 Split subset J into two parts: J"(j') and J — J"(j'). Use index (k + 1)
for the first subset, and retain index j for the remainder.

Step 8 Using Theorem 4, examine each element of subset j to check if trans-
ferring this element to subset (k + 1) will result in a gain in efficiency.
Transfer those elements which result in a gain in efficiency. The resulting
partition which contains (k + 1) subsets is the current partition.

Step 9 Calculate the AMSE of the (k + 1) index valuation rule corresponding
to the current partition. If it dominates the most accurate (k + 1) index
valuation rule identified to this point in the algorithm, replace the latter
by the former in the memory.

Step 10 Repeat steps 2 through 9 for each j = 1, 2, ... k to search for superior
(k + 1) index valuation rules. Let IT% | be the partition which has the
smallest AMSE.

Step 11 Repeatsteps 1to 10 using k = 2, 3, ... n — 1. In step 2, start out by using
the IT% ., identified at the end of step 10 in the previous cycle.

Testing procedures

We analyzed the Producer Price Indexes (PPI) at the two-digit level and the
three-digit level. Only those indexes for which all data from 1967 to 1979 are
available are included in the analysis. All 15 indexes at the 2-digit level and 78 out
of 85 indexes at the 3-digit level satisfied this requirement.

The 13-year time series (13 yearly observations) for each price index was
transformed into relative change or return form yielding 12 observations. The
sample estimates of the mean and the covariance matrix were calculated from these
12 observations, first for the 15 indexes at the two-digit level and then for the 78
indexes at the three-digit level. These sample estimates of u and % were treated as
parameter values in testing the search algorithm and the sampling errors were



Algorithm for Linear Valuation Systems 23

ignored. The relative weights, w, at the two-digit level were those given by the
Bureau of Labor Statistics of the U.S. Department of Labor (BLS, 1978). The
relative weights at the three-digit level are provided by the BLS for 85 indexes.
Because we used only 78 of these 85 indexes, these weights were rescaled to add
up to unity for the 78 indexes.

Both the Sunder-Waymire (S-W) algorithm and the parametric search (PS)
algorithm were coded in Turbo Pascal (Version 3.0) to run on an IBM personal
computer and in PASCAL to run on a Cyber 70 main frame computer.’ Tests of the
two algorithms at the two-digit level were conducted using a personal computer;
tests at the three-digit level needed the help of a main frame.

We used two statistics to compare the efficiency of the two algorithms. The first
was for the amount of time needed by each algorithm to find equally efficient sets
of valuation rules. The second was for the average ratio of the AMSE:s of the most
efficient valuation rules discovered by each algorithm when they were allowed to
run on a computer for equal amounts of time.

Results

Two-digit level

The parametric search algorithm took 40 seconds on the IBM personal computer.
The AMSE of the most accurate valuation rule for each value of k, (k=2,3, ... 14)
is plotted as the lower of the two curves in Figure 1. The upper curve plots the
AMSEs of the most accurate valuation rules found by the S-W algorithm in a
40-second run.® The parametric search algorithm clearly outperforms the S-W
algorithm. The average of the ratio of ordinates of the parametric search and S-W
accuracy functions is 0.65. In other words, given equal time, the parametric search
procedure was able to find valuation rules whose AMSEs were, on average, only
65 percent of the AMSEs of the most accurate valuation rules found by the S-W
algorithm.

Table 1 provides data on how well the S-W algorithm performed when allowed
to run longer than 40 seconds. Its efficiency slightly exceeded the efficiency of the
parametric search (101 percent) only when it was allowed to run for 400 seconds,
or ten times the time used in parametric search.

Three-digit level

Figure 2 compares the AMSE:s of the most accurate valuation rules found by each
of the two algorithms for k = 2, 3, ... 77 in 26 second runs on Cyber 70. When the
S-W algorithm was allowed to run for 258 seconds, the valuation systems it found
were still less accurate than what the parametric search found in 26 seconds. The
mean of the ratio of the ordinates is 0.85.

5 Both of these codes are available from the authors upon request.
6 Since the S-W algorithm depends partly on random search, we made four 40-second runs of this
algorithm. The accuracy function given is the average of the four runs.
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Figure 1 Efficiency of search algorithms PPI two-digit level
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TABLE 1
Efficiency of the S-W algorithm relative to parametric search

Time allowed for S-W algorithm in seconds 40 90 180 270 400

Average of the ratio of ordinates of
parametric search to S-W algorithm
accuracy functions 0.65 0.85 0.92 0.96 1.01

Concluding remarks

Utilization of parametric information about ., % and w allows us to construct price
index sets which are, relative to the output of other search techniques, more
efficient in approximating the current values of firms. Parametric search dominates
fineness search, which, in turn, dominates random search. We see our effort as
only one step toward developing the techniques of devising more efficient
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Figure 2 Efficiency of search algorithms PPI three-digit level
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valuation rules. It seems possible to find ways to utilize the parametric information
more efficiently than we have done.

After relatively efficient sets of price indexes are constructed, these sets will
naturally be compared to those produced by the Bureau of Labor Statistics. These
indexes, available off-the-shelf, are perhaps the most widely used in the economy.
Are these indexes constructed efficiently for the purpose of valuation? Is it possible
to improve upon the way the commodities are partitioned to produce the BLS index
sets? We suspect the answer is yes but must withhold judgment until a careful
examination is carried out.

Appendix: Proofs for theorems
The average mean square error for valuation rule Ry; is

k
AMSE (Rki) = (I/P) {w”Y - Zl (wl,l/wl,le)(zuu + MM““I’I)O‘)U} . (A l)

Since p and w'y are both unchanged by index configurations, these terms can
be ignored in making comparisons of accuracy of valuation systems based on the



26 M.S.H. Shih S. Sunder

same parameters w, W, and 3. The second term of (A.1) is enough to make all
comparisons. Let

k wl’l 2Mll + ¢ l’l (DM
A(Ry) = 2 ( alla ) .

u=1 (,O,Ze

(A.2)

AMSE can be minimized by maximizing A(R;;).

Theorem 1:

Let 3 be a diagonal matrix (i.e. price changes of all goods are uncorrelated with
one another), i = me (all goods have equal expected relative price change), and
o = e/n (all goods have equal weight in the economy). Then the most efficient
way of constructing & indexes from n goods is to place each of the (k — 1) goods
with the largest (k — 1) variances in a single-good index each and to bundle the
remaining (n — k + 1) goods which have the smallest (r — k + 1) variances into
a single index.

Proof:
Substituting . = me, w = (1/n)e and g;; = 0 for all i # jin (A.2) we get

ARy) = m? + (1/n) ,Zl (a;/m), (A.3)
: j=

where #; is the number of goods in the index in which j is included.

Without loss of generality, arrange all n goods in decreasing order of o;;. The
theorem states that A(R,;) is maximized when the first k — | goods, i.e. those with
the largest values of g;;, have n; = 1 and the remaining (n — k + 1) goods have
n; = n — k + 1. The value of criterion (A.3) under this valuation rule R{ is

k—1 n
ARE) =m? + (1/n) { AZ} o+ (n—k+1)"" ‘Zk o } :
Jj= i=
Suppose the value of A(R}) is not the maximum value and it could be improved
by transferring the r® good (r = k) from the bundle of (n — k + 1) goods and
combining it with the ™ good (¢t < k — 1). Under this new partition, the ¢ good
is no longer alone in a price index and the bundle of (n — k + 1) goods with smaller
variances is now reduced to only (n — k) goods. Let us denote this valuation
rule by Rf™.

1 [*! o, t+ o, 1 < o
AR**: 2+_{ o + 1 rr+ - rr

(R™) = m n _/Zl % = 2 n—k,/gkg” n—k

The change in criterion function is

—(n = ko, — 0,,) + 2™ — Urr)}
2(n — k) ’

ARRE™) — ARE) = % {
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where

ot = Z a;;.

n-—k+1; k

The first term is always negative because g, > g, by definition. If g, > o,
the second term is also negative. If ¢* > o,,, the second term is positive but it is
necessarily smaller in absolute value than the first term. Therefore, the difference
A(RFF*) — A(R}) is always negative.

Q.E.D.

Theorem 2:

Let 3, = 0 (variance of price changes is zero) and w = e/n (all goods have equal
weight in the economy). Then the most efficient way of constructing k indexes
from n goods is to minimize the across-index sum of within-index sums of squared
deviations of w; from the within-index means of w;.

Proof:
Substituting 3, = 0 and w = (1/n)e in A.2,

£((3.5 )]
(i IJ~> /(nn”)
(m {,f; w - ,é. (/2 H - (sﬁl M“)z/n")} '

where n, is the number of goods in the ' index.

The first term inside the curly brackets is a constant. The second term is the
across-index sum of the within-index sums of squared deviations from the within-
index means. A(R,;) is maximized by minimizing this sum which requires that
each good be grouped with others so the contribution of the good to the squared
deviation from the group mean is minimized.

A(Ry) =

Q.E.D.

Theorem 3:

Let 3, = ¢”I (all variances are equal and all covariances are zero), . = me (expected
changes in relative price for every commodity is equal). Then the most efficient
way of constructing k indexes from n goods is to place each of the (k — 1) goods
with the largest weights, w;, in one-good indexes and to combine the remaining
{n — k + 1) goods into a single price index.
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Proof:
Substituting 2 = ¢l and . = me into (A.2),

AR =m* + o 2 (wflwf),
=
where @ is the total weight of the index in which good j is included.

Without loss of generality, arrange all goods in decreasing order of w;. The
theorem states that A(Ry;) is maximized when the first k — 1 goods are each placed
in an index by themselves and the remaining n — k + 1 goods are bundled into a
single index. Let this valuation rule be R;".

k—1 n n
swr=ntve (S (5 ) /(5 0))

Suppose R is not the most accurate valuation rule and it could be improved by
transferring the st good (s = k), from the bundle of (n — k + 1) goods and com-
bining it with the 1" good, (¢ < k — 1). Under this new arrangement, good ¢ is no
longer alone in an index by itself and the bundle of (n — k + 1) goods has (n — k)
goods in it. Let this valuation be R;**, then

k—1 w{z + (1)2 n
ARFY=m? + o { Yowm o ———+ 2 oflwf — w)f .
Jj=1 w, + w, =k
JiFs
where
0t =2 w.
j=k
The change in criterion function, after arranging terms, is
w} w? w?
ARFH - ARH =0 {—w, + + - ;:k
o+t ow otw o
= 1 l
(j—k TN — 0wy, ©*
Jj¥s
- 0_2 { W, W wxz(w* - w; ~ W)
(U, + ws (l)*((l), + (1)_\-)
. B w/,z}
oM (0" — w,) =k
JES
_20.2(0‘ { n
= - w Z wi(w w;)
(0 + @)@ — wgar [* 5 YT
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Since (w, — w), j = kand j # s, as well as (w, — wy), are always positive by
construction, R;** is necessarily less accurate than R;.
Q.E.D.

Theorem 4 :

Let w = e/n (all goods have equal weight in the economy), and . = me (all goods
have equal expected relative price change). Let I1;; be a partition of n goods into
k > 1 subsets. Without loss of generality let the first subset in I, include the first
n, goods and let the second subset include the next n, goods. Construct another
k-partition of n goods, denoted by I, by transferring the s™ good, 1 < s < n,,,
from the first subset to the second subset of I1;;. (Thus I1;, and II,, are not com-
parable in fineness). Then, AMSE (R;;) < AMSE (R;,) if and only if

n,+1—n, c d

20_ 2b+ L 0-_\‘_\‘> -
(n, + Dn, nn, +1)  nn, —1)

s

where

a=(cru-+ ) %)/(nL-Jrl),
i€v

=(2 cm)/n,,,
i€u

(:zzq]s
v v

Proof:
Substituting . = me and w = e/n in (A.2), the contribution to (A.2) by index «
and index v is

—S Yot — 33 a

nn, u u nn, v

The contribution to (A.2) by the indexes 4’ and v’ created by transferring
commodity s from « to v is

ZZU'U ““—"’*‘*zbza'u

n(n—l) n(n, + 1) v

In order to justify the transfer, the resulting index system must be more accurate
than the original one; i.e. the following condition must hold:

> 20 2 2 L3,

n(n - 1) u 1) v N, v u
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This simplfies to

d c Tys >g+%+i,
n,—1 n.+1 n+1 n, n, n,

where

c=2 2 oy
r v

d=2 72 oy
H

U

Oy Tus c _ d
nl? + l nll nl'(nlf + l) nu(nll - l)

’

or
O+ 0y Oy Out Oy O ¢ B d

ne +1 ng + 1 ny, n, nu("u + 1) nu(nu - 1) .
By defining

a=[1/(n,+ D] (; o + U)
and

b:(l/n,,)( o T (rss) ,

i€u
(A.4) can be simplified to

n.+1—n, c _ d
(nL. + l)l’l" nC(nL. + 1) nu(nu - '

2a-2b+ 0,
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