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Simpson’s Reversal Paradox and
| Cost Allocation

SHYAM SUNDER*

Allocation of indirect costs among products sometimes yields a para-
doxical result that the unit cost for each product may increase under one
method of allocation and decrease for each product under another
method. The Stalcup Paper Company’® case illustrates such behavior of
costs and at the same time provides an accounting example of Simpson’s
Reversal Paradox (Simpson [1951] and Blyth [1972]) discussed in the
statistics literature. As with other paradoxes, this one also disappears
upon closer scrutiny. This paper examines the properties of allocated
costs in order to arrive at an intuitive understanding of the results. The
relationship of the cost allocation problem to Simpson’s Paradox and the
implications of the analysis for cost control are briefly discussed. Neces-
sary and sufficient conditions for occurrence of the paradox are also given
in Appendix A.

Cost Allocation Paradox

Table 1 shows the cost figures for a two-product department for two
adjacent accounting periods.> There are only two types of costs: direct
labor costs which have remained unchanged from period 1 to period 2
($6.25/1b. for product A and $0.625/1b. for product B) and indirect costs
whose total has also remained unchanged at $26,000. Production of A
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TABLE 1
A Numerical Example of Simpson’s Reversal Paradox in Cost Allocation
Year 1 Year 2
Product Product Product Product
A B A B

Quantity {lbs.) ........ ... ... ... ... .. 3,200 800 2,400 2,400
Total direct labor cost ($) ............ 20,000 500 156,000 1,500
Direct labor cost ($/1b.) .............. 6.25 0.6256 6.26 0.625
Allocation of Costs on the Basis of Direct Labor Cost
Total indirect costs (8) ............... 26,000 26,000
Total direct labor costs (§) ........ ... 20,500 16,500
Burden of rate (% of DLC) ........... 127 158
Allocated indirect unit costs

/b)) ... 7.93 0.793 9.85 0.985
Total allocated indirect costs _

$) ... 25,366 634 23,636 2,364
Unit cost ($/1b.) ............ 14.18 1.418 16.10 1.61
Allocation of Costs on the Basis of Quantity
Total indirect costs (§) ...... 26,000 26,000
Total quantity (lbs.) ........ 4,000 4,800
Allocated indirect cost ($/1b.) 6.6 65 5.42 5.42
Direct labor unit cost ($/1b.) 6.25 0.626 6.26 0.625
Unit cost ($/1b.) ............ 12.76 7.125 11.67 6.045

decreased from 3,200 to 2,400 pounds and production of B increased from
800 to 2,400 pounds over the two periods. When indirect costs are
allocated on the basis of direct labor dollars, unit costs increase from
$14.18 to $16.10 for product A and from $1.418 to $1.61 for product B.
This suggests that the efficiency of the production process, as measured
by these costs, has deteriorated. Yet, when the same costs are allocated
on the basis of the units (weight) of each product, the unit costs of both
products decrease over the same period (from $12.75 to $11.67 for A and
from $7.126 to $6.045 for B). Now it appears that the efficiency of the

production process has increased.
The Stalcup Paper Company case provides an accounting example of

Simpson’s Reversal Paradox (Simpson [1951] and Blyth [1972]), which is
stated as follows. It is possible to have:

P(A|B) > P(A|B’) : (1)
and have at the same time both:
P(A|Band C) < P(A|B' and C)
P(A|Band C') < P(A|B’ and C’)
where P(A | B) is the probability of event A conditional on event B and
the prime indicates complements. '
Consider two examples of the paradox. The first example is by Blyth
[1972] in which the survival rate of patients given a standard treatment

is compared to that for patients receiving a new medical treatment. These
are shown in table 2.
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TABLE 2
Number of Patients
Treatment
Outcome
Standard New
Died .......... 5950 (54%) 9005 (89%)
Survived ... ... 5050 (46%) - 1095 (11%)
Total ......... 11,000 (100%) 10,100 (100%)
TABLE 3
Number of Patients
Patient Type C Patient Type C’
Outcome Treatment Treatment
Standard New Standard New
Died ............. 950 (95%) 9,000 (90%) 5,000 (50%) 5 (5%)
Survived .......... 50 (5%) 1,000 (10%) 5,000 (50%) 95 (95%)

Total ............. 1,000 (100%) 10,000 (100%) 10,000 (100%) 100 (100%)

Because only 11 percent of the patients given the new treatment
survived, as compared to 46 percent under the standard treatment, it
would seem that the new treatment is inferior to the latter. However,
when we look at a set of disaggregated data for the two types of patients,
as shown in table 3, this conclusion is reversed, and the new treatment
appears to be definitely superior. For C-type patients the survival rate
under the new treatment doubled from 5 to 10 percent and for the C’-
type patients it almost doubled from 50 to 95 percent.

The reason for the reversal is that, while 10 out of every 11 patients of
type C are selected for the new treatment, only 1 out of every 101 patients
of type C’ are given the new treatment. If event A is survival and B is the
new treatment, we have the Simpson’s Paradox as stated in (1):

P(A|B) = 0.11 < P(A|B’) = 0.46
P(A|BC) = 0.10 > P(A|B'C) = 0.05
P(A|BC’) = 095> P(A|B'C’) = 0.50.

Intuitively we tend to assume that P(A|B) and P(A|B’) are equally
weighted averages of P(A|BC) and P(A|BC’) and of P(A|B’C) and
P(A | B’C’), respectively. Such an assumption is incorrect hecause;

P(A|B) = P(C|B) - P(A|BC) + P(C'|B) - P(A|BC) (g
P(A|B’) = P(C|B') - P(A|B'C) + P(C'|B) - P(A|B'CY).

In the above example, the weights P(C|B), P(C’|B), P(C|B’), and
P(C’'|B’) are 100/101, 1/11, and 10/11 by the sampling scheme. It can
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TABLE 4

Box Box Box Box Box Box
1 2 3 4 143 244

No. of black chips .. ... .. ] 3 6 9 11 12
No. of white chips ... .. .. 6 4 3 5 9 9

easily be confirmed that:

100 1

011 = Jo1° 0.10 + To1 0.95
1 10

0.46 = - 0.06 + - 0.95.

A second example of the paradox is provided by Gardner [1976] and
shown in table 4. Given the number of black and white chips in each box,
if one were to maximize the probability of drawing a black chip, box 1 is
preferred over box 2 (since 5/11 > 3/7) and box 3 is preferred over box 4
(since 6/9 > 9/14). Yet, when the contents of boxes 1 and 3 are combined
and the contents of boxes 2 and 4 are combined, the second combination
is preferred over the first (since 12/21 > 11/20). Algebraically, the paradox
can be stated in terms of positive numbers. It is possible to have:

a+b e+f
c+d > g+h 3
and at the same time have both:
a e
—
c 8
and:
v_1
d™ h

The equivalence of (1) and (3) can be seen immediately by setting:
a=P(C|B). P(A|BC)
b= P(C’'|B) - P(A|BC)
¢ = P(C|B)
d= P(C’'|B)
e=P(C|B’) - P(A|B'C)
f=P(C'|B) - P(A|B'C)
g = P(C|B)
h = P(C’'|B’).
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The cost allocation paradox mentioned above is another case of Simp-
son’s Paradox. Let T'C/ be the total indirect costs allocated to product i
during period ¢ on the basis of direct labor costs and ¢ be the quantity
of product i produced in period ¢. Then allocated unit cost is given by
TC{!/q!. If indirect costs are allocated on the basis of quantity instead of
direct labor, the unit cost of period ¢ is given by Y TC!/Y; ¢/ and is the
same for all i. In the example given earlier, the unit costs allocated on the
basis of quantities were higher in the first year than in the second, that
is:

TC! + TCy! S TC? + TC? (4a)
qll ¥ qzl CI12+ (I22 ’

and yet the unit costs allocated on the basis of direct labor costs were
lower in the first period for each product, that is:
TC' TC
—_—<—— 4b
o' g’ “o)
and:
1 2
el
. gz q:
It is easy to see that (4) is equivalent to (3).

For an intuitive understanding of the results, let us consider a simple
model where a fixed indirect cost,’ F, is allocated between two products,
1 and 2, on the basis of the amount of a given resource used directly in
producing each product. It takes production of p, units of product 1 to
use up one unit of basis resource. Similarly, production of p; units of
product 2 requires, among other things, one unit of basis resource. In
order to produce ¢, units of product 1 and g units of product 2, (¢:/m
+ qz2/p2) units of basis resource are used up.* Thus, total cost F is
allocated between the two products as follows:

TC =—L2 .
q1p2 + g2y
g2 .
TC; = ————. F. 6
2 qQ1p2 + Q21 (6)
The corresponding per-unit (average) allocated costs are:
P
q1p2 + gopn
9 = __.__pl_. - F
Q1p2 + g2

F. (5)

(7)

(8)

% 'This assumption of fixed indirect cost is relaxed later to provide more general results.

*If the quantity of production, measured in comparable units, is used as the basis of
allocating costs, we can consider this to be an allocation on the basis of a dummy resource
withp; =p, = 1. ‘
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a, = k-a “— %

o'
P
TC, * vIC,
B, p = F-by
F'
0
ql ->

Fi16. 1.—Total cost allocation curve for fixed indirect cost and fixed total production.

Consider that the behavior of total and per-unit allocated costs as the
sum of ¢; and g: is held constant at, say, k units and the product-mix is
changed by substituting a unit of one product for a unit of the other. The
behavior of total costs allocated to each product, TC, and T'C;, when the
product-mix is altered from 100 percent of product 1 to 100 percent of
product 2 is shown in figure 1.

Figure 1 is a box diagram with origins for products 1 and 2 in the lower
left and upper right corners, respectively. Any point x; on the line joining
the two corners represents a product-mix of a; units of product 1 and a.
= k — a; units of product 2 to which costs of b; and by = F — by,
respectively, are allocated.

The shape of the curve joining the lower left and upper right corners
is determined by differentiating (5) with respect to ¢::

dTcC, - Dip2
dg1  (@pe+ qap1)*

The slope of TC, is always positive with value p: F/p; k at the lower left
corner and p;F/p;k at the upper right corner. If p; > p2, the slope
increases from left to right and the cost allocation curve is convex, as
shown in figure 1. If p) = p., the slope remains constant throughout and
the allocation curve is the straight line joining the two corners. Finally,
if p1 < p2, the curve is concave, as shown in figure 2.

+ F. kwhere k= (q: + q2). (9)
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Fic. 2.—~Effect of rates of direct resource utilization on cost allocation curve.

It is the curvature of the cost allocation curve, when p, and p; are not
equal, that gives rise to the apparently paradoxical behavior of per-unit
allocated costs. This can be seen immediately from an examination of
figure 3 in which per-unit allocated costs for any product-mix are given
by the slope of the line joining the point on the cost allocation curve to
the appropriate origin. Take a product-mix x; on an allocation curve for
P > p: and consider a change to product-mix x; on the same allocation
curve, The unit cost of product 1 increases from the tangent of angle
x10k to the tangent of angle x;0k. At the same time, the unit cost of
product 2 increases from the tangent of angle x;0'%’ to the tangent of
angle x;0'k’. Because of the convexity of the allocation curve throughout
(increasing slope), any rightward movement in product-mix must result
in increased unit costs for both products, though the total allocated costs
increase for the product whose share increases. Conversely, any leftward
movement must result in a decrease in the unit costs for both products,
though the total allocated costs are shifted from product 1 to product 2.

Figure 4 shows similar results for cost allocation on the basis of another
resource for which p;1 < p; and the cost allocation curve is concave
(decreasing slope). A rightward movement in product-mix results in a
decrease and a leftward movement results in an increase in the unit costs
for both products.

The behavior of marginal and average (per-unit) allocated costs as a
function of the product-mix is shown in figures 5 and 6. In figure 5, for p,
> p2, average costs for both products increase continuously (from p. F/
pik to F/k for product 1 and from F/k to p:F/p:k for product 2) as ¢;
increases from zero to % (and g: decreases from % to zero). The marginal



SIMPSON’S REVERSAL PARADOX 229

k' T

O'

TC, ¢
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F16. 4,—Effect of movement along the cost allocation curve on per-unit allocated costs.
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Fic. 5.—Behavior of average and marginal allocated costs: for p, > p».
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F1c. 6.—Behavior of average and marginal allocated costs: for p; < ps.

cost is positive and increasing from pF/p:k to pi F/p:k over the same
ranges giving convexity of total allocated costs in figure 1.

When quantity a; of product 1 is produced, the per-unit costs for
products 1 and 2 are given by ordinate c¢; and c; respectively in figure 5
(c; and ¢; are equal to the tangents of x,0k and x,0'%’, respectively, in
figure 3). The weighted average of these unit costs, with weights a; for ¢,
and a; = k — a, for c;, is easily seen to be equal to F/k from equations
(7) and (8), and this weighted average is given by the dotted horizontal
line. When the product-mix is changed by increasing the quantity of
product 1 from a, to a'y, both average costs increase (from ¢; to ¢'; and
from c; to c¢’z) but their weighted average remains unchanged at F/k
because the relative weights have shifted in favor of product 1 which has
the lower average cost.

Similarly, in figure 6, when p; < p: the per-unit costs for each product-
mix decline with a shift in product-mix in favor of product 1 but the
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weighted average cost remains unchanged at F/k. Thus the choice of
allocation basis determines whether the unit costs increase or decrease.
The sign of change is the same for both products, and this sign cannot be
used to draw inferences about the efficiency of the production process
itself.

In figures 5 and 6, marginal and average cost curves are convex and
approach the horizontal dotted line at ¥/k as the ratio p, /p: approaches
unity. This implies that the apparent paradox of allocated costs will
appear only when the number of units of basis resource used in making
one unit each of various products is unequal. More formally, Ijiri has
worked out the necessary and sufficient conditions for occurrence of the
Paradox which appear in Appendix A.

Generalization of Results

For the sake of simplicity, the above results are given for fixed indirect
costs and constant sum of the units of two products. When the indirect
costs, I, and the outputs of the two products are allowed to vary in any
manner, the sign of change in the unit costs for both products due to a
change in output is still the same. The sign of change in unit costs due to
a small increase in output ¢, depends on whether:

232y o,
|
dI(-
———-(-i—g—l——-———— is less than or greater than ( )/I(-). - (10)
qQ1p2 + g2 dq:
dI(.
In the simplified example given above, _‘i‘lﬁ = -1 andwu = (; thus
dQ1 dQ1

criterion (10) takes the form of (p: — p1) < or > 0. Note that this
condition can be used to determine the sign of change in unit costs caused
by any incremental change in the quantity of product 1. Further, the
condition can be used to determine the sign of change in unit costs
allocated on the basis of any resource used in production (as long as p,
and p. are known) irrespective of whether indirect cost I(-) is dependent
on that resource. Of course, the manager may not find the cost allocations
based on resources which do not appear in function I(-) useful. If costs
are allocated on the basis of quantity of product itself measured in
identical units, we can use p; = p; = 1 for a dummy resource, in which
case the apparent paradox of unit costs disappears.

Although the three examples of Simpson’s Paradox given above (med-
ical, accounting, and chips in the box) reflect the same phenomenon, the
implieations of the reversal for decisions based on data are quite different.
For the medical example, the new treatment is truly better than the
standard (assuming that the sampling frequencies are sufficiently close
to the underlying population distributions) and the decision to select a
treatment on the basis of disaggregated data is better than the decision
on the basis of aggregated data. For the chips in the box example, the
objective of maximizing the probability of drawing a black chip is maxi-
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mized by selecting box 1 over 2, 3 over 4, and (2 + 4) or (1 + 3). Different
levels of aggregation result in different decisions, and, unlike the medical
example, there is no single right decision. In the accounting example,
neither the aggregated nor the disaggregated data tell us much on which
we can base our decision to reward or admonish the production manager.

Implications for Cost Control

Paradoxes are more than just logical curiosities since they play upon
the darker regions of intuition and can, perhaps, be used to sharpen our
intuition through derivation of new rules of thumb. In earlier sections we
saw that, as long as the rate of utilization of basis resource (p; and p;)
remains unchanged, a change in per-unit allocated costs brought about
by any change in output, product-mix, or indirect costs must have the
same sign for all products.® The inverse of this proposition is important
for managers concerned with cost control.

ProrosiTION: If the sign of change in per-unit allocated costs for all
products is not the same, the units of basis-resource required to produce
each unit of one or more products must have changed.

In other words, similarity in the sign of change in allocated per-unit
costs is the norm, and whenever the sign is not the same, it provides the
manager with a valuable clue to the changing cost-quantity relationships
that may need further investigation. Not all such changes will be revealed
by the difference in sign of changes in unit costs; the necessary and
sufficient condition for opposite signs of changes in unit costs is:

N22/N21 z I2/Il z le/Nll

where

N{ = units of product i that could be produced from basis resource

actually used in period ¢; and
I’ = total costs to be allocated between products in period £

In the Stalcup Paper case, the rate of utilization of basis resource,
direct labor, has remained unchanged over the two years and therefore
the sign of change in per-unit allocated costs for two products will always
be identical, irrespective of what the total indirect costs and the quantities
produced are. Because the choice of allocation basis and the rate of
utilization of basis resource have such major effects on per-unit allocated
costs of products, it is again useful to issue another call for vigilance in
interpreting allocated cost data for different products. Nevertheless,
allocated per-unit costs can still be used as a means of monitoring the
rate of utilization of the resource used as the basis of cost allocation.

5 The proposition can be checked by comparing the signs of the partial derivatives of ¢,
and ¢, (in equations (7) and (8)) with respect to parameters p,, p2, ¢1, g2, F,and k= q, +
g2 Partial derivatives with respect to p; and p; are the only ones that have different signs
for ¢y and c2.
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APPENDIX A

Ijir’'s Necessary and Sufficient Conditions for Simpson’s Paradox
Let0=<p,q,r,s=1; p>r; q> s; and, without loss of generality, p =
q. Then, Simpson’s Paradox occurs if:

up + (1 — u)g <vr+ (1 -v)s, (A1)

where 0 < u, v < 1. The necessary and sufficient condition for the
existence of u and v such that (A1) holds is:

r>gq. (A2)

Proof

(Necessity): ¢ < up + (1 — u)qg by definition (equality iff p = ¢).
Similarly, vr + (1 — v)s =< max (r, s) by definition (equality iff r = s).
Hence, from (A1), ¢ < max (r, s). But ¢ > s. Hence g <r.

(Sufficiency): if (A2) holds, select ¢ such that r > ¢ > g and let &’ = (¢
- q)/(p — q) and v’ = (t — s)/(r — s). Then (Al) is satisfied for

(a) u =u’ and any v > v". because
up+(1—u)g=u'(p—q)+qg=t while
or+(l=v)s=v(r—-s)+s>v(r—-s)+s=it

(b)) v=0v" andany u<u": because
r+{(1-v)s=v'(r-s)+s=t¢t while
up+(l-ulg=u(p-q)+g<u(p-q)+qg=_t
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