On the dynamics of the Heckscher-Ohlin theory

Lorenzo Caliendo*
Yale University
November 14, 2011

Abstract

Over the last decades, large labor abundant countries, like China, have played a growing role in world trade. Using the factor proportions theory, this paper investigates the dynamic effects of economic growth consequent to international trade between countries with different factor proportions. I present a complete characterization of the equilibrium dynamics with initial factor endowments outside the cone of diversification where factor prices are not equalized and either one or both of the countries specialize. I find that while a small country can grow without the retarding force of a terms-of-trade deterioration, a large, capital abundant country can experience terms-of-trade deteriorations, as a consequence of trading with a large, labor abundant partner. These terms-of-trade effects have consequences over growth and the pattern of specialization in production. For instance, the capital stock of the poor country can overshoot its long-run steady state. However, at the steady state, the labor abundant country will always remain poorer compared to the capital abundant country. The model can also help to explain why countries experience non-monotonic changes in their pattern of specialization as they grow, why countries do not converge to the same steady state level of income, and why non-factor price equalizations might be the most likely outcome after all.

1 Introduction

The factor proportions theory is one of the most influential theories of international trade. The special case in which the factors are capital and labor is known as the standard Heckscher-Ohlin theory and is the core of modern international trade theory. This theory is motivated from the observation that countries produce relatively more of the goods which use more intensively the factors in which the countries are more abundant. As many have recognized, any realistic analysis of international trade and growth must take into account that some factors of production—for instance, capital—are produced goods. If we allow countries to optimally accumulate factors, what are the dynamic effects on their comparative advantage, on factor prices, and on the pattern of specialization and growth? To answer these questions one needs to depart from the traditional static analysis and solve the dynamics of trade and growth. This paper builds on early results in the literature and combines the two most influential models of trade and growth, the Neoclassical growth model and the Heckscher-Ohlin model, to understand how trade affects growth.

I find that while a small country can grow without the retarding force of a terms-of-trade deterioration, a large, capital abundant rich country can experience terms-of-trade deteriorations, immiserizing growth\(^1\), as a consequence of trading with a large, labor abundant poor partner. This will depend only on how different factor endowments are across the countries when they start trading\(^2\). The model can help to explain why countries experience non-monotonic changes in their pattern of specialization as they grow. A country that at early stages of development was diversified could switch back and forth, becoming specialized and then diversified again, as a consequence of dynamic changes in comparative advantages. On the other hand, if trading partners' factor endowments are close to each other, then we can also observe monotonic changes in the pattern of specialization\(^3\).

The model can also help to explain why large, capital abundant rich countries can opti-

---

\(^1\) Immiserizing growth is referred to the situation in which if economic growth is through exports it can lead to a deterioration in the terms of trade (relative price of a country’s export to its import) of the exporting country.

\(^2\) Bhagwati (1958) and Johnson (1995) were among the first to realize this possibility in the context of a static Heckscher-Ohlin model. They exogenously considered changes in endowments. I show that this could also be an endogenous outcome of the model.

\(^3\) The study by Imbs and Wacziarg (2003) presents evidence of non-monotonic changes in the pattern of specialization as countries grow.
mally experience periods of booms in consumption. For instance, if a large capital abundant country suffers a productivity slowdown and starts decumulating capital, and at the same time a large labor abundant country starts supplying to the world cheaper labor-intensive goods, then the capital abundant country will optimally decide to consume more. This increase in the demand for labor-intensive goods makes the poor country suffer a terms-of-trade deterioration and overaccumulate capital. The capital stock of the poor country can even overshoot its long-run steady state. However, at the steady state, the poor country will always remain poorer compared to the rich country.

Regarding factor prices, the dynamic model in this paper predicts that, conditional on the initial distribution of factor endowments, there are several possible outcomes: if countries start trading and factor prices are not equalized, factor prices could be equalized in finite time, or we could observe only a tendency towards equalization as the countries move to a specialized steady state. Even in cases where factor endowments are similar, countries might leave the factor price equalization (FPE) set in finite time.

One of the stylized growth facts observed in the data is the lack of convergence across countries. Consistent with the data, the model predicts that if one country has a larger stock of capital at the time it starts trading, it will remain larger along the transition path and at the steady state, and therefore there will be lack of convergence. Also, the model delivers conditional convergence; countries that start further away from their steady state will grow faster, a characteristic observed in newly developed countries in the last decades. During the transition to the long run, the large, capital-intensive rich country could experience periods of stagnation, while at the same time the large, labor-intensive poor country could enjoy periods of high growth rates. This, and the previous findings, have new policy implications.

There has been a growing interest in understanding how large labor abundant countries could affect the export performance of capital abundant countries. For instance Samuelson (2002), Feenstra and Wei (2010). For many years economists have been trying to incorporate the implied endogenous dynamics into the standard trade model. Oniki and Uzawa (1965) and Bardhan (1965a, 1965b, 1966) were the first to address this issue where they relied on the assumption of the constant savings rate. Later on, Stiglitz (1970) and Deardorff (1973) showed that countries might converge to a lower steady state compared to the autarky steady state if they traded with countries which have different savings rates. Stiglitz (1970) also
showed that if countries had different discount rates, then convergence in income levels can be attained. Further contributions are Smith (1976, 1977), Findlay (1984), Eaton (1987) and Baldwin (1992).

More recently, Baxter (1992), Chen (1992), Backus, Kehoe and Kydland (1994), Stokey (1996), Ventura (1997), Jensen and Wang (1997), Mountford (1997), Acemoglu and Ventura (2000), Atkenson and Kehoe (2000), Bond, Trask and Wang (2003) Ferreira and Trejos (2006) and Gaitan and Roe (2007) have combined versions of the standard Heckscher-Ohlin model with the standard Neoclassical growth model or an overlapping generations model. However, either by assuming that countries remained always diversified (specialized), or by assuming that the structure of production is such that FPE is always the equilibrium outcome, they have not allowed the pattern of specialization to change over time.

Using the static model, researchers have also considered it important to study economies trading under complete specialization. For instance, Leamer (1987) focused on specialized economies according to initial factor endowments. A recent paper by Oslington and Towers (2009) following Grossman (1990), characterizes the set of initial endowments and presents conditions to determine the pattern of specialization between countries in the static model. They apply the model, allowing factor prices not to be equal, to study the impact on wage inequality and factor prices from factor flows.

The paper more related to this is Ventura (1997). He emphasized how a dynamic Heckscher-Ohlin model with linear technologies, were factor prices always equalized, was able to explain several stylized growth facts—for instance, lack of convergence and rapid relative growth of developing countries. I generalize his work by allowing factor prices not to be equalized.

Cuñat and Maffezzoli (2004) are among the first to address the importance of focusing on dynamics outside the cone of diversification. The authors numerically characterize the dynamics of a model with more goods than factors. They focus on dynamics where countries start outside the cone of diversification and present numerical examples for different cases. Because of their assumptions over technologies, they do not find non-monotonic changes in the pattern of specialization. More recently Bajona and Kehoe (2006a, 2006b) showed that given certain conditions of the elasticity of substitution between traded goods, countries can leave the cone of diversification in finite time. I also show that this can happen in a model with Cobb-Douglas technology (unit elasticity) if we allow capital to depreciate over time.
There is substantial evidence of non-FPE across trading partners. Davis and Weinstein (2001, 2003) and Schott (2003) find that the standard Heckscher-Ohlin model’s predictions are more in agreement with the data when non-FPE is allowed. Debare and Demiroglu (2003) and Cuñat (2000), based on Deardorff’s (1994) lens condition, find evidence of non-FPE between developing and developed countries and FPE for a group of developed countries. Therefore, looking at the implications of the model without FPE might be more empirically relevant than assuming FPE.

The paper is organized as follows. A detailed description of the economy is presented in the next section. After that, the set of initial conditions is divided into four regions, and each region is addressed in a separate subsection. In each of them, it is shown that there is only one equilibrium path heading to an FPE steady state regardless of the timing (region) in which countries start trading. The steady states are characterized and the stability of the system is evaluated for each case. Subsequently, the conditions needed in order to have FPE during the transition are characterized, and the phase diagram of the model is presented. Finally, conclusions are discussed.

2 Model

Consider a standard 2x2x2 Heckscher-Ohlin model. The two countries trading are north and south \( i = \{N, S\} \), the two factors of production are capital and labor \( K^i(t) \) and \( L^i \), and the two freely tradable goods are intermediate inputs, \( Y^i_j \) for \( j = \{1, 2\} \). One of these goods is capital intensive and the other is labor intensive, and they are both combined for the production of a final good in each country. The final good is non-storable and non-tradable, and can be used either for consumption or for investment. The factors of production are mobile across sectors but not between countries. The only goods that are freely tradable internationally are the intermediate goods. Because of this last assumption, the prices of these goods are going to be equated across countries. There is an atomistic household-firm in each country that maximizes the present discounted value of its utility from consuming final goods, \( u(C^i(t)) = \log(C^i(t)) \). Entering the world with an initial endowment \((K^i(0), L^i)\), the household-firm decides how much to invest \( I^i(t) \), how much to consume \( C^i(t) \) and how to allocate capital and labor efficiently across sectors in order to maximize the output of the
Agents in both countries use the same Cobb-Douglas technology for the production of the final good
\[ Y^i (t) = (X^i_1)^\gamma (X^i_2)^{1-\gamma} \]
where \( X^i_j (t) \) are the demands for intermediate inputs \( j = \{1, 2\} \). The price of the final good, which the agent takes as given, is normalized to 1. In order to produce intermediate inputs the agent has to combine capital and labor. The technologies for producing these goods are Cobb-Douglas, in particular
\[ Y^i_j (t) = (K^i_j)^{\theta_j} (L^i_j)^{1-\theta_j} \]
I assume that agents across different countries use the same technology for the production of a given intermediate input, but that they use different technologies for the production of each intermediate input. Specifically, I assume that the production of intermediate good 1 is more capital intensive than the production of good 2 \( (\theta_1 > \theta_2) \). I assume no factor intensity reversals, hence, the capital labor ratio employed in the production of the intermediate good 1 is larger than the capital labor ratio employed in the production of intermediate good 2 \( (K^i_1/L^i_1 > K^i_2/L^i_2) \) for any relative factor prices. I let \( p^i_j (t) \) be the prices of the intermediate inputs which are taken as given for the agents.

2.1 Household-firm Problem

The representative agent in each country takes prices as given and maximizes the present discounted value of its utility from consuming the unique consumption good \( C^i \) produced locally. The prices of the intermediate goods are determined in the world commodity market. If factor supplies are such that FPE holds, we can use the approach suggested by Dixit and Norman (1980) and solve the world planning problem (Integrated World Economy). This is the standard approach taken in the literature to solve this type of problem. In order to construct the equilibrium, I will focus instead on solving the decentralized problem. This has the advantage that outside the cone, where FPE does not hold and the integrated world equilibrium cannot be solved, it is a tractable problem to solve. Note that inside the cone, it is basically the integrated world equilibrium. The problem of the agent in each country is the following:

\[
\max_{\{c^i(t), k^i(t)\}} \int_0^\infty \exp(-\rho t) \log \left(c^i(t)\right) dt
\]
subject to:

\[
c^i(t) + c^i(t) = G(k^i; p)
\]

\[
k^i(t) = \dot{c}^i(t) - \delta k^i(t)
\]

\[
k^i(0) \text{ given}
\]

where \( \delta \) is the depreciation rate and all the variables are in per capita, for instance \( c^i(t) = \frac{C^i(t)}{L^i} \).

\( G(k^i; p) \) is the solution to the following static sub problem:

\[
G(k^i; p) = \max \{ x^i_j \} \quad (x^i_2)^{1-\gamma}
\]

subject to:

\[
\sum_j p^i_j x^i_j = \sum_j p^i_j y^i_j
\]

\[
y^i_j = (k^i_j)^{\theta_j} (\bar{l}^i_j)^{1-\theta_j} \quad j = \{1, 2\}
\]

\[
k^i = \sum_j k^i_j
\]

\[
1 = \sum_j \bar{l}^i_j
\]

\[
k^i_j \geq 0, \quad \bar{l}^i_j \geq 0
\]

Note that I am allowing for corner solutions in which one or both of the countries will specialize.

The prices of the intermediate goods \( p = \{p_1, p_2\} \) are determined in the world commodity market and are such that the world commodity market clears:

\[
\sum_i L^i x^i_j (k^i; p) = \sum_i L^i y^i_j (k^i; p) \quad j = \{1, 2\}
\]

where \( x^i_j (k^i; p) \) and \( y^i_j (k^i; p) \) are the optimal conditional demand and supply of intermediate inputs in each country. \( G(\cdot) \) is increasing, concave, continuously differentiable and homogeneous of degree one.
Note that while solving the dynamic model at each moment in time we are solving a static sub-problem. This problem can be solved for all possible combinations of factor supplies. By doing so, you can characterize the set of factor supplies such that FPE holds. Also, it will determine the pattern of specialization given factor supplies. Moreover, you can also characterize how the equilibrium will look for situations within the cone of diversification, the set of factor supplies such that FPE holds. The sub-problem is essentially a standard 2x2x2 static Heckscher-Ohlin Model.

The FPE set is:

$$V(k^N, k^S) = \left\{ (k^N, k^S) \text{ s.t. } \tilde{k}_2 \leq k^N \leq \tilde{k}_1 \text{ and } \tilde{k}_2 \leq k^S \leq \tilde{k}_1 \right\}$$  \hspace{1cm} (8)

where \( k^i = K^i / L^i \), \( \tilde{k}_2 \) and \( \tilde{k}_1 \) are capital labor ratios that characterize the lower and upper bound of the FPE set.

The solution for \( \tilde{k}_1 \):

$$\Rightarrow \tilde{k}_1 = \left( \frac{\theta_1}{1 - \theta_1} \right) \left( \frac{1 - \tilde{\gamma}}{\tilde{\gamma}} \right) \frac{k}{L} \hspace{1cm} (9a)$$

in the same way, for \( \tilde{k}_2 \):

$$\Rightarrow \tilde{k}_2 = \left( \frac{\theta_2}{1 - \theta_2} \right) \left( \frac{1 - \tilde{\gamma}}{\tilde{\gamma}} \right) \frac{k}{L} \hspace{1cm} (10)$$

where \( \tilde{\gamma} \equiv \gamma \theta_1 + (1 - \gamma) \theta_2 \), \( L = \sum_i L^i \) and \( k = \sum_i k^i \). Note that both capital labor ratios have to be inside the FPE set in order for there to be FPE. This is the set of relative factor supplies such that FPE holds. The set of factor supplies in which countries are diversifying their production of tradeable goods. Given the assumptions on the technologies in each country, the boundaries of the cone are the same in both countries. Moreover, it is easy to see that if the countries capital labor ratio is inside the cone, these allocations can be attained, hence these are also the optimal capital labor ratios used in the production of the intermediate goods in each country. The larger the difference in factor intensities in the production of both goods, the larger is the set of aggregate capital labor ratios that are consistent with FPE. In the extreme case in which the production of each intermediate input uses only one factor (either \( \theta_1 = 1 \) and \( \theta_2 = 0 \), or \( \theta_2 = 1 \) and \( \theta_1 = 0 \)) the cone is the entire nonnegative orthant. This is the case studied by Ventura (1997).
2.2 Dynamic Model

Let $\tilde{H}^i \equiv H^i (c^i (t), k^i (t), q^i (t))$ be the current value Hamiltonian in each country, then:

$$\tilde{H}^i = \log (c^i (t)) + q^i (t) [G (k^i (t); p (t)) - c^i (t) - \delta k^i (t)]$$  \hspace{1cm} (11)

where $q^i (t)$ is the current value co-state variable. I am suppressing the dependence of the variables with respect to time in order to have compact notation. The necessary first order conditions are:

$$\left(c^i \right)^{-1} = q^i \hspace{1cm} (12)$$
$$\dot{q}^i = - \left(G_{k^i} (k^i; p) - (\rho + \delta) \right) q^i \hspace{1cm} (13)$$
$$\dot{k}^i = G (k^i; p) - c^i - \delta k^i \hspace{1cm} (14)$$
$$\lim_{t \to \infty} e^{-\rho t} k^i q^i = 0 \hspace{1cm} (15)$$

Where $G_{k^i}$ is the partial derivative of the aggregate production with respect to $k^i$, the marginal product of capital in country $i$.

The following differential equations together with the commodity market equilibrium condition (7) characterize the equilibrium dynamics of this model:

$$\dot{c}^N = c^N \left(G_{k^N} (k^N; p) - (\rho + \delta) \right)$$
$$\dot{c}^S = c^S \left(G_{k^S} (k^S; p) - (\rho + \delta) \right)$$
$$\dot{k}^N = G (k^N; p) - c^N - \delta k^N$$
$$\dot{k}^S = G (k^S; p) - c^S - \delta k^S$$

The challenge is to solve these system of four differential equations in which countries could move in and out the FPE set. Next, I present a description of possible outcomes regarding the pattern of specialization.
2.3 Patterns of Specialization and the State Space

Let’s focus for a moment on the case in which north is the capital intensive country and south the labor intensive country. Now, according to how different the initial distribution of endowments is between these countries, there are four possible patterns of specialization. It can occur that both north and south diversify their production (North - D and South - D) and produce positive amounts of both goods. In this case there is FPE and north is the net exporter of the capital intensive good and south the net exporter of the labor intensive good. Another outcome is that north diversifies its production and south specializes in the production of the labor intensive good (South L-specialized). In this case there is no FPE. It can also occur that north specializes in the production of the capital intensive good (North K-specialized) and south diversifies, or that both countries specialize in the production of the good in which they have a comparative advantage (North K-specialized, South L-specialized). In this last two cases FPE does not hold. From the solution to the static model, Grossman Helpman (1990), Grossman Helpman (1991) and Oslington and Towers (2009) show that we can describe in a box all possible patterns of specializations. Figure 1 presents the patterns of specialization for the case in which $K_N > K_S$.

Figure 1 also helps to understand what are the outcomes in a dynamic model. Consider initial conditions in which the capital labor ratio of north is larger than the capital labor ratio of south and labor is equal in both countries. This is presented as a darker line cutting the box in half of figure 1. It will be shown in a moment that countries do not converge in factor endowments, therefore I do not consider initial conditions bellow the dashed line in the figure. According to the parameter values, this line could intersect different regions of specialization. In particular, there are two possible cases. In one case, two possible patterns of specialization may arise, either (North-D, South-D) or (North-D, South L-specialized). This is the left figure in figure 1. In the other case, all possible patterns of specialization are present, this is the right figure in figure 1. The reason is that given assumptions over technologies and initial conditions on labor this imposes a restriction over the possible patterns of specialization, over how different capital labor ratios can differ between countries. Therefore, it is possible to construct an example in which, given assumptions over the technologies an labor, the cases (North K-specialized, South L-specialized) and (North K-specialized, South-D) may never
Figure 1: The figure illustrates the possible patterns of specialization, and how they might change according to initial conditions. South - L refers to the case in which South is specialized in the production of the labor intensive good. North - K refers to the case in which North is specialized in the production of the capital intensive good. North - D and South - D refer to the case in which both countries are diversified in production, producing positive amounts of labor and capital intensive goods. The darker line reflects initial conditions where the endowments of capital from North are larger than the endowments of capital from South and labor is equal in both countries. The difference between the figure on the left hand side (LHS) and the right hand side (RHS) are parameter values. Both figures have the same initial conditions over the countries and world endowments. The figure on the LHS shows that there are only two possible outcomes, either both countries are diversified in production or North is diversified and South L-specialized. The RHS figure shows that all possible outcomes are possible.
occur 4.

Figure 2 presents the state space in which only two possible outcomes are feasible (North-D, South-D) or (North-D, South L-specialized). I denote this by State Space I. I divide the \((k^N - k^S)\) plane into different regions. Regions A and B correspond to the set of factor supplies that belong to the FPE set \(k^i(0) \in V (k^N, k^S)\). The line dividing region A from B is the set of steady states of the model. In this way, region A considers initial conditions below the steady state while region B considers initial conditions above the steady state. In a moment it is going to be clear why we have a ray of steady states in this model. The line dividing regions A and B from C and D is the lower bound of the set. Regions C and D correspond to the set of factor supplies that do not belong to FPE set \(k^i(0) \notin V (k^N, k^S)\), and as a consequence FPE does not hold. In a moment it is going to be clear why is it that I divide these regions by a ray and show that the ray is not arbitrary. I will focus on the case in which \(k^N(0) > k^S(0)\) which, as we will see in a moment, implies that \(k^N(t) > k^S(t)\) for all \(t\). Hence, we can focus only on the lower half space. Since both countries are otherwise identical except for the initial conditions, the dynamics for initial conditions in which \(k^N(0) < k^S(0)\) are symmetric to the cases in which \(k^N(0) > k^S(0)\). Once we are able to understand what happens when \(k^N(0) > k^S(0)\), it will be simply a matter of relabeling the countries to characterize the \(k^N(0) < k^S(0)\) cases.

Figure 3 presents the state space where all possible outcomes are feasible. I denote this by State Space II. Again, I divided the \((k^N - k^S)\) plane into different regions according to the pattern of specialization. Regions A’ and B’ correspond to the set of factor supplies that belong to the FPE set \(k^i(0) \in V (k^N, k^S)\). Inside this set, both countries are diversified in production. The line dividing region A’ from B’ is the set of steady states of the model. The line dividing regions A’ and B’ from E is the lower bound of the set. Region E corresponds to the case where factor supplies are such that north specializes in the production of the capital intensive good and south diversifies (North K-specialized, South-D). The ray dividing region E from region F corresponds to the lens condition that determines if there is full specialization or not. Region F corresponds to factor supplies such that both countries specialize, the full specialization case, where north specializes in the production of the capital intensive good and

\(^4\)Note that another way to show this is to fix the parameter values and change the distribution of labor between the countries (move the dark line from left to right along the diagonal line). By doing so, according to the distribution of labor we can only have the same scenarios as before.
Figure 2: The figure divides the $(k^N - k^S)$ plane into different regions for the case in which $k^N(0) > k^S(0)$. In regions A and B both countries are diversified and factor prices are equalized (FPE) (North-D, South-D). In regions D and C south is specialized in the production of the labor intensive good and north diversified and there is no FPE (North-D, South L-specialized). The line dividing regions A and B from C and D is the lower bound of the FPE set. The upper half part of the picture is not presented because $k^N(0) > k^S(0) \Rightarrow k^N(t) > k^S(t)$ for all $t$ (Proposition 2).
Figure 3: The figure divides the \((k^N - k^S)\) plane into different regions for the case in which \(k^N (0) > k^S (0)\). In regions A' and B' both countries are diversified and factor prices are equalized (FPE) (North-D, South-D). In region E north specializes in the production of the capital intensive good, while south produces both goods (North K-specialized, South-D). Region F corresponds to the full specialization case (North K-specialized, South L-specialized). Region C'D' south is specialized in the production of the labor intensive good and north diversified (North-D, South L-specialized). The upper half part of the picture is not presented because \(k^N (0) > k^S (0) \Rightarrow k^N (t) > k^S (t)\) for all \(t\) (Proposition 2).
south on the production of the labor intensive good (North K-specialized, South L-specialized).

Finally, the region C’D’ is the region where south is specialized in the production of the labor intensive good and north is diversified (North-D, South L-specialized). The ray dividing region F from region C’D’ is the lens that separates this cases. Note that region C’D’ is a region with the same characteristics as regions C and D in the State Space I.

3 Inside the FPE set

In this section we want to understand what will happen to growth and factor accumulation if countries with similar factor supplies trade. For instance, suppose that north is capital intensive and south labor intensive and that factor supplies belong to the FPE set (Region A (A’) and B (B’)). Then, north has a cost advantage in the production of the capital intensive good and south a cost advantage in the production of the labor intensive good. Therefore, north will be a net exporter of the capital intensive good and south a net exporter of the labor intensive good. From the necessary first order conditions, and assuming that FPE holds along the transition path, we know that the growth rate of consumption is the same in both countries. This implies that the relative consumption of the representative households in each country are going to stay constant over time. In particular, from the intertemporal budget constraints of the agents, we can solve for the initial relative consumption levels:

$$\frac{c^S(0)}{c^N(0)} = \varpi$$

(16)

This is a strong result because it implies that, if FPE holds, we do not observe divergence or convergence in consumption levels across countries.

The dynamic system governing the economies are a set of four equations, two for each country. Note that by using (16) we can reduce the system to a set of three differential

$$\frac{c^S(t)}{c^N(t)} = \frac{c^S(0)e^{(R(t)-(\rho+\delta))t}}{c^N(0)e^{(R(t)-(\rho+\delta))t}} = \varpi$$

where $R(t) = \frac{1}{T} \int_0^T G_k(k(s);p) ds$ has the interpretation of an average return on capital in an arbitrary period $T$.

---

5 Off course, one has to verify later if this is an equilibrium. It could be that during the transition one of the countries specializes and FPE does not hold. I will show in a moment which trajectories are the ones that do.

6 To see this, using the Euler equations in both countries we have that:

$$\frac{c^S(t)}{c^N(t)} = \frac{c^S(0)e^{(R(t)-(\rho+\delta))t}}{c^N(0)e^{(R(t)-(\rho+\delta))t}} = \varpi$$

where $R(t) = \frac{1}{T} \int_0^T G_k(k(s);p) ds$ has the interpretation of an average return on capital in an arbitrary period $T$. 

equations, given by:

\[ \dot{c}^N = c^N (G_{kN} (k^N; p) - (\rho + \delta)) \]  \hspace{1cm} (17)

\[ \dot{k}^N = G (k^N; p) - \delta k^N - c^N \]  \hspace{1cm} (18)

\[ \dot{k}^S = G (k^S; p) - \delta k^S - \omega c^N \]  \hspace{1cm} (19)

Since factor prices are equalized \( G_{kN} = G_{kS} \) and \( G_{LN} = G_{LS} \). In particular the \( G (k^i; p) \) function is identical in both countries:

\[ G (k^i; p) = \Theta \left( \tilde{\gamma} \frac{k^i}{k/2} + (1 - \tilde{\gamma}) \right) (k/2)^{\tilde{\gamma}} \]

where \( \Theta \) is a constant given by \( \Theta \equiv \frac{\Psi}{\Gamma(\tilde{\gamma})} \), where \( \Psi = \tilde{\Gamma} (\gamma) \tilde{\Gamma} (\theta_1)^{\gamma} \tilde{\Gamma} (\theta_2)^{1-\gamma} \) and \( \tilde{\Gamma} (x) = x^r (1 - x)^{1-r} \)

### 3.1 Steady state

**Definition**: A steady-state equilibrium is an equilibrium path in which \( k^N(t) = k^{N*} \) and \( k^S(t) = k^{S*} \) for all \( t \).

The steady state of the system has factor prices equalized and there is an infinite number of such steady states. All the variables with "**" are at the steady state. Factor and goods prices are given by:

\[ r^* = \rho + \delta \]

\[ p_1^* = \tilde{\Gamma} (\gamma)^{\frac{1-\theta_1}{1-\gamma}} \left( \frac{r^* \theta_1 \tilde{\Gamma} (\theta_1)^{1-\theta_1}}{r^* \theta_1 \tilde{\Gamma} (\theta_1)^{1-\theta_2}} \right)^{\frac{1}{1-\gamma}} \]  \hspace{1cm} (20)

\[ p_2^* = \tilde{\Gamma} (\gamma)^{\frac{1-\theta_2}{1-\gamma}} \left( \frac{r^* \theta_1 \tilde{\Gamma} (\theta_2)^{1-\theta_2}}{r^* \theta_2 \tilde{\Gamma} (\theta_2)^{1-\theta_1}} \right)^{\frac{1}{1-\gamma}} \]  \hspace{1cm} (21)

\[ w^* = (\rho + \delta) \left( \frac{\Psi}{\rho + \delta} \right)^{\frac{1}{1-\gamma}} \]  \hspace{1cm} (22)

where \( r \) is the rental price of capital and \( w \) the wage rate.

The steady state world aggregate stock of capital and aggregate consumption are given
by:

\[
\frac{k^*}{2} = \frac{1}{1-\gamma} \left( \frac{\Psi}{\rho + \delta} \right)^{1/\gamma} \tag{23}
\]

\[
\frac{c^*}{2} = \left( \frac{\rho + \delta (1-\gamma)}{1-\gamma} \right) \left( \frac{\Psi}{\rho + \delta} \right)^{1/\gamma} \tag{24}
\]

\[
s^* = \frac{\delta}{\rho + \delta} \tag{25}
\]

where \( c \) is the world per capita consumption: \( c = cN + cS \) and \( s^* \) is the steady state savings rate. It is interesting to note that the world steady state is the same as in autarky. However, with trade, each country’s steady state is different to the autarky steady state. The following proposition characterizes the country specific steady state levels of capital and consumption.

**Proposition 1** Given an initial wealth distribution there exists a unique steady state level for the world aggregate variables. However, the steady state level for the country aggregates is a function of the initial wealth distribution, hence there are an infinite number of such steady states.

**Proof.** From (23) and (24) we can verify that the steady state levels for the world aggregate variables are independent of (16). With the solution to \( c^* \) given in (24) we can solve for \( cN^* \) and \( cS^* \) using (16)

\[
cN^* = \frac{1}{1 + \varpi} c^* \tag{25}
\]

\[
cS^* = \frac{\varpi}{1 + \varpi} c^* \tag{26}
\]

Note that the consumption levels at the steady state are functions of the initial conditions for capital:

\[
kN^* = \frac{1}{\rho} \left( \frac{1}{1 + \varpi} c^* - w^* \right) \tag{27}
\]

\[
kS^* = \frac{1}{\rho} \left( \frac{\varpi}{1 + \varpi} c^* - w^* \right) \tag{28}
\]

Note that the steady state levels for the country aggregates are a function of the initial wealth distribution. Note also that if \( \varpi \neq 1 \), then one country will have a larger steady state than the other, and in particular, one country will have a larger steady state than in autarky and
the other a smaller steady state than in autarky. In this case $k^N_{\text{Trade}} > k^N_{\text{Autarky}} = k^S_{\text{Autarky}} > k^S_{\text{Trade}}$. Only in the particular case in which $\varpi = 1$ (this means when $k^N(0) = k^S(0)$) both economies converge to the same steady state. It is easy to show that the steady state will be the same for both economies and the same as the one in autarky, simply evaluate (27) and (28) at $\varpi = 1$. Also note that if countries had different discount rates, then the steady state could also be the same between countries\(^7\).

### 3.2 Dynamics

The system of differential equations (17), (18) and (19) govern the transition of these economies. If we linearize the system in the neighborhood of the steady state and analyze the resulting characteristic equation we are able to solve for the eigenvalues\(^8\). There is one negative eigenvalue, therefore the system is saddle path stable. Moreover, the stable arm corresponds to the eigenvector associated to the negative eigenvalue and is a ray that goes through the steady state. The negative root is independent of $\varpi$ and is the same eigenvalue as in autarky. However, the stable arm depends on $\varpi$ and there are an infinite number of them. Given an initial condition, we have a unique $\varpi$ and stable arm that leads us to the steady state. Locally, we know that the system is stable. Moreover, note that once we are inside the FPE set, and stay inside, the world behaves as a standard Ramsey-Cass-Koopmans neoclassical growth model which we know is globally stable. I will first argue that if initial conditions belong to region A (A’), then both countries stay inside the cone and converge to the steady state globally. Then, if initial conditions belong to region B (B’) countries could leave the FPE set in finite time. In order to show this, I will first consider initial conditions on the boundary of the FPE set and evaluate the direction in which relative factor supplies of each country move. Then, I will focus my attention inside the FPE set.

From the previous equilibrium conditions it is clear that if the capital stocks in each country grow at the same rate as the world aggregate stock, then we have that FPE will hold in every given period. This is because the boundaries of the FPE set grow also at the same rate. However, the growth rate of capital of the country that starts with a higher stock could

\(^7\)This is Stiglitz (1970) result. Note that we could find $\rho^S / \rho^N$ such that $k^N* = k^S*$.

\(^8\)The linearized system together with the eigenvalues for all possible cases are presented in the Technical Appendix which is available upon request.
be larger or smaller than the growth rate of the aggregate stock of capital, and the growth rate of the country with initial stock that is lower could have a larger or smaller growth rate. Note that since \( k(t) = k^S(t) + k^N(t) \) then \( \dot{k}(t) = \dot{k}^S(t) + \dot{k}^N(t) \), so if \( \dot{k}^S(t) > \dot{k}(t) \) then \( \dot{k}^N(t) < \dot{k}(t) \).

This can be seen in the following way, let \( z^i(t) = k^i(t)/k(t) \), then differentiating with respect to time we get:

\[
\begin{align*}
\frac{\dot{z}^i(t)}{z^i(t)} &= \frac{\dot{k}^i(t)}{k^i(t)} - \frac{\dot{k}(t)}{k(t)} = g_{k^i} - g_k \\
\frac{\dot{z}^N(t)}{z^N(t)} &= \left( w(t) - \rho \dot{w}(t) \right) \left[ \frac{k^S(t) - k^N(t)}{k^N(t) k(t)} \right] \\
\frac{\dot{z}^S(t)}{z^S(t)} &= \left( w(t) - \rho \dot{w}(t) \right) \left[ \frac{k^N(t) - k^S(t)}{k^S(t) k(t)} \right]
\end{align*}
\]

where \( \dot{w}(t) \) is the present discounted value of wage income\(^9\). We can have different situations depending on the relative magnitude of the capital stocks and wages\(^{10} \).

\[
\begin{align*}
\text{If} \ w(t) - \rho \dot{w}(t) > 0 & \Rightarrow \begin{cases} g_{k^N} - g_k < 0 & \Rightarrow g_{k^N} < g_{k^S} \\
g_{k^S} - g_k > 0 & \end{cases} \\
\text{If} \ w(t) - \rho \dot{w}(t) < 0 & \Rightarrow \begin{cases} g_{k^N} - g_k > 0 & \Rightarrow g_{k^N} > g_{k^S} \\
g_{k^S} - g_k < 0 & \end{cases}
\end{align*}
\]

Suppose that at \( t = 0 \) we start in the boundary of the FPE set, then if \( \dot{z}^S(t) > 0 \) the growth rate of capital from south is larger than north and countries move strictly inside the FPE set. The next lemma will show that whenever the countries are at the boundary of the FPE set they will move away from there. If \( k(0) > k^* \) the economies leave the set and move outside and if \( k(0) < k^* \) the economies move move strictly inside.

**Lemma 1** Consider intial conditions such that country’s factor supplies belong to the boundary of the FPE set. Then if \( k(0) < k^* \) then \( \dot{z}^S(t) > 0 \) and if \( k(0) > k^* \) then \( \dot{z}^S(t) < 0 \).

**Proof.** Without loss of generality assume that initial conditions are such that \( z^S(0) \) is at the boundary of the FPE set. In the neighborhood of the steady state \( \rho \dot{w}(t) = (c^* - k^* \lambda^+) \)

\(^9\) \( \dot{w}(t) \equiv \int_0^\infty G_i(k^i(s); \rho) e^{-\rho(t-s)} ds \).

\(^{10}\) Note that there are in total four cases. However, since I am assuming that initially \( k^N(0) > k^S(0) \) we only have two sensible cases, the ones in which \( k^N(t) > k^S(t) \). Below I show that if \( k^N(0) > k^S(0) \) this will imply that \( k^N(t) > k^S(t) \) for all \( t \).
+ k(t) (\lambda^+ - \rho)) where \lambda^+ is the positive eigenvalue of the dynamic system inside the FPE set. At the boundary and inside the FPE set, w(t) = (1 - \tilde{\gamma}) \Theta (k(t) / 2)^{\tilde{\gamma}}. Then note that 
(1 - \tilde{\gamma}) \Theta (k(t) / 2)^{\tilde{\gamma}} - (c^* - k^* \lambda^+ + k(t) (\lambda^+ - \rho)) is a decreasing continuous function of k(t) and it crosses zero at k^*. Hence if k(0) < k^* then w(t) - \rho \dot{w}(t) > 0 and \ddot{z}^S(t) > 0 and if k(0) > k^* then w(t) - \rho \dot{w}(t) < 0 and \ddot{z}^S(t) < 0. ■

This implies that if we are in region A (A') then the economies stay in region A (A'), however if we are in region B (B'), the economies might leave the FPE set. In particular, if they start in the boundary of the set, the ray dividing region B (B') from region C (E), they move to region C (E).

Alternatively, we can solve for the slope of the saddle path and compare this slope with the slope of the boundary of FPE set. If the slope of the saddle path is larger, then the labor intensive country is growing faster inside the FPE set than the capital intensive country. In other words, that the relative capitals, \frac{k^S(t)}{k^N(t)} is increasing over time if countries start in region A (A') and decreasing over time if countries start in region B (B').

**Lemma 2** The slope of the saddle path is larger than the slope of the lower boundary of the FPE set.

**Proof.** The ratio \frac{\dot{k}^S(t)}{\dot{k}^N(t)} is the slope of the saddle path and I denote it by \psi'_{k^S}(k^N). The exact solution to the slope is

\[
\lim_{t \to \infty} \frac{\dot{k}^S(t)}{k^N(t)} = \psi'_{k^S}(k^{N*}) = \frac{-\alpha (1 - \overline{\omega}) - \overline{\omega} \tilde{\lambda}}{\alpha (1 - \overline{\omega}) - \tilde{\lambda}}
\]

where \tilde{\lambda} = \left(-\rho - \sqrt{\rho^2 + 4\rho \alpha}\right) and \alpha = (1 - \tilde{\gamma}) (\rho + \delta) \left(\frac{\rho + \delta (1 - \tilde{\gamma})}{\tilde{\gamma} \rho}\right). I want to show that:

\[
\psi'_{k^S}(k^{N*}) > \frac{(1 - \theta_1) \tilde{\gamma}^2 - (1 - \tilde{\gamma}) \theta_1}{(1 - \tilde{\gamma}) \theta_1}
\]

where the right hand side is the slope of the lower bound of the FPE set. \overline{\omega} is given by the ratio of consumptions at the steady state at the lower bound of the set

\[
\overline{\omega} = \frac{K^{S*}}{K^{N*}}
\]

Substituting \tilde{\lambda}, \overline{\omega}, \alpha into \psi'_{k^S}(k^{N*}) we find that in order for this inequality to hold we need
that $s^* = \gamma\delta / (\delta + \rho) < 1$ which is trivially satisfied. Therefore, the slope of the saddle path is larger than the slope of the lower boundary of the set either in State Space I and II$^{11}$. ■

Given the previous results it might be tempting to think that south might eventually catch up to north. However, the stock of capital from the relatively capital abundant country will always be larger than the capital from the labor abundant country during the transition to the steady state and at the steady state. In other words, south will never catch up with north as long as $k^N(0) > k^S(0)$.

**Proposition 2** Suppose that factor endowments belong to the FPE set. Then $k^N(t) > k^S(t)$, all $t$.

**Proof.** Taking the difference between the capital stocks in both countries we find that:

$$k^N(t) - k^S(t) = \frac{1}{\rho} \left( \frac{1 - \varpi}{1 + \varpi} \right) c(t) > 0 \quad \text{all } t$$  

(29)

The difference in the capital stocks is not constant, it changes over time and gets wider as long as consumption is growing. In the steady state, the difference is constant and a function of the initial conditions $\varpi$ as I proved before. To see this, take the limit of (29) as $t \to \infty$ and then difference between (27) and (28) is equal to $\frac{1}{\rho} \left( \frac{1 - \varpi}{1 + \varpi} \right) \left( \frac{\rho + \delta (1 - \gamma)}{1 - \gamma} \right) \left( \frac{\psi}{\rho + \delta} \right)^{\frac{1}{1 - \gamma}}$.

Figure 4 presents a projection of the phase diagram on the $(k^N - k^S)$ plane and State Space I. Several exact trajectories starting in region A are presented that illustrate the previous findings. As we can see, for a given initial condition (circles), the economy converges to a steady state inside of the FPE set (stars). Also, initial conditions at the boundary of the set leave the boundary and converge to a steady state strictly inside the FPE set.

Figure 5 presents the same findings on State Space II. Several exact trajectories starting in region A' and with initial conditions at the boundary of the FPE set are shown to remain inside the FPE set. Therefore, if countries start trading with relative factor endowments below the steady state and belonging to the cone of diversification, then factor prices are equalized at time zero and remain equalized thereafter. Both countries diversify their production along the transition path and at the steady state. The steady state will be a function of initial conditions.

$^{11}$Note that the slope of the bound of the FPE set is always larger in State Space II than in State Space I.
Figure 4: This figure presents several exact trajectories for the case where countries start trading inside the FPE set (region A). Consider any initial condition (circles) that start strictly inside the FPE set. Factor prices equalize and countries produce positive amount of both tradable goods. North is the net exporter of the capital intensive good and south the net exporter of the labor intensive good. As we can see, the economies converge to a steady state strictly inside of the FPE set (stars). Initial conditions at the boundary of the set are also presented. As we can see, countries move inside the set and converge to a steady state strictly inside the FPE set.
Figure 5: This figure presents several exact trajectories for the case where countries start trading inside the FPE set (region A’). See note in figure 4 for a description of the findings for the case of State Space I.
Figure 6: This figure presents several exact trajectories for the case of State Space I and where countries start trading inside the FPE set and above the steady state (region B). Consider any initial condition (circles) above trajectory $p$. Factor prices equalize and countries produce positive amount of both tradable goods along the transition path. Countries reach a steady state (stars) strictly inside the FPE set. Now consider trajectory $p$. In this case, countries start trading inside the FPE set but converge to a steady state at the lower boundary of the FPE set. At the boundary, factor prices are equal but south specializes in the production of the labor intensive good. Therefore, during the transition to the steady state, south changes the pattern of specialization from diversified to fully specialized in the production of the good that it has a comparative advantage.
Figure 6 and 7 present exact trajectories starting from region B and B’ respectively. These are initial conditions (circles) in which both countries start above their steady state and inside the cone of diversification. The slope at which they reach the steady state (stars) is larger than the slope of the lower boundary of FPE set as was proven in Lemma 2. Since they are converging from above we could have some trajectories leaving the FPE set. In particular, from Lemma 1 we know that trajectories that have initial condition at the lower bound of the set leave it.

There is one trajectory of particular interest to us, the darker one labeled \( p \) in both figures 6 and 7. This trajectory has the property that it converges to a steady state at the lower boundary of the FPE set. This is a specialized steady state which in the case of figure 6 it has the labor intensive country specialized and in the case of figure 7 it has the capital intensive country specialized. The slope at which it reaches the steady state is given by \( \psi'_{k^*}\left(k^{N^*}\right) \) evaluated at \( \tilde{\lambda}, \tilde{\varpi} \) and \( \alpha \). The next Lemma will argue that any initial condition in region B (B’) between \( p \) and the lower boundary of the FPE set must leave the set in finite time.

**Lemma 3** Trajectories with initial conditions belonging to region B (B’) below (above) \( p \) leave (stay in) region B (B’) in finite time.

**Proof.** Trajectories cannot cross each other. Since \( p \) is a trajectory that converges to a steady state at the lower bound of the FPE set, any trajectory below \( p \) must leave the set in finite time, unless they converge to the same steady state as \( p \). However, from Proposition 1, every steady state reached from inside the FPE set is a function of initial conditions, therefore it cannot be the same steady state as the one \( p \) is heading if it always stays inside the FPE set. In this way, trajectories below \( p \) reach the lower bound in finite time. For instance, trajectories \( o \) in figure 5 and 6 have such property. From Lemma 1 we know that once the countries reach the lower bound of the FPE set in region B (B’), they leave the set. The proof for trajectories above \( p \) is analogous. Therefore, if countries start trading with relative factor endowments above the steady state and belonging to the FPE set, region B (B’), then depending on initial conditions there are two scenarios. Factor prices are equalized at time zero and remain equalized thereafter in which case both countries will be diversifying their production along the transition to the steady state. This will occur if, when countries start trading, their factor endowments belong to region B (B’) and above trajectory \( p \). Trajectory \( p \) is a special and interesting case because it is a trajectory in which countries remain diversified.
Figure 7: This figure presents several exact trajectories for State Space II and the case where countries start trading inside the FPE set and above the steady state (region B'). Consider any initial condition (circles) above trajectory $p$. Factor prices equalize and countries produce positive amount of both tradable goods along the transition path. Countries reach a steady state (stars) strictly inside the FPE set. Now consider trajectory $p$. In this case, countries start trading inside the FPE set but converge to a steady state at the lower boundary of the FPE set. At the boundary, factor prices are equal but north specializes in the production of the capital intensive good. Therefore, during the transition to the steady state, north changes the pattern of specialization from diversified to fully specialized.

during the transition but converge to a steady state in which at least on country is specialized.
The alternative scenario is that factor prices are equalized at time zero and both countries diversify their production but countries leave the FPE set in finite time. In the case of figure 5, the labor intensive country will end up specialized, and in the case of figure 6, the capital intensive country will end up specialized. Any combination of factor supplies below trajectory $p$ in the FPE set have this property\(^\text{12}\).

\(^\text{12}\)Note that it is possible to find a combination of parameter values in which the economies converge to a steady state in which both are specialized.
4 No Factor Price Equalization

In this subsection I will consider cases in which relative factor supplies from each country are considerably different from each other. In particular they are different enough such that factor prices are not equal and countries might specialize in the production of the good in which they are more abundant. Initial distribution of endowments such that they belong to regions C, D, E, F, C’D’ in the state space.

The next propositions show that when countries specialize there are a unique set of equilibrium prices. I will show this for the case in which south is relatively more labor abundant and specializes in the labor intensive good while north diversifies its production (region C D). The rest of the cases are analogous. The following conditions regarding relative factor supplies have to hold for this to be true:

\[ \frac{k^S(0)}{k^N(0)} < \frac{\theta_2 (1 - \gamma)}{\theta_2 (1 - \gamma) + 2 (\gamma - \theta_2)} \]  

I will assume that (30) holds. In this way, when countries start trading north will produce both of the intermediate goods and export the capital intensive good, while south will only produce and export the labor intensive intermediate good and import the capital intensive good. The problem of the agent in south has three binding constraints which imply:

\[ k^S_1 = 0, l^S_1 = 0, y^S_1 = 0 \]

First I will show that for a given supply of factors satisfying (30) there is a unique equilibrium set of prices and factor prices for each country. Factor prices will not be equal and one of the countries will specialize. From the solution of the household-firm subproblem in each country and imposing trade balance, the set of prices in the world solve the following system of equations:
\[ \phi_L^N = \phi_K^N k^N \left( \frac{1 - \gamma}{\gamma} \right) + \phi_S^S k^S \left( \frac{\theta_2 - \theta_1}{\theta_2} \right) \] (31)

\[ \phi_L^S = \phi_K^S k^S \left( \frac{1 - \theta_2}{\theta_2} \right) \] (32)

\[ p_1 = \frac{(\phi_K^N)^{\theta_1} (\phi_L^N)^{1-\theta_1}}{\Gamma(\theta_1)} \] (33)

\[ p_2 = \frac{(\phi_K^S)^{\theta_2} (\phi_L^N)^{1-\theta_2}}{\Gamma(\theta_2)} = \frac{(\phi_K^S)^{\theta_2} (\phi_L^S)^{1-\theta_2}}{\Gamma(\theta_2)} \] (34)

\[ 1 = \frac{p_1^{1-\gamma} p_2^{1-\gamma}}{\Gamma(\gamma)} \] (35)

We can express all of the equilibrium prices as a function of one of the prices, say wages in north (\( \phi_L^N \)). Then prices are determined uniquely by solving:

\[ \phi_K^N = \Psi^\frac{1}{\gamma} \left( \phi_L^N \right)^{\frac{\gamma-1}{\gamma}} \] (36)

\[ \phi_K^S = \frac{\theta_2}{\Gamma(\theta_2)} \Psi^\frac{\theta_2}{\gamma} \left( \phi_L^N \right)^{\frac{\gamma-\theta_2}{\gamma}} (k^S)^{\theta_2-1} \] (37)

\[ p_1 = \frac{\Psi^\frac{\theta_1}{\gamma}}{\Gamma(\theta_1)} \left( \phi_L^N \right)^{\frac{\gamma-\theta_1}{\gamma}} \] (38)

\[ p_2 = \frac{\Psi^\frac{\theta_2}{\gamma}}{\Gamma(\theta_2)} \left( \phi_L^N \right)^{\frac{\gamma-\theta_2}{\gamma}} \] (39)

\[ \phi_L^S = \frac{(1 - \theta_2)}{\Gamma(\theta_2)} \Psi^\frac{\theta_2}{\gamma} \left( \phi_L^N \right)^{\frac{\gamma-\theta_2}{\gamma}} (k^S)^{\theta_2} \] (40)

\[ (\phi_L^N)^{\frac{1}{\gamma}} = k^N \left( \frac{1 - \gamma}{\gamma} \right) \Psi^\frac{1}{\gamma} - \Psi^\frac{\theta_2}{\gamma} \left( \phi_L^N \right)^{\frac{1-\theta_2}{\gamma}} (k^S)^{\theta_2} \left( \frac{\gamma}{\gamma} \right) \left( \frac{\theta_1 - \theta_2}{\Gamma(\theta_2)} \right) \] (41)

At each \( t \), given a supply of factors in the world \( (k^N, k^S) \) we can use these system to solve for the six unknown prices, \( \{ \phi_K^N, \phi_K^S, \phi_L^N, \phi_L^S, p_1, p_2 \} \). In particular, if we show that there is a unique \( \phi_L^N > 0 \) that solves (41), then with \( \phi_L^N \) together with \( (k^N, k^S) \) we can solve for the rest of the prices using (36 – 40).

**Proposition 3** For any positive \( k^N, k^S \in \text{regions C,D} \) there exists a unique \( \phi_L^N > 0 \) that satisfies (41).

The proof is straightforward so I omit it. Note that these are simply two continuos functions crossing only once. The same result holds for the case in which factor supplies
belong to region C'D', E and F.

I will now consider a particular case in which factor endowments belong to the boundary of the FPE set. At the boundary south will still be specialized in the production of the labor intensive good, but factor prices will be equal.

**Proposition 4** If factor endowments are at the boundary of the FPE set (initial conditions on the ray dividing regions A and B from regions C and D in figure 1), south produces only the labor intensive good and factor prices are equal.

**Proof.** South at the bound implies that $k^S = \frac{\theta_2}{1-\theta_2} \frac{1-\tilde{\gamma}}{\tilde{\gamma}} \frac{k^S + k^N}{2}$. I will show that if this holds then the system of equations (36 – 41) has a unique solution with FPE. By Proposition 3 there is a unique set of equilibrium prices that solve the system of equations. Hence, if we find a set of prices that solve the system of equations (36 – 41) and those prices satisfy FPE these will be the only equilibrium prices. Therefore, I test if prices that satisfy FPE solve the equations.

Suppose factor prices are equal, then note that (32) implies that $\frac{\phi_L}{\phi_K} = k^S \frac{1-\theta_2}{\theta_2} = \frac{1-\tilde{\gamma}}{\tilde{\gamma}} \frac{k^S + k^N}{2}$.

Then from (31) using (32):

$$\frac{\phi_L}{\phi_K} = \left( 1 - \frac{\tilde{\gamma}}{\tilde{\gamma}} \right) k^N \frac{\tilde{\gamma}}{\tilde{\gamma}} \frac{(1-\theta_2)}{(1-\theta_2) + (\tilde{\gamma} - \theta_2)}$$

But note that $k^S = \frac{\theta_2}{1-\theta_2} \frac{1-\tilde{\gamma}}{\tilde{\gamma}} \frac{k^S + k^N}{2}$ implies that $\frac{k^S + k^N}{2} = k^N \left( \frac{\tilde{\gamma}(1-\theta_2)}{(\tilde{\gamma}(1-\theta_2) + (\tilde{\gamma} - \theta_2)} \right)$, therefore factor prices being equal is an equilibrium if factor supplies belong to the FPE set. ■

An analogous proposition to Proposition 4 can be probed for the case in which factor endowments belong to the ray dividing regions A’ and B’ from regions E in figure 2. In that case, north produces only the capital intensive good, south diversifies and factor prices are equal.

I will now focus on the dynamics of the model when countries start trading outside the FPE set.
4.1 Dynamics

The laws of motion governing transition for both countries are:

\[
\begin{align*}
\dot{c}^N &= (G_{KN} (k^N; p) - (\rho + \delta)) c^N \tag{42} \\
\dot{c}^S &= (G_{KS} (k^S; p) - (\rho + \delta)) c^S \tag{43} \\
\dot{k}^N &= (G_{kN} (k^N; p) - \delta) k^N + G_{LN} (k^N; p) - c^N \tag{44} \\
\dot{k}^S &= (G_{kS} (k^S; p) - \delta) k^S + G_{LS} (k^S; p) - c^S \tag{45}
\end{align*}
\]

When countries start trading with factor supplies considerably different from each other factor prices will not be equal. However, will it be the case that FPE might hold in the future? If so, is it during the transition or at the steady state? In order to answer these questions we can not rule out the possibility that during the transition there might be cases in which \( G_{KN} \neq G_{KS} \) and \( G_{LN} \neq G_{LS} \), and cases in which they are equal. In this case, there is no closed form solution for prices as was the case when countries were diversifying their production. However, we can solve for world prices at each \( t \), using (36 – 41) for the case in which factor supplies belong to C, D or C’D\(^\text{13}\).

4.2 Specialized steady states

To determine how the economies behave after they start trading outside of the FPE set, the system (42 – 45) has to be analyzed. Before considering the dynamics let us determine the steady state of the system. From the laws of motion of the state and co-state variables, we can solve for the steady state of this economy \( \{r^N, r^S, w^N, w^S, k^N, k^S, c^N, c^S\} \). Note that solving for a steady state of this system is solving for two type of steady states, one in which south is specialized and north is diversified, hence I will label this steady state as the S-specialized steady state, and one in which north is specialized and south is diversified\(^\text{14}\):

\[ k^N = \left( \frac{(1-\gamma)(1-\rho_2)\gamma(\theta_2)^{1-\gamma}(1-\theta_1)\gamma^2}{\rho + \delta} \right)^{1-\gamma} \quad \text{and} \quad k^S = \left( \frac{(1-\gamma)(1-\rho_2)\gamma(\theta_1)^{1-\gamma}(1-\theta_2)\gamma^2}{\rho + \delta} \right)^{1-\gamma} \]

\(^\text{13}\)Analogous conditions to solve for prices can be found for the case in which factor endowments belong to regions E and F. Oslington and Towers (2009) describe the conditions for a Cobb Douglas case like the one in this paper.

\(^\text{14}\)There can also be a steady state in which both countries specialize, however unless we assume that \( \frac{\gamma}{\rho_2} = \frac{c^N}{k^N} \) it is strictly inside the FPE set, therefore countries will never reach that steady state. The steady state in which both countries are specialized is given by \( k^N = \left( \frac{(1-\gamma)(1-\rho_2)^{1-\gamma}(\theta_1)^{1-\gamma}(1-\theta_2)^{1-\gamma}(1-\theta_1)^{1-\gamma}}{\rho + \delta} \right)^{1-\gamma} \) and \( k^S = \left( \frac{(1-\gamma)(1-\rho_2)^{1-\gamma}(\theta_2)^{1-\gamma}(1-\theta_1)^{1-\gamma}(1-\theta_2)^{1-\gamma}}{\rho + \delta} \right)^{1-\gamma} \). Note that by assuming that set of parameters, the N-specialized and the S-
Definition 1 (S-specialized steady state)

\[ k^{N*} = \left( \frac{\gamma (1 - \theta_2) + \gamma (\theta_1 - \theta_2)}{(1 - \gamma) (1 - \theta_2)} \right) \left( \frac{\Psi}{\rho + \delta} \right)^{\frac{1}{1 - \gamma}} \]  
(46)

\[ k^{S*} = \left( \frac{\theta_2}{1 - \theta_2} \right) \left( \frac{\Psi}{\rho + \delta} \right)^{\frac{1}{1 - \gamma}} \]  
(47)

Definition 2 (N-specialized steady state)

\[ k^{N*} = \left( \frac{\theta_1}{1 - \theta_1} \right) \left( \frac{\Psi}{\rho + \delta} \right)^{\frac{1}{1 - \gamma}} \]  
(48)

\[ k^{S*} = \left( \frac{\gamma (1 - \theta_1) - (1 - \gamma) (\theta_1 - \theta_2)}{(1 - \gamma) (1 - \theta_1)} \right) \left( \frac{\Psi}{\rho + \delta} \right)^{\frac{1}{1 - \gamma}} \]  
(49)

Note that in both steady states, the world consumption and capital are the same as before, (23) and (24). Another important observation is that the steady states do not depend on initial conditions, this is a key difference compared to the case I discussed before in which the steady state is a function of the initial conditions. In figure 2, the S-specialized steady state is given by the intersection of regions A, B, C and D. In figure 3 the N-specialized steady state is given by the intersection of regions A', B' and E. Note that if initial conditions are such that they belong to State Space I then either countries converge to a steady state in the FPE set or the S-specialized steady, while if initial conditions belong to State Space II then countries converge to a steady state inside the FPE set or the N-specialized steady state.

In order to understand what happens in the transition we need to evaluate the stability of the system of differential equations that describes the evolution of the economy. By linearizing the system in the neighborhood of the steady state one can show that the system is saddle path stable. There are two negative roots and the eigenvectors associated with these roots determine the slope at which the trajectories approach the steady state. To understand this, the eigenvectors are tangent to the stable manifolds of the nonlinear system at the steady state, and the eigenvalues are used to distinguish stable from unstable manifolds. Stable manifolds are the ones associated with the negative eigenvalues. Let us label the roots in ascending order as \( \psi_1, \psi_2, \psi_3 \) and \( \psi_4 \) where the first two are the stable ones. The solution to the differential equations takes the form \( y(t) = \sum_i^2 \omega_i e^{\psi_i t} \) where \( \omega_i \) is determined from specialized steady states will be equal.
boundary conditions. There are two paths that can lead us to the steady state and I label them pike and backroad\(^\text{15}\). Pike is the one associated with the less negative root \((\psi_2)\) and backroad with the most negative root \((\psi_1)\). Convergence through the pike is slower than through the backroad and the path of adjustment of capital stocks are toward the pike since as \(t \to \infty\) the eigenvalue that dominates the system is \(\psi_2\). Note that the solution to the differential equations are linear combinations of both where the relative weight placed on each of them depends on initial conditions. In State Space I, figure 2, the backroad is the ray dividing region C from region D.

We can solve for the slope of the pike as a function of the eigenvalue and it is given by the following expression:

\[
S(\psi_2) = \frac{(\psi_2)^2 - f\psi_2 + a}{\psi_2g - b}
\]

where \(a, b, f\) and \(g\) are constants from the quartic equation \((50)\)\(^\text{16}\). As opposed to the cases considered inside the FPE set, the slope of the saddle path is unique and is not a function of initial conditions. Another important observation is that all trajectories starting outside the FPE set and heading to the steady state should reach the steady state with this slope. Trajectories heading through the backroad need to start on the backroad to converge to the steady state, otherwise they will take the pike. Note that it can happen that trajectories heading to the steady state can reach the FPE set before they reach the pike. This could happen if the lower boundary of the set is reached. Once the countries reach the FPE set, depending on whether they reach region A or B (A’ or B’), we know that we converge strictly inside the FPE set or return back to a region outside of the FPE set. In light of this, it becomes important to compare the slope of the lower bound of the FPE set and the slope of the pike. If the slope of the pike is lower than the slope of the FPE set, then depending on initial conditions the FPE set might be reached in finite time or not. For instance, if the economies start trading in region D the FPE set is reached in finite time. After countries reach the FPE set, the system governing the transition is the one inside of the FPE set (region A) and countries converge to a steady state strictly inside the set. On the other hand, if the economies start trading in region C, then the FPE set will be reached only at the steady state.

\(^{15}\)The names come from Stokey (1998). Pike is the slowest trajectory while Backroad is the fastest one.

\(^{16}\)Note that the slope of the pike is different in regions C, D compared to region E. The eigenvalues and the parameters of the quartic equation are different in both cases. I find that in both cases there are two negative eigenvalues. Therefore, the arguments I am making here holds for regions C, D and E.
These findings have different implications over the pattern of specialization and factor prices. I will prove that the slope of the pike is lower than the FPE set.

In order to prove this, it is necessary to compute the eigenvectors associated with the negative eigenvalues, in particular the slope of the pike and compare it to the slope of the FPE set. Given the restriction over parameters in the model, I will show that it is not possible for the slope of the pike to be higher than the slope of the FPE set. If this is the case, then from region D the FPE set is reached in finite time and if the initial conditions belong to region C, then the economies converge to a steady state in which factor prices equalize, but on the boundary of the FPE set, corresponding to the S-specialized steady state.

Proposition 5 The slope of the pike is lower than the slope of the lower bound of the FPE set.

Proof. Let us label the roots in ascending order as \( \psi_1, \psi_2, \psi_3 \) and \( \psi_4 \) where the first two are the stable ones. In order to solve for these roots it is necessary to solve a quartic equation. In particular note that the quartic is given by:

\[
Q(x) = x^4 - (f + j)x^3 + (a + d - gh + fj)x^2 + (bh + cg - df - aj)x + (ad - bc) \tag{50}
\]

where the constants \( a, b, c, d, f, g, h, j \) come from the fundamental equation and are found by linearizing the system of four differential equations around the S-specialized steady state. Note that \( \lim_{x \to \infty} Q(x) = \infty \) and \( \lim_{x \to -\infty} Q(x) = \infty \). Then for \( x \in (\psi_2, \psi_3) \), \( Q(x) > 0 \).

The slope of the lower boundary of the FPE set is given by:

\[
\kappa \equiv \frac{\theta_2 (1 - \hat{\gamma})}{\theta_2 (1 - \hat{\gamma}) + 2 (\hat{\gamma} - \theta_2)}
\]

We want to show that

\[
S(\psi_2) < \kappa
\]

First note that the slope of the pike is increasing in \( \psi_2 \)

\[
S'(\psi_2) = \frac{(\psi_2)^2 g + (b - a) g}{(\psi_2 g - b)^2} > 0
\]

\(^{17}\)I prove this result for the case in which countries approach the steady state from region C, D. The case in which countries reach the steady state from region E is analogous.
since $a < 0, g > 0$ and $b > 0$ (this is not hard to show) $S'(\psi_2) > 0$. Now, let $\psi^*$ be the value such that $S(\psi^*) = \kappa$, note that if $\psi^* > 0$ then we are done since the slope is increasing in $\psi$ and hence $S(\psi_2) < S(\psi^*) = \kappa$. However, $\psi^*$ takes two values and one is $\psi^* < 0$. Note that $Q(\psi^*) > 0$. But this implies that either $\psi^* < \psi_1$ or $\psi^* > \psi_2$. The quartic has three inflexion points that solve $Q'(x) = 0$. Note that $Q(x) = 4x^3 - 3(f + j)x^2 + 2(a + d - gh + fj)x + (bh + cg - df - aj)$ and by Vieta’s theorem the product of the roots of the cubic have the sign of $-(bh + cg - df - aj)/4$ which is negative since $h > 0, f > 0, j > 0, d < 0$, and $c > 0$. Therefore either all the roots are negative, which cannot be the case since two roots of the quartic are positive, or only one root is negative. This means that there is only one inflexion and it is located between $\psi_1$ and $\psi_2$. Hence, since $Q(\psi^*)' > 0$ then $S(\psi_2) < S(\psi^*) = \kappa$.

Since the slope of the pike is lower than the slope of the lower bound of the FPE set and since both lines cross at the steady state, then trajectories heading to the steady state from region D will reach the lower bound of the FPE set before they reach the pike, therefore suggesting that they cross to region A.

Figure 8 presents these findings. The dash rays are the slope of the Pike and the slope of the Backroad. The darker ray is the lower boundary of the FPE set. As you can see, the Pike and the lower boundary of the FPE set cross at the S specialized steady state. For values of relative factor supplies below the steady state, the Pike belongs to region A and for values of relative factor supplies above the steady state the Pike belongs to region C. This is because the slope of the Pike is lower than the slope of the lower boundary of the FPE set as was shown in Proposition 5. Several exact trajectories are presented in the figure as well. It is evident that trajectories that start in region D cannot cross the Backroad and will reach the lower boundary of the cone of diversification in finite time. After they reach the lower boundary of the FPE set, from Lemma 1 we know that the economies converge strictly inside of the set, hence region A. The economies will converge to a steady state strictly inside of the FPE set and this steady state will be a function of initial conditions. In particular, it will be a function of the relative factor supplies between the countries that they had at the moment they reached the lower boundary of the set. The theory predicts that if at the timing in which the economies open to trade, and provided the factor supplies belong to region D, south specializes in the production of the labor intensive good while north will diversify its production. The reason is that south has a cost disadvantage to produce the
Figure 8: This figure presents sample paths for countries that start trading without FPE. Consider any initial condition in region C. In region C, south specializes in the production of the labor intensive good and north diversifies. Note that north is above its steady state while south is below. The figure shows that during the transition to the steady state south overshoots its long run steady state. It remains specialized during the transition and at the steady state (never leaves region C). During the transition factor prices are not equal and in the long run there is a tendency towards factor price equalization. Note that trajectories that start in C reach the pike before they reach the FPE set. Consider now initial conditions to the left of the backroad (region D). Countries start trading below the steady state. South produces only the labor intensive good, while north diversifies. In finite time south diversifies its production (when the trajectories cross to region A) and there is factor price equalization (they reach the FPE set before they reach the pike).

capital intensive good and it is optimal to import these goods from north and employ all of its factors in the labor intensive industry. However, the dynamics of the model predict that south will start producing the capital intensive good, overcoming the cost disadvantage by accumulating enough capital during the transition. If there were restrictions from opening the capital sector at south, then the economies will converge to the S-specialized steady state, but since there are no restrictions they will converge to a steady state strictly inside the FPE set.

Now lets consider what happens with trajectories starting in region C. As was shown, trajectories are converging to the S-specialized steady state through the Pike. Trajectories that start below the Pike will head towards it from below as it is shown in the picture. These trajectories will not cross the FPE set since the Pike is reached before that. Factor prices will
be equalized but at the S-specialized steady state. Therefore, the theory predicts that when countries start trading and factor supplies belong to region C, south will remain specialized forever. The figure presents several of those trajectories.

Figure 9 presents the findings for State Space II. As before, the dash rays are the slope of the Pike and the slope of the Backroad. The darker ray is the lower boundary of the FPE set. As you can see, the Pike and the lower boundary of the FPE set cross at the N specialized steady state in this case. As in the case in Figure 8, it is evident that the slope of the pike is lower than the slope of the lower bound of the FPE set. In this case, the slope of the pike changes sign compared to the case before. This has considerable implications over the dynamics. For instance, in figure 8 in order to approach to the S-specialized steady state initial conditions have to be to the right of the backroad. These initial conditions implied that both countries had to be above their steady state levels. In that case also, since the slope of the pike was positive, during the transition to the steady state, south overshoots its steady state. In figure 9 this is different. Initial conditions between the backroad and the pike can be bellow the steady state and it is not south that overshoots, it is north.

Another crucial difference in the case of figure 9 is that during the transition to the steady state there are several changes in the pattern of specialization. Consider initial conditions between the backroad and the pike starting in region C',D'. Countries start trading with very different factor endowments. South has a cost advantage in the production of labor intensive goods and specializes its production while north diversifies. As countries start accumulating factors the comparative advantage changes and countries enter to region F where both countries specialize, south in labor intensive goods and north in capital intensive\textsuperscript{18}. During the period in which countries belong to region F we can observe that south is accumulating faster capital than north. This eventually will result in south changing its comparative advantage again and both economies enter region E where south is diversified and north specialized. Then the economies move in the direction of the pike and converge to the N specialized steady state. Similar patterns will arise for trajectories starting to the left of the backroad, however, they will reach region A' in finite time. Then, factor prices will be equal and both countries are producing both goods. Eventually they reach a steady state strictly inside the FPE set.

\textsuperscript{18}When both countries are specialized factor prices have a closed form solution making it easy to determine the stability of the system of 4 differential equations.
Figure 9: The figure presents sample trajectories for State Space II for the cases where countries start trading outside the FPE set and at least one country is fully specialized. As we can see, there are no monotonic changes in the pattern of specialization. Consider initial condition "s" in the figure where south is far away from the steady state and north is close it its steady state. Countries start in region C'D' where south specializes in the production of the labor intensive good and north diversifies. As countries develop, south accumulates capital faster than in north (note that the slope of the trajectory is very steep). Eventually countries reach region F where both are specialized. Note that during this transition south is the country that accumulated more capital. As they develop, countries eventually reach region E, where north remains specialized and south diversifies. Note that when this happens, north overshoots its long run steady state converging to it from above. It is also important to note in this picture how the slopes of the pike and the backroad changed compared to the case of State Space I.
Figure 10: The figure presents sample trajectories in State Space I for the case in which countries leave the FPE set in finite time. Consider a trajectory like "o". Countries start trading with FPE and both countries produce positive amounts of both goods. As they develop we observe that south will find cost advantageous to specialize in the production of the labor intensive good. This happens when countries leave the FPE set in the figure and they move to region C. After that, countries converge to a steady state where south remains specialized (Specialized Steady state in the picture). There is a tendency towards FPE at the steady state. During the transition factor prices were equal initially, then not.

What remains is to characterize the area between the Pike and the lower boundary of the FPE set. Initial conditions starting there will converge to the specialized steady state from above the Pike.

Figure 10 presents trajectories between regions B and C. Recall that the lower boundary of the FPE set separates both regions. I also present the Pike, Backroad and the lower boundary of the FPE set. In region C, the system of differential equations converges to the specialized steady state through the Pike. In the figure we can see that trajectories that start in region C below the Pike converge from below the Pike, and trajectories that initiate between the lower boundary of the FPE set and the Pike converge from above the Pike. For instance, m is one of those trajectories. Trajectories cannot cross the pike and will not reach

\footnote{A similar figure can be presented for the case in which countries leave region B' and move to region F. The prove is the same as the one presented here, that is why I omit it.}
the lower bound of the FPE set. I also present several trajectories with initial conditions inside the FPE set, region B. For instance, \( p \) and \( o \), which where characterized earlier, appear in the picture. Recall that \( p \) is the trajectory that heads to the specialized steady state from inside the region B. From Lemma 3 we know that if initial conditions are above \( p \) then countries stay in region B, while if they are below \( p \), they reach the cone in finite time. From Lemma 1 we know that once the countries reach the lower bound of the FPE set in region B, they leave the set. What is left is to characterize where these trajectories, that will leave the FPE set, are heading.

**Lemma 4** Trajectories with initial conditions belonging to the region \( B \) \( (B') \) below \( p \) leave the FPE set in finite time and converge to the specialized steady state through the pike from region \( C \) \( (F) \).

**Proof.** The first part of the Lemma, that trajectories leave the FPE set, follows from Lemma 3 and Lemma 1. That trajectories converge to the specialized steady state follows from the dynamics inside region C. We know that the system is stable and that from any initial condition in region C countries converge to the specialized steady state through the Pike.  

5 Phase Diagram

For completeness figures 11 and 12 present the Phase diagram with trajectories starting from several points of the state space. Moreover, I also consider cases in which \( k^S(0) > k^N(0) \) allowing me to characterize the entire state space. The 45 degree line corresponds to the case in which \( k^S(0) = k^N(0) \). As was shown before, countries remain on that ray if they start there. The red line corresponds to the set of steady states in the model. In all of them factor prices are equalized. In two steady states one of the countries is diversified, these are label by specialized steady state S-N and N-S in the figure. In the rest of the steady states, the countries diversify their production. I label things such that S-N refers to the cases in which \( k^S(0) < k^N(0) \) and N-S to the case in which \( k^S(0) > k^N(0) \). I also present the Backroad and the Pike for each of these two cases.
Figure 11: The figure presents the complete phase diagram for State Space I for any initial condition. The arrows indicate the directions of the trajectories. The complete set of steady states are presented including the autarky steady state.
Figure 12: The figure presents the complete phase diagram for State Space II for any initial condition. The arrows indicate the directions of the trajectories. The complete set of steady states are presented including the autarky steady state.
6 Conclusion

One of the most important theorems in international trade is the factor price equalization (FPE) theorem. It states that under certain conditions free trade in goods must lead to complete FPE. Although this hypothesis seems general, it applies to a static setup in which countries open up to trade at a given moment in time, and only if certain conditions are met do factor prices equalize. However, will this result hold in the long run? That is, does FPE at a given moment in time imply FPE forever? What are the set of factor supplies such that factor prices will be equal in a dynamic model? More important, if we observe countries trading and factor prices are not equal, will it be the case that they will eventually be equalized in finite time?

Using a standard two-(large-)country, two-factor model in which I allow free trade in two intermediate goods, I was able to characterize the set of steady states in which FPE holds. These, as we saw, depend on initial conditions of the wealth distribution across countries. I showed that for a given initial condition there is a unique steady state and characterized the restrictions on the initial conditions such that factor prices will be equalized in finite time. I showed that the system is stable and that the steady state is unique for a given initial value of the aggregate country endowments. More important, I showed that when countries start outside the FPE set they converge asymptotically to the FPE set. I were able to characterize the set of factor supplies such that the FPE set is reached in finite time.

In the static model Samuelson predicted that if countries have factor supplies not so different from each other (such that they belong to the FPE set), then factor prices will be equalized. I found that neither starting to trade inside the FPE set nor starting to trade outside the FPE set can guarantee that factor prices are equal between countries in finite time. I showed that there is a set of factor supplies such that if countries start trading with factor supplies belonging to this set, then factor prices will be equalized in finite time. I also showed that there is a set of factor supplies inside the FPE set in which factor prices will diverge in finite time between the countries.

The main message of this paper is that while a small country can grow without the retarding force of a terms-of-trade deterioration, a large country could suffer a terms-of-trade deterioration and might want to “push” itself into the diversified cone where the terms-of-trade
effect is favorable with incentives to accumulate capital.

Methodologically, the paper also contributes to the literature by providing closed-form solutions to the model and showing that it is tractable and stable. Several applications can be considered. For instance, the model can be reinterpreted as a closed economy with two agents with different initial wealth distributions. One could characterize how the distribution of income evolves over time and how it might be affected by different policies (consumption tax, labor tax or income tax). Alternatively, one could evaluate the implications that opening to trade could have for the wage premium over time. This could be done by relabeling capital as skilled labor and labor as raw labor, and then rental prices would be the corresponding wages. In the model it is possible to rationalize why we could apparently observe inequality increasing in both countries during the process of development.

Another possible extension could be to incorporate start-up and closing costs to different industries. In the model, there are no costs associated with starting a new industry or closing an entire sector of production. Introducing these costs would have effects on the development of the economies, the terms of trade, factor prices and the long-run equilibrium. Also, one could apply the model to understand the role of trade on structural transformation. As we saw, the timing in which countries start trading can have a considerable impact on the pattern of specialization.
References


