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1 Proof of Lemma 4

Lemma 4. EΠD
1 (d) is monotonically decreasing in d ∈ [d, 1] when k > k∗.

Proof. Knowing from the main analysis that eD1 (d) =
(
kπDf (d)

) 1+k
2 (

(1− k) ũD (d)
) 1−k

2 · π
D
1 (d)

πDf (d)

and σTD (d) =
(
k
(
πDf (d)

))k (
(1− k) ũD (d)

)1−k, we specify the expected payoff under duopoly

EΠD
1 (d) = σTD (d)πD1 (d)− 1

2

(
eD1 (d)

)2
=
(
kπDf (d)

)k (
(1− k) ũD (d)

)1−k
πD1 (d)

(
1− k

2
πD1 (d)

πDf (d)

)
. Be-

cause EΠD
1 (d) > 0, the sign of ∂EΠ1

∂d is equivalent to that of its log-transformation, which is
∂ logEΠD1

∂d = (1−k)
ũD

∂ũD

∂d + k
πD1 +πD2

∂(πD1 +πD2 )
∂d + 1

πD1

∂πD1
∂d +

k
2

1− k
2

πD1
πD1 +πD2

∂
∂d

(
− πD1
πD1 +πD2

)
. We further reduce

the above formula to ∂ logEΠD1
∂d = Ψ ·G(k, d), where m̃ = (1− d)m and

Ψ =
4m[

(2m̃+ 3t)
(
4(4− k)m̃2 − 12km̃t+ 9(4− k)t2

)
×
(
4m̃2 + 9t2

) (
4m̃2 − 36m̃t+ 9t(8v − 5t)

) ]

G(k, d) = k29t (2m̃+ 3t)3 (9t2 + 4m̃ (m̃+ 3t− 4v)
)
− 32

(
4m̃2 + 9t2

)2 (
m̃2 − 6m̃t+ 9t(v − t)

)
+

k (2m̃+ 3t)
(
32m̃2

(
2m̃3 + 9t

(
5
6m̃

2 + 2m̃ (2t− 3v)− 3t2
))

+ 81t3 (4m̃ (t− 12v)− 3t (25t− 16v))
)

It is straight that Ψ is positive because 4(4 − k)m̃2 − 12km̃t + 9(4 − k)t2 > 4m̃2 − 12m̃t + 9t2 =

(2m̃ − 3t)2 > 0 and 4m̃2 − 36m̃t + 9t(8v − 5t) = ũD · 72t > 0 (from the proof of Lemma 1). So

sgn
[
∂ logEΠD1

∂d

]
= sgn [G (d, k)] . As long as G (k, d) ≤ 0 for all d ∈ [d, 1], EΠD

1 (d) monotonically

(weakly) decreases in d ∈ [d, 1].

Our task is to find k such that G (k, d) ≤ 0 holds for all d ∈ [d, 1]. Notice that given d,

G (k, d) is a convex and quadratic function of k and G (k = 1, d) = −6
(
16m̃4 + 48m̃2t2 + 27t4

)
×(

4m̃2 − 36m̃t+ 9t(8v − 5t)
)
< 0. So there exist two roots k1 (d) and k2 (d) such that G (k1, d) =

G(k2, d) = 0, where k1 < 1 < k2. And the convexity implies that G (k, d) ≤ 0⇔ k ≥ k1 (d). To have

G (k, d) ≤ 0 for every d ∈ [d, 1], k should be greater than k1 (d) for every d, i.e., k ≥ maxd∈[d,1] k1 (d).

We proceed to find maxd k1 (d). We break down into two cases: the first case is G (k = 0, d) ≤
0 for every d ∈ [d, 1], which means k1 (d) ≤ 0 always holds; whereas the second case pertains

G (k = 0, d) > 0 for some d, which means k1 (d) > 0 can happen.

In the first case, as k ≥ 0 ≥ maxd∈[d,1] k1 (d), G (k, d) ≤ 0 holds for all d and k. Thus, EΠD
1 (d)

is monotonically (weakly) decreasing in d ∈ [d, 1] under any k. Then Lemma 4 immediately follows.

This case happens when t ≤ 4v
7 because sgn [G (k = 0, d)] = sgn

[
9t (2t− v)− (3t− m̃ (d))2

]
and

9t (2t− v)− (3t− m̃ (d))2 ≤ 9t (2t− v)− (3t− m̃ (d))2 = 9
4 t(7t− 4v) ≤ 0, which reduces to t ≤ 4v

7 .

When t > 4v
7 , the second case arises such that k1 (d) > 0. To find the the value of maxd∈[d,1] k1 (d),

we show that k1 (d) strictly decreases in d ∈ [d, 1]. But we defer the proof in the next section. So

k1 (d) is maximized at d, which is k1 (d) = 4v−7t
3t−4v ≡ k. Hence, as long as k ≥ k ⇔ G (k, d) ≤ 0 holds
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for all d ∈ [d, 1], which means EΠD
1 is monotonically (weakly) decreasing in d ∈ [d, 1]. The last step

to get Lemma 4 is to verify k∗ > k when t > 4v
7 ⇔

v
t <

7
4 . We denote v

t as v
′ hereafter and note that

v
′ ∈

(
3
2 ,

7
4

)
. We prove k∗ > k for all v′ ∈

(
3
2 ,

7
4

)
by showing k∗

(
v
′
)
> k∗ (7/4) > k (3/2) > k

(
v
′
)
.

Recall k∗ =
(

ln
ũD(d)

ũM
−ln

πM1
πD1 (d)

)
/
(

ln
ũD(d)

ũM
+ln

πM1
πD1 (d)

)
= (ln(4 v

t
−5)−ln( vt−

1
2))/(ln(4 v

t
−5)+ln( vt−

1
2)) = −1 +

2/
(

1+ln

(
v
′
− 1

2

)
/ln
(
4v
′
−5

))
. We find k∗ decreases in v

′ because L ≡ ln
(
v
′− 1

2

)
/ln

(
4v
′−5

)
increases in v

′ .

To see this, we check the derivative w.r.t. v′ : ∂L
∂v′

=

(
v
′−5/4

)
ln
(

4v
′−5

)
−
(
v
′−1/2

)
ln
(
v
′−1/2

)
(v′−5/4)(v′−1/2)(ln(4v′−5))

2 . Due to the

positivity of the denominator, ∂L
∂v
′ > 0 ⇔

(
v
′ − 5/4

)
ln
(

4v
′ − 5

)
>
(
v
′ − 1/2

)
ln
(
v
′ − 1/2

)
. It is

straightforward to check the both sides of the above inequality are increasing in v′ and LHS ≥ RHS
holds at the two extremes v′ = 3/2 and v

′
= 7/4. So ∂L

∂v′
> 0, and k∗ decreases in v

′ . Then

k∗
(
v
′
)
> k∗ (7/4) = ln 8

5/ln 5
2
. Also notice that k = 4v−7t

3t−4v =
1− 4

7
v
′

4
7
v′− 3

7

monotonically decreases in v
′ .

So k
(
v
′
)
< k (3/2) = 1/3. Hence, k∗ > ln 8

5/ln 5
2
> 1/3 > k. Then we can conclude EΠD

1 (d) indeed

monotonically decreases in d ∈ [d, 1] when k > k∗.
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2 Proof of Lemma 5

Lemma 5. When t > 4v
7 , k1 (d) is strictly decreasing in d ∈ [d, 1]. Moreover, k1 (d) = k ∈ (0, 1)

and k1 (1) < 0.

Proof. We suppress functionG asA1k
2+A2k+A3, whereA1 = 9t (2m̃+ 3t)3 (9t2 + 4m̃ (m̃+ 3t− 4v)

)
,

A2 = (2m̃+ 3t)
(
32m̃2

(
2m̃3 + 9t

(
5
6m̃

2 + 2m̃ (2t− 3v)− 3t2
))

+ 81t3 (4m̃ (t− 12v)− 3t (25t− 16v))
)
,

andA3 = −32
(
4m̃2 + 9t2

)2 (
m̃2 − 6m̃t+ 9t(v − t)

)
. Simply, k1 (d) = −A2/(2A1)−

√
(A2/(2A1))2 − A3/A1.

We examine how A1, A2, and A3 changes with d when t > 4v
7 . First, ∂A1

∂d = 18mt(2m̃ + 3t)2 ·
a1 (m̃), where a1 (m̃) ≡ 20m̃2 + 4m̃(15t−16v)−9t2−24tv . Notice that a1 increases in m̃ ∈

[
0, 3t

2

]
,

∂A1
∂d ≤ 18mt(2m̃ + 3t)2 · a1

(
3t
2

)
= 18mt(2m̃ + 3t)2 · 6t (21t− 20v), which is negative under the

assumption v > 3t
2 . So A1 strictly decreases in d ∈ [d, 1].

Second, ∂A2
∂d = 27t2

(
32m̃2(3v − t) + 24m̃t(t+ 4v) + 3t2(23t+ 8v)

)
+ 96mm̃3 · a2 (m̃), where

a2 (m̃) = −8m̃2 − 35m̃t + 18t (8v − 7t). The first argument is obviously positive. We examine

the second argument. As a2 (m̃) decreases in m̃ ∈
[
0, 3t

2

]
, 96mm̃3 · a2 (m̃) ≥ 96mm̃3 · a2

(
3t
2

)
=

96mm̃3 · 3
2 t(96v − 131t) > 0 under the assumption v > 3t

2 . Hence,
∂A2
∂d > 0.

Lastly, ∂A3
∂d = 64m

(
4m̃2 + 9t2

) (
12m̃2

(
m̃− 3t

2

)
+ 3t · a3 (m̃)

)
, where a3 (m̃) = 2m̃ (12v − 7m̃)−

3t (7m̃+ 3t). We show a3 (m̃) < 0 ⇔ 12v − 7m̃ < 21t/2 + 9t2/(2m̃). Both LHS = 12v − 7m̃

and RHS = 21t/2 + 9t2/(2m̃) are decreasing in m̃ ∈
[
0, 3t

2

]
. At the extreme point m̃ = 0 (i.e.,

d = 1), LHS = 12v and RHS → ∞. So RHS > LHS. At the other extreme point m̃ = 3t
2

(i.e., d = d), LHS = 3
2 (8v − 7t) and RHS = 27t

2 . RHS > LHS holds under t > 4v
7 . So

RHS > LHS ⇔ a3 (m̃) < 0. So 12m̃2
(
m̃− 3t

2

)
+ 3t · a3 (m̃) < 0. Therefore, ∂A3

∂d < 0.

Hence, the two arguments A2
2A1

and −A3
A1

both strictly increase in d ∈ [d, 1], and thereby k1 strictly

decreases in d ∈ [d, 1].

From the proof of Lemma 4, we already know: (1) k ≡ k1 (d) = 4v−7t
3t−4v ∈ (0, 1) when t > 4v

7 ;

(2) The statement k1 (1) < 0 is equivalent to G (k, d = 1) < 0. To complete the proof, we check

G (k, d = 1) = 729t5 · (3tk (k − 3) + 16 (v − t) (k − 2)) < 0 for all k ∈ [0, 1].
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3 Full sequential case – firms move sequentially

In this section, we consider a game where even firms move sequentially (i.e., the innovator chooses

effort e1 first, then the follower chooses its effort e2 upon observing e1), and finally consumers choose

effort ec upon observing e1 and e2. We call it as “the full sequential case” to contrast the sequential

case that we analyze in our main text (i.e., the game in which both firms move simultaneously and

then consumers move after observing e1, e2), which we call “the partial sequential case.” There are

two goals that we intend to accomplish here: we want to show: (1) the amplified complementarity

effect described in the main text is mitigated when firms are considered to move sequentially; (2)

nevertheless, the main result that duopoly leads to larger communication efforts when consumers

play important role in communication (small k) still holds;

Proposition A1. The amplified complementarity effect described in the main text (in Section 5.1.)

is mitigated under the full sequential case compared to the partial sequential: eD−fullf ≤ eD−partialf

and eD−fullc ≤ eD−partialc .

Proof. Consumers maximize their expected utility, EU = ekf · e1−k
c · ũ− e2c

2 upon observing a given

effort ef (= e1 + e2). Hence, consumers’ best reply function is given by eDc =
(
(1− k) ũef

k
) 1
k+1

(still the same as the simultaneous case). Anticipating the consumers’ best response, firm 2 solves

the following maximization problem:maxe2 EΠ2 = σ
(
ef , e

D
c

)
· πD2 −

e22
2 . So, e

D
2 solves the following

first-order condition:
(
∂σ
∂e2

+ ∂σ
∂ec
· ∂e

D
c

∂e2

)
πD2 = e2, which implicitly determines firm 2’s best response

to firm 1’s effort. Anticipating firm 2’s best reply and consumers’ best response, firm 1 solves

the following maximization problem:maxe1 EΠ1 = σ
(
e1 + eD2 , e

D
c

)
· πD1 −

e21
2 . So, eD1 solves the

following first-order condition:
(
∂σ
∂e1

+ ∂σ
∂e2

∂eD2
∂e1

+ ∂σ
∂ec
· ∂e

D
c

∂e1

)
πD1 = e1. Note that ∂σ

∂e1
= ∂σ

∂e2
= ∂σ

∂ef
, we

can add up the first-order conditions of the two firms and get ef (= e1 + e2) in the full sequential

communication: (
∂σ

∂ef
+
∂σ

∂ec
· ∂e

D
c

∂ef

)(
πD1 + πD2

)
︸ ︷︷ ︸

partial seq. comm.

+
∂σ

∂e2

∂eD2
∂e1

πD1 = ef (1)

Next, we show that ∂eD2
∂e1
≤ 0 such that strategic free-riding effect also gets amplified in the full

sequential communication setting. Therefore, from the above equation, we can see this explicit free-

riding effect mitigates the amplified complementarity effect in the partial sequential communication,

which leads to lower effort level compared to the partial sequential communication setting. To show
∂eD2
∂e1
≤ 0, we define a function F =

(
∂σ
∂e2

+ ∂σ
∂ec
· ∂e

D
c

∂e2

)
πD2 − e2 and the first-order condition of eD2

is just F
(
e1, e

D
2 (e1)

)
= 0. By the Implicit Function Theorem, ∂eD2

∂e1
= − ∂F

∂e1/
∂F
e2
|e2=eD2

. Because
∂F
∂e2

is the second-order condition, which should be negative at the maximum e2 = eD2 according

to the optimality principal. Therefore, sgn
[
∂eD2
∂e1

]
= sgn

[
∂F
∂e1
|e2=eD2

]
. We specify ∂F

∂e1
in more
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details: ∂F
∂e1

=
(

∂2σ
∂e2∂e1

+ ∂

(
∂σ
∂ec
· ∂e

D
c

∂e2

)
/∂e1

)
πD2 . The first argument ∂2σ

∂e2∂e1
= k (k − 1) ek−2

f e1−k
c ≤ 0.

Knowing ∂σ
∂ec
· ∂e

D
c

∂e2
= k(1−k)

1+k · ((1− k) ũ)
1−k
1+k · e

k−1
k+1

f , we get the second argument ∂

(
∂σ
∂ec
· ∂e

D
c

∂e2

)
/∂e1 =

−k(1−k)2

(1+k)2
((1− k) ũ)

1−k
1+k e

−2
k+1

f ≤ 0. Hence, sgn
[
∂F
∂e1

]
= sgn

[
∂eD2
∂e1

]
≤ 0. Denote eD−fullf and eD−partialf

as total firm-side effort level in full and partial sequential communication cases. Therefore, eD−fullf ≤

eD−partialf . In both full and partial sequential cases, eDc =
(
(1− k) ũef

k
) 1
k+1 . Therefore, eD−fullc ≤

eD−partialc .

Proposition A2. Compared to the simultaneous case, under the full sequential case, the duopoly

market leads to higher total firm-side efforts and consumer efforts when k is small.

Proof. Recall the first-order condition determining the total firm-side effort in the simultaneous

communication case ∂σ
∂ef

(
πD1 + πD2

)
= ef and rearrange equation 1 into the following:

∂σ

∂ef

(
πD1 + πD2

)
︸ ︷︷ ︸
simultaneous comm.

+

 ∂σ

∂ec

∂eDc
∂ef︸︷︷︸
≥0

(
πD1 + πD2

)
+
∂σ

∂e2

∂eD2
∂e1︸︷︷︸
≤0

πD1

 = ef

Compared to the simultaneous communication setting, the full sequential communication set-

ting leads to higher effort level when the positive complementarity effect (i.e., ∂σ
∂ec

∂eDc
∂ef

(
πD1 + πD2

)
)

dominates the negative free-riding effect (i.e., ∂σ
∂e2

∂eD2
∂e1

πD1 ). We show one sufficient condition can

be 1−k
1+k ≥

πD1
πD1 +πD2

, which implies that k ≤ πD2
2πD1 +πD2

. To show it, we specify the complementar-

ity effect as ∂σ
∂ec

∂eDc
∂ef

(
πD1 + πD2

)
= k(1−k)

1+k · ((1− k) ũ)
1−k
1+k · e

k−1
1+k

f

(
πD1 + πD2

)
and the free-riding ef-

fect as ∂σ
∂e2

∂eD2
∂e1

πD1 = k · ((1− k) ũ)
1−k
1+k · e

k−1
1+k

f πD1 · −
∂F
∂e1/

∂F
∂e2

, where F =
(
∂σ
∂e2

+ ∂σ
∂ec
· ∂e

D
c

∂e2

)
πD2 − e2

is defined in the proof of Proposition A1. Hence, the condition for the non-negative total effect
∂σ
∂ec

∂eDc
∂ef

(
πD1 + πD2

)
+ ∂σ
∂e2

∂eD2
∂e1

πD1 ≥ 0⇔ 1−k
1+k

(
πD1 + πD2

)
−πD1 ·

∂F
∂e1/

∂F
∂e2
≥ 0⇔ 1−k

1+k ≥
(
∂F
∂e1/

∂F
∂e2

)
· πD1
πD1 +πD2

.

Furthermore, ∂F
∂e2

=
(

∂2σ
∂e2∂e2

+ ∂
(
∂σ
∂ec
· ∂e

D
c

∂e2

)
/∂e2

)
πD2 − 1 and ∂F

∂e1
=
(

∂2σ
∂e2∂e1

+ ∂

(
∂σ
∂ec
· ∂e

D
c

∂e2

)
/∂e1

)
πD2 ,

where ∂σ
∂ec
· ∂e

D
c

∂e2
= k(1−k)

1+k ·((1− k) ũ)
1−k
1+k ·e

k−1
k+1

f . Since both σ = ekfe
1−k
c and ∂σ

∂ec
· ∂e

D
c

∂e2
are functions of ef

and ef = e1 + e2, ∂F∂e2 =
(

∂2σ
∂e2∂e2

+ ∂
(
∂σ
∂ec
· ∂e

D
c

∂e2

)
/∂e2

)
πD2 −1 =

(
∂2σ

∂e2∂e1
+ ∂

(
∂σ
∂ec
· ∂e

D
c

∂e2

)
/∂e1

)
πD2 −

1 = ∂F
∂e1
−1. So, ∂F

∂e1/
∂F
∂e2

= ∂F
∂e1/

(
∂F
∂e1
−1

)
= 1+ 1/

(
∂F
∂e1
−1

)
< 1 as ∂F

∂e1
≤ 0 (from the proof of Proposition

A1). Therefore, when 1−k
1+k ≥

πD1
πD1 +πD2

⇔ k ≤ πD2
2πD1 +πD2

, 1−k
1+k ≥

(
∂F
∂e1/

∂F
∂e2

)
· πD1
πD1 +πD2

holds and thereby the

positive complementarity effect (i.e., ∂σ
∂ec

∂eDc
∂ef

(
πD1 + πD2

)
) dominates the negative free-riding effect

(i.e., ∂σ
∂e2

∂eD2
∂e1

πD1 ), which leads to a higher effort level in the full sequential communication compared

to the simultaneous setting.

The proposition suggests that the total efforts of firms and consumers can be higher under

the full sequential case compared to the simultaneous case when kis small. When k is small, the

7



innovator would choose to share the information under the simultaneous case. Then, it must be the

case that he also prefers sharing the innovation under the full sequnetial case becasue the market

expansion effect through communication is amplified. Thus, the main result that duopoly leads to

larger communication efforts when consumers play important role in communication (small k) still

holds.
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4 Disclose as entry deterrence

We first analyze the last stage. Upon the reach of the last stage, there are three possible market

scenarios. First, if firm 1 discovers an idea at Stage 1 (I = 1) and firm 2 does not enter the market

at Stage 2 (χ = 0), the outcome is the same as the monopoly situation in the main model where

firm 1 is the monopolist and its retail profit is RM1 = σT · πM1 , where πM1 = v − t
2 .

Second, if firm 1 fails to discover an idea at Stage 1 (I = 0) and firm 2 enters the market at

Stage 2 (χ = 1), firm 2 is the monopolist in the market. Similar to the main model, consumer

j purchases from firm 2 if the utility v − t
(

1
2 − zj

)
− p2 ≥ 0 ⇒ zj ≥ 2p2+t−2v

2t . The market

demand for firm 2’s product is D2(v, p2) = σT ·max
{

2 · v−p2t , 1
}
. The optimal price from F.O.C. is

popt2 = arg maxp2 σ
T · (p2 −m2) ·2 · v−p2t = v+m2

2 . At popt2 = v+m2
2 , Dopt

2 = σT · v−m2
t .1 If m2 < v− t,

however, Dopt
2 = σT · v−m2

t > σT , which means even the consumer with furthest location zj = 0 finds

the positive utility under this price: uj = v− t
2−

v+m2
2 = 1

2 (v − t−m2) > 0. Hence, the equilibrium

price is determined by making the furthest consumer indifferent between purchase and no purchase:

uj = v − t
2 − p2 = 0⇒ pM2 = v − t

2 , and the market demand is D2 = σT . Firm 2’s monopoly retail

profit RM2 = σT · πM2 , where πM2 = v − t
2 −m2 > 0. If m2 ≥ v − t, Dopt

2 = σT · v−m2
t ≤ σT . So

firm 2 optimally charges a price at pM2 = v+m2
2 and earns a monopoly profit RM2 = σT · πM2 , where

πM2 =
(
pM2 −m2

)
· v−m2

t = (v−m2)2

2t .

Third, if firm 1 discovers an idea and enters the market at Stage 1 (I = 1) and firm 2 enters

the market at Stage 2 (χ = 1), similar to the main model, the competitive prices are pD1 = t
2 + m̃2

3 ,

pD2 = t
2 + 2m̃2

3 , where m̃2 = min {m2,m (1− d)}. For firm 2 to make non-negative retail profit at the

competitive prices in the duopoly market, pD2 − m̃2 ≥ 0⇒ m̃2 ≤ 3t
2 . So, if m̃2 ≤ 3t

2 , the two firms’

retail profits are thereby RD1 = σT ·πD1 and RD2 = σT ·πD2 , where πD1 = (3t+2m̃2)2

36t and πD2 = (3t−2m̃2)2

36t .

If m̃2 >
3t
2 , firm 2’s net profit margin is negative at the competitive prices. To earn a non-negative

net margin, firm 2 can only charge a price higher than m̃2. For any price firm 2 can charge p2 ∈
[m̃2, v], firm 1’s competitive response is pBR1 = arg maxσT ·p1D1 = σT ·p1

(
1
2 −

p1−p2
t

)
= 1

4(2p2 + t).

However, D1

(
pBR1 , p2

)
= 2p2+t

4t ≥ 2m̃2+t
4t > 1, which means the furthest consumer zj = 1

2 receives

positive utility at the price pBR1 : uj = v− t
2 −

1
4(2p2 + t) ≥ v− t

2 −
2v+t

4 = 2v−3t
4 > 0. So firm 1 can

raise price above pBR1 . Note one thing different from the first scenario lies in that firm 2 has entered

the market in this scenario and the lowest price firm 2 can charge is at the marginal cost m̃2. So firm

1 is unable to charge the same monopoly price as in the first scenario. Instead, the best price firm 1

can charge is the one that makes the furthest consumer zj = 1
2 indifferent between purchasing from

him and purchasing from firm 2 at the price p2 = m̃2, i.e., v − 1
2 t− p1 = v − m̃2 ⇒ pD1 = m̃2 − t

2 .

Therefore, if m̃2 >
3t
2 , the equilibrium prices are pD1 = m̃2− t

2 and pD2 ∈ [m̃2, v]. Firm 1 captures all

1To ensure firm 2’s demand as a monopolist is non-negative, we assume v > m.
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the market demand and earns a profit RD2 = σT ·πD1 , where πD1 = m̃2− t
2 ; whereas firm 2’s demand

and profit are zero.

In summary, there are three possible market scenarios: (1) Firm 1 is the monopolist firm (I =

1, χ = 0 ). Firm 1’s retail profit is

RM1 = σT · πM1 = σT
(
v − t

2

)
(2) Firm 2 is the monopolist firm (I = 0, χ = 1). Depending on the realization of firm 2’s marginal

cost, firm 2’s retail profit is

RM2 = σT · πM2 =

σT
(
v − t

2 −m2

)
...if m2 < v − t

σT (v−m2)2

2t ...if m2 ≥ v − t

(3) Both firms enter the market (I = 1, χ = 1). Depending on firm 2’s actual marginal cost

m̃2 = min {m2,m (1− d)}, the two firms’ retail profits are

RD1 = σTπD1 =

σT
(3t+2m̃2)2

36t ...if m̃2 ≤ 3t
2

σT
(
m̃2 − t

2

)
...if m̃2 >

3t
2

RD2 = σTπD2 =

σT
(3t−2m̃2)2

36t ...if m̃2 ≤ 3t
2

0 ...if m̃2 >
3t
2

Next, we analyze stage 2 – the communication stage. Since there is no uncertainty at the

start of this stage, the communication subgame unfolds in the same way as in the main model.

We directly apply the results from the main model. The total market sizes are given by: σT =

(kπf )k ((1− k) ũ)1−k, where πf denotes the aggregate average retail profits of the firms who exert

positive communication efforts. More specifically, if firm i is the monopolist in the market or firm i

is the only firm exerting positive effort in the duopoly market, πf = πi; if both firms exert positive

efforts in the duopoly market, πf = πD1 +πD2 . Given optimal communication efforts, firm i’s expected

payoff is thereby EΠi = (kπf )k ((1− k) ũ)1−k πi

(
1− k

2
πi
πf

)
.

4.1 Firm 2’s entry decision

At the end of stage 1, firm 2 observes firm 1’s disclosure decision (φ, d) and its marginal production

cost m2, and makes the entry decision. The entry decision depends on its posterior belief of the

existence of firm 1’s idea µ2 (I|φ) and its actual marginal production cost m̃2 = min {m2,m (1− d)}.
To understand firm 2’s entry strategy, we derive the following lemma.

Lemma A1. (Firm 2’s entry strategy)
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• If µ2 (I = 1|φ) ≤ µ , firm 2 always prefers to enter the market irrespective of its marginal cost

m2, i.e., χ (µ2 = µ,m2) = χ (µ2 = 0,m2) = 1 for all m2 ∈ {m,m}.

• If µ2 (I = 1|φ) = 1, firm 2 prefers to enter the market only when its actual marginal cost

is lower than 3t
2 , i.e., χ (µ2 = 1, m̃2) = 1 for m̃2 ≤ 3t

2 ; otherwise, χ (µ2 = 1, m̃2) = 0 for

m̃2 >
3t
2 .

Proof. With belief µ2 (I = 1|φ) ≤ µ < 1, firm 2 prefers to enter the market even when m2 = m

because firm 2’s expected payoff by entering the market is EΠ2 (µ2,m2) = µ2 · 0 + (1− µ2) ·(
kπM2

)k (
(1− k) ũM2

)1−k
πM2

(
1− k

2

)
> f , where f represents the fixed entry cost that we impose to

be zero in the main model. When m2 = m, firm 2 expects an even higher payoff because it will earn

the positive profit irrespective of firm 1’s presence in the market, and thereby enters the market as

well.

With belief µ2 (I = 1|φ) = 1, if firm 2’s actual marginal cost m̃2 >
3t
2 , it is unable to make sales

and positive profit by entering the market. So, χ (µ2, m̃2) = 0. Only when m̃2 ≤ 3t
2 can firm 2 expect

a profitable entryEΠD
2 =

(
k
(
πDf

))k (
(1− k) ũD

)1−k
πD2

(
1− k

2
πD2
πDf

)
> f . So, χ (µ2, m̃2) = 1 when

m̃2 ≤ 3t
2 .

4.2 Firm 1’s disclosure strategy

There exist two types of pure strategy equilibrium in the disclosure subgame: (1) the “separating

equilibrium” where firm 1 truthfully discloses the existence of idea only when it discovers an idea,

i.e., φ (I = 1) = 1 and φ (I = 0) = 0; and (2) the “pooling strategy” where firm 1 does not disclose

the existence of idea irrespective of discovery, i.e., φ (I) = 0, for all I ∈ {0, 1}. We will first list

the conditions under which each strategy can be sustained in equilibrium, and then discuss the

parameter space that supports the equilibrium to arise.

4.2.1 Separating Equilibrium

In the separating equilibrium, φe = I and µe2 (I = 1|φ = 1) = 1 and µe2 (I = 1|φ = 0) = 0. We use

the superscript “e” to denote the equilibrium hereafter. We analyze the entry deterrence equilibrium

and the entry invitation equilibrium separately.

Disclosure as Entry Deterrence. Conditional on having an idea I = 1, firm 1 discloses the

idea existence φe = 1 truthfully. Upon observing φe = 1, firm 2 formulates the posterior belief

µe2 (I = 1|φ = 1) = 1. Under the deterrence motive, de = 0 and firm 2’s actual marginal cost is

m2 ∈ {m,m}. If m2 = m, according to Lemma A1, firm 2 chooses not to enter the market knowing

that firm 1 already succeeds in idea discovery, which otherwise it would have entered. Hence, firm

1 can deter firm 2 to enter the market by disclosing idea existence and thereby garner monopoly
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profit. If m2 = m, firm 2 is able to produce at the low marginal cost and thereby enter the market.

In this case, firm 1 is only able to get the duopoly profit. Hence, conditional on having an idea,

firm 1’s equilibrium payoff is EΠ1 (φe = 1, de = 0|I = 1) = 1
2EΠM

1 + 1
2EΠD

1 (m).

(φe = I, de = 0) can be supported as an equilibrium strategy if and only if firm 1 has no incentive

to deviate to
(
φe = I, d

′
= dopt

)
or
(
φ
′

= 0, de = 0
)
, where dopt ∈ arg maxd∈[d,1]EΠD

1 (d). By

deviating to
(
φe = I, d

′
= dopt

)
, firm 1 discloses sufficient information that enables firm 2 to produce

a product at a cost of m
(
1− dopt

)
≤ 3t

2 at the high-cost state m2 = m. At the low-cost state

m2 = m, firm 2 always enters the market. So firm 1’s disclosure has no real effect under the

assumption m < m
(
1− dopt

)
. Then firm 1’s deviation payoff EΠ1

(
φe = 1, d

′
= dopt|I = 1

)
=

1
2EΠD

1

(
dopt

)
+ 1

2EΠD
1 (m). Firm 1 has no incentive to deviate to

(
φe = I, d

′
= dopt

)
if and only if

EΠ1 (φe = 1, de = 0|I = 1) > EΠ1

(
φe = 1, d

′
= dopt|I = 1

)
⇔ EΠM

1 > EΠD
1

(
dopt

)
Similarly, we analyze another possible deviation

(
φ
′

= 0, de = 0
)
, which means firm 1 does not

disclose idea existence even if it has one. Because φe = I is in the equilibrium, upon observing

φ = 0, firm 2’s posterior belief is µe2 (I = 1|φ = 0) = 0, and it chooses to enter the market irre-

spective of its cost realization according to Lemma A1. If m2 = m, then πD2 (m) = 0. In this

case, firm 1 is the only firm exerting positive effort in the duopoly market. Hence, EΠD
1 (m) =(

kπD1 (m)
)k (

(1− k) ũD (m)
)1−k

πD1 (m)
(
1− k

2

)
. If m2 = m, as discussed above, firm 1 earns the

expected payoff EΠD
1 (m). So, conditional on having an idea, the deviation strategy

(
φ
′

= 0, de = 0
)

gives firm 1 a payoff EΠ1

(
φ
′

= 0, de = 0|I = 1
)

= 1
2EΠD

1 (m)+ 1
2EΠD

1 (m). Firm 1 has no incentive

to deviate to
(
φ
′

= 0, de = 0
)
if and only if

EΠ1 (φe = 1, de = 0|I = 1) > EΠ1

(
φ
′

= 0, de = 0|I = 1
)

⇔ EΠM
1 > EΠD

1 (m)

Therefore, disclosure as entry deterrence (φe = I, de = 0) can be sustained in equilibrium if and

only if the two inequalities hold: EΠM
1 > EΠD

1

(
dopt

)
and EΠM

1 > EΠD
1 (m).

Disclosure as Entry Invitation. By adopting the disclosure strategy such as φe = I and

de = dopt conditional on φ = 1, firm 1 can lower firm 2’s marginal cost to m
(
1− dopt

)
and enable

it to enter the market at the high cost state m2 = m. At the low cost state m2 = m, as discussed

previously, firm 1’s disclosures have no real impact. Hence, conditional on having an idea, firm 1’s
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equilibrium payoff is EΠ1

(
φe = 1, de = dopt|I = 1

)
= 1

2EΠD
1

(
dopt

)
+ 1

2EΠD
1 (m).

(
φe = I, de = dopt

)
can be supported as an equilibrium strategy if and only if firm 1 has no incentive to deviate to(
φe = I, d

′
= 0
)
or
(
φ
′

= 0, d
′

= 0
)
. That is,

EΠ1

(
φe = 1, de = dopt|I = 1

)
≥ EΠ1

(
φe = 1, d

′
= 0|I = 1

)
⇔ EΠD

1

(
dopt

)
≥ EΠM

1

and

EΠ1

(
φe = 1, de = dopt|I = 1

)
≥ EΠ1

(
φ
′

= 0, d
′

= 0|I = 1
)

⇔ EΠD
1

(
dopt

)
≥ EΠD

1 (m)

Hence, disclosure as entry invitation (φe = I and de = dopt conditional on φe = 1) can arise in

equilibrium when EΠD
1

(
dopt

)
≥ EΠM

1 and EΠD
1

(
dopt

)
≥ EΠD

1 (m).

4.2.2 Pooling Equilibrium.

In the pooling equilibrium, φe = 0 for all I ∈ {0, 1} and µe2 (I = 1|φ = 0) = µ. Similarly, we need to

check whether firm 1 can earn a higher deviation payoff than the equilibrium payoff. Conditional on

firm 1’s success in idea discovery, the deviation strategy firm 1 can choose is to disclose the idea exis-

tence. So the deviation strategy include
(
φ
′

= I, de = 0
)
or
(
φ
′

= I, d
′

= dopt
)
. Due to the nature

of verifiability of the idea existence, we consider consumer’s off-the-equilibrium belief upon seeing

φ
′

= 1 is µ′2
(
I = 1|φ′ = 1

)
= 1. Then the deviation payoffs in the pooling equilibrium correspond

to the equilibrium payoffs in the entry deterrence equilibrium and the entry invitation equilib-

rium, i.e., EΠ1

(
φ
′

= 1, de = 0|I = 1
)

= 1
2EΠM

1 + 1
2EΠD

1 (m) and EΠ1

(
φ
′

= 1, d
′

= dopt|I = 1
)

=
1
2EΠD

1

(
dopt

)
+ 1

2EΠD
1 (m). Hence, firm 1 has no incentive to deviate from (φe = 0, de = 0) if and

only if

EΠ1 (φe = 0, de = 0|I = 1) > EΠ1

(
φ
′

= 1, de = 0|I = 1
)

⇔ EΠD
1 (m) > EΠM

1

and

EΠ1 (φe = 0, de = 0|I = 1) > EΠ1

(
φ
′

= 1, d
′

= dopt|I = 1
)

⇔ EΠD
1 (m) > EΠD

1

(
dopt

)
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Hence, no disclosure (φe = 0 and de = 0) can arise in equilibrium when EΠD
1 (m) ≥ EΠM

1 and

EΠD
1 (m) > EΠD

1

(
dopt

)
.

As we can see, the preceding analysis boils down firm 1’s equilibrium disclosure strategy to the

search for the three cutoffs at which the conditions EΠM
1 ≷ EΠD

1

(
dopt

)
, EΠM

1 ≷ EΠD
1 (m), and

EΠD
1 (m) ≷ EΠD

1

(
dopt

)
hold, respectively.

First, according to Proposition 4 in the main model, we know that EΠM
1 > EΠD

1

(
dopt

)
can hold

only when k > k∗. And when k > k∗, dopt = d ≡ 1 − 3t
2m , and thereby m

(
1− dopt

)
= 3t

2 . When

k ≤ k∗, EΠD
1

(
dopt

)
≥ EΠM

1 .

Second, EΠM
1 > EΠD

1 (m) ⇔
(
πM1
)k (

ũM
)1−k

πM1 >
(
πD1 (m)

)k (
ũD (m)

)1−k
πD1 (m) ⇔ k >

k̇ ≡
(

ln
ũD(m)

ũM
−ln

πM1
πD1 (m)

)
/
(

ln
ũD(m)

ũM
+ln

πM1
πD1 (m)

)
=

(
ln(4 v

t
+1−4m

t )−ln

(
2 vt −1

2mt −1

))
/
(

ln(4 v
t
+1−4m

t )+ln

(
2 vt −1

2mt −1

))
.

Conversely, when k ≤ k̇, EΠM
1 ≤ EΠD

1 (m). Moreover, the cutoff value k̇ exists in the range of

(0, 1) because 4vt + 1− 4mt >
2 v
t
−1

2m
t
−1

> 1 for all v > 3t
2 > 0 and 3t

2 < m < v.

Third, EΠD
1 (m) > EΠD

1

(
dopt

)
⇔
(

πD1 (m)

πDf (dopt)

ũD(dopt)
ũD(m)

)k
>

(
πD1 (dopt)ũD(dopt)
πD1 (m)ũD(m)

) 1− k
2

πD1 (dopt)
πD
f (dopt)

1− k
2

. Nev-

ertheless, it is trickier to get the cutoff value k̈ at which EΠD
1 (m) = EΠD

1

(
dopt

)
because dopt also

depends on the value k according to Proposition 6 in the main model. In the next lemma, we will

show the existence and the uniqueness of the cutoff k̈ such that k > k̈ ⇔ EΠD
1 (m) > EΠD

1

(
dopt

)
,

and the relation of the three cutoffs k∗, k̇, and k̈.

Lemma A2. (a) There exists the unique cutoff k̈ such that EΠD
1

(
dopt

)
≥ EΠD

1 (m) when k ≤ k̈

and EΠD
1 (m) > EΠD

1

(
dopt

)
when k > k̈; (b) The three key cutoffs k̈, k∗, and k̇ satisfy the relation:

k̈ < k∗ < k̇.

Proof. To show the two statements, we break down into fours parts and show them in a chrono-

logical order: (1) k̇ > k∗; (2) the existence of k̈ in the range (0, k∗); (3) the uniqueness of k̈; (4)

EΠD
1

(
dopt

)
≥ EΠD

1 (m) when k ≤ k̈ and EΠD
1 (m) > EΠD

1

(
dopt

)
when k > k̈.

(1) We show k̇ > k∗. Rewrite k̇ = −1 + 2/
(

1+ln

(
2 vt −1

2mt −1

)
/ln(4 vt +1−4mt )

)
. We find k̇ increases with m

by showing ln

(
2 vt −1

2mt −1

)
/ln(4 v

t
+1−4m

t ) decreases with m. This is easily to verify because its derivative

w.r.t. m is
2(2m

t
−1) ln( 2v−t

2m−t)−(4 v
t
+1−4m

t ) ln(4 v
t
+1−4m

t )
t
2(4 v

t
+1−4m

t )(2m
t
−1)(ln(4 v

t
+1−4m

t ))
2 . Since the denominator is positive, then its sign

equals the sign of the numerator. We show in the next that the numerator is negative. This is so

because the derivative of the numerator w.r.t. m is 4
t

(
ln
(

2v−t
2m−t

)
+ ln

(
4vt + 1− 4mt

))
> 0. Because

m < v, the numerator is smaller than 2
(
2vt − 1

)
ln
(

2v−t
2v−t

)
−
(
4vt + 1− 4vt

)
ln
(
4vt + 1− 4vt

)
= 0.

Therefore,
∂ln

(
2 vt −1

2mt −1

)
/ln(4 vt +1−4mt )
∂m < 0, and thereby k̇ increases with m. Because m > 3t

2 , k̇ (m) >

k̇
(

3t
2

)
= (ln(4 v

t
−5)−ln( vt−

1
2))/ln(4 v

t
−5)+ln( vt−

1
2) = k∗. So we get the first relation of the cutoffs, k̇ > k∗.
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(2) We show the existence of the cutoff k̈ at which EΠD
1 (m) = EΠD

1

(
dopt

)
in the range (0, k∗).

First, we show at the point k = k∗, EΠD
1 (m) > EΠD

1

(
dopt

)
. Recall that EΠD

1 (m) > EΠM
1 when

k < k̇ and EΠM
1 ≥ EΠD

1

(
dopt

)
when k ≥ k∗. Since k̇ > k∗ as we have already show in part (1),

when at k = k∗, the relation EΠD
1 (m) > EΠM

1 = EΠD
1

(
dopt

)
.

Next, we will show at the point k = 0, EΠD
1 (m) < EΠD

1

(
dopt

)
. At k = 0, EΠD

1 (m) =

ũD (m)πD1 (m) and EΠD
1

(
dopt

)
= ũD

(
dopt

)
πD1
(
dopt

)
. We first get dopt and then compare EΠD

1 (m)

and EΠD
1

(
dopt

)
. EΠD

1 (d) = ũD (d)πD1 (d) =
(
(4(1−d)2m2−36(1−d)mt+9t(8v−5t))/72t

)
·((2(1−d)m+3t)2/36t).

The optimal disclosure amount from F.O.C. is 1 +
3
(√

t(2t−v)−t
)

m , which is smaller than 1 because√
t (2t− v)−t < 0 for all 0 < t < 2v

3 . 1+
3
(√

t(2t−v)−t
)

m can be re-written to d+
3
(

2
√
t(2t−v)−t

)
2m , where

d = 1− 3t
2m . Hence, dopt = max

{
d, d+

3
(

2
√
t(2t−v)−t

)
2m

}
. If 2

√
t (2t− v)− t > 0⇔ t > 4v

7 , dopt > d

(also stated in Proposition 5 in the main model); It t ≤ 4v
7 , dopt = d. By the optimality principal,

EΠD
1

(
dopt

)
≥ EΠD

1 (d) =
(
v − 5

4 t
)
t. It is easy to check that EΠD

1 (m) =
(
m− t

2

) (
v + t

4 −m
)

decreases with m ∈
(

3t
2 , v

)
because the profit-maximizing m = 1

8(3t+4v) <
3t
2 for all t ∈ [v2 ,

2v
3 ). So

EΠD
1 (m) < EΠD

1

(
3t
2

)
=
(
v − 5

4 t
)
t = EΠD

1 (d) ≤ EΠD
1

(
dopt

)
. Therefore, EΠD

1

(
dopt

)
> EΠD

1 (m)

when k = 0.

In summary, given the facts that EΠD
1 (m) > EΠD

1

(
dopt

)
at k = k∗ and EΠD

1 (m) < EΠD
1

(
dopt

)
at k = 0, there exists at least one cutoff k̈ at which EΠD

1 (m) = EΠD
1

(
dopt

)
in the range (0, k∗).

(3) We first show that the expected payoff functions EΠD
1 (m) and EΠD

1

(
dopt

)
are unimodal in

k. Together with the facts that EΠD
1 (m) > EΠD

1

(
dopt

)
at k = k∗ and EΠD

1 (m) < EΠD
1

(
dopt

)
at

k = 0, we can reach the conclusion that the cutoff k̈ is unique in the range (0, k∗).

To show unimodality, we specify EΠD
1 (m) =

(
kπD1 (m)

)k (
(1− k) ũD (m)

)1−k
πD1 (m)

(
1− k

2

)
and the derivative w.r.t. k is ∂EΠD1 (m)

∂k = ι·
(
− 1

2−k − ln (1−k)ũD(m)

kπD1 (m)

)
, where ι = (2−k)

2 πD1 (m)
(
kπD1 (m)

)k·(
(1− k) ũD (m)

)1−k
> 0. So, ∂EΠD1 (m)

∂k ≶ 0 ⇔ − 1
2−k ≶ ln (1−k)ũD(m)

kπD1 (m)
. Notice that both sides

of the inequality are monotonically decreasing in k. Moreover, at k = 0, − 1
2−k = −1

2 and

ln (1−k)ũD(m)

kπD1 (m)
→ ∞. Thus, − 1

2−k < ln (1−k)ũD(m)

kπD1 (m)
and ∂EΠD1 (m)

∂k < 0. When at k = 1, − 1
2−k = −1

and ln (1−k)ũD(m)

kπD1 (m)
→ −∞. Thus, − 1

2−k > ln (1−k)ũD(m)

kπD1 (m)
and ∂EΠD1 (m)

∂k > 0. Hence, there exists a

unique k̂ ∈ [0, 1] s.t. ∂EΠD1 (m)
∂k ≤ 0 when k ≤ k̂ and ∂EΠD1 (m)

∂k ≥ 0 when k ≥ k̂. So, EΠD
1 (m)

qualifies the definition of a unimodal function.

Similarly, we specifyEΠD
1

(
dopt

)
=
(
kπDf

(
dopt

))k (
(1− k) ũD

(
dopt

))1−k
πD1
(
dopt

)(
1− k

2

πD1 (dopt)
πDf (dopt)

)
.

Then ∂EΠD1 (dopt)
∂k =

∂EΠD1 (d)
∂k |d=dopt

= κ ·
(
− πD1 (dopt)

2πDf (dopt)−kπD1 (dopt)
− ln

(1−k)ũD(dopt)
kπDf (dopt)

)
, where κ =(

πD1 (dopt)(2πDf (dopt)−kπD1 (dopt))/2πDf (dopt)
) (
kπDf

(
dopt

))k (
(1− k) ũD

(
dopt

))1−k
> 0. So, ∂EΠD1 (dopt)

∂k ≶

0 ⇔ − πD1 (dopt)
2πDf (dopt)−kπD1 (dopt)

≶ ln
(1−k)ũD(dopt)
kπDf (dopt)

. For simplicity, we define LHS = − πD1 (dopt)
2πDf (dopt)−kπD1 (dopt)

and RHS = ln
(1−k)ũD(dopt)
kπDf (dopt)

. It is straightforward that both LHS and RHS are monotonic de-
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creasing functions of k. Moreover, at k = 0, LHS = − πD1 (dopt)
2πDf (dopt)

and RHS →∞. So LHS < RHS

and ∂EΠD1 (dopt)
∂k < 0. At k = 1, LHS = − πD1 (dopt)

2πDf (dopt)−πD1 (dopt)
and RHS → −∞. So, LHS > RHS

and ∂EΠD1 (dopt)
∂k > 0. Hence, there must exist a unique k̃ ∈ [0, 1] s.t. ∂EΠD1 (dopt)

∂k ≤ 0 when k ≤ k̃ and
∂EΠD1 (dopt)

∂k ≥ 0 when k ≥ k̃. So, EΠD
1

(
dopt

)
also qualifies the definition of a unimodal function.

(4) Lastly, given the uniqueness of the cutoff k̈ ∈ (0, k∗) at which EΠD
1 (m) = EΠD

1

(
dopt

)
and the facts that EΠD

1 (m) > EΠD
1

(
dopt

)
at k = k∗ and EΠD

1 (m) < EΠD
1

(
dopt

)
at k = 0, we

immediately know that EΠD
1

(
dopt

)
≥ EΠD

1 (m) when k ≤ k̈ and EΠD
1 (m) > EΠD

1

(
dopt

)
when

k > k̈.

Proposition 9. (Equilibrium)

1. When k is sufficiently small (k ≤ k̈) or large (k > k̇), the innovator discloses the product

existence truthfully whenever it discovers an idea (“separating equilibrium”). In particular,

(a) When k is sufficiently large (k > k̇), entry deterrence occurs. Firm 1 never reveals any

key information (de = 0), which deters firm 2 from entering the market when m2 = m.

i. When k is sufficiently small (k ≤ k̈), entry invitation occurs. Firm 1 reveals sufficient

key information (de > d), which encourages firm 2 to enter the market.

(b) When k is intermediate (k̈ < k ≤ k̇), the innovator does not disclose the existence of

the idea irrespective of the true state (“pooling equilibrium”). Firm 2 always enters the

market.

Proof. The proof immediately follows from Lemma A1 and Lemma A2. Disclosure as entry de-

terrence (φe = I, de = 0) can be sustained in equilibrium if and only if EΠM
1 > EΠD

1

(
dopt

)
and

EΠM
1 > EΠD

1 (m). EΠM
1 > EΠD

1

(
dopt

)
⇔ k > k∗ and EΠM

1 > EΠD
1 (m) ⇔ k > k̇. From Lemma

A2 that k̇ > k∗, the two conditions hold together when k > k̇. Upon seeing φe = 1 and de = 0,

firm 2’s belief µ2 (I = 1|φ = 1) = 1. According to Lemma A1, firm 2 enters the market only when

m2 = m. Upon seeing φ = 0 and d = 0, firm 2’s belief µ2 (I = 1|φ = 1) = 0 and firm 2 always

enters the market (by Lemma A1).

Disclosure as entry invitation (φe = I and de = dopt conditional on φe = 1) can arise in

equilibrium when EΠD
1

(
dopt

)
≥ EΠM

1 and EΠD
1

(
dopt

)
≥ EΠD

1 (m). EΠD
1

(
dopt

)
≥ EΠM

1 ⇔ k ≤ k∗

and EΠD
1

(
dopt

)
≥ EΠD

1 (m) ⇔ k ≤ k̈. From Lemma A2 that k̈ ≤ k∗, the two conditions hold

together when k ≤ k̈. Upon seeing φe = 1 and de = dopt, firm 2’s belief µ2 (I = 1|φ = 1) = 1 and

its actual marginal cost is min
{
m,m

(
1− dopt

)}
≤ 3t

2 . According to Lemma A1, firm 2 enters the

market. Upon seeing φ = 0 and d = 0, firm 2’s belief µ2 (I = 1|φ = 1) = 0 and firm 2 always enters

the market (by Lemma A1).

Lastly, no disclosure (φe = 0 and de = 0) can arise in equilibrium when EΠD
1 (m) ≥ EΠM

1

and EΠD
1 (m) > EΠD

1

(
dopt

)
. EΠD

1 (m) ≥ EΠM
1 ⇔ k ≤ k̇ and EΠD

1 (m) > EΠD
1

(
dopt

)
⇔ k > k̈.
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From Lemma A2 that k̈ < k̇, the two conditions old when k̈ < k ≤ k̇. In this case, firm 2’s

belief µ2 (I = 1|φ = 1) = µ. According to Lemma A1, firm 2 enters the market irrespective of the

realization of the cost.
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