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Abstract  
Research on normative household financial choices almost always gives quantitative guidance in 
one of two forms: a simple formula for an unrealistic setting, or numerical solutions for only a few 
parameter sets in a realistic setting. We propose a middle-ground approach we call practical 
finance: analytic approximations to optimal solutions as a function of relevant parameters in 
realistic settings that are easily computed in a spreadsheet. We provide such an approximation for 
lifecycle portfolio choice with labor income. Across 5,103 parameter sets, our approximation 
results in welfare that is on average only 0.06% lower than that of the optimal solution. 
 
Keywords: Portfolio choice, personal finance, financial advice 
 
 
 
 
 
 
 
We thank Francisco Gomes for assistance with the code that produces our portfolio recommendations. We thank 
audiences at the Chicago Household Finance Conference, EPFL, Georgia Tech-Atlanta Fed Household Finance 
Conference, Peking University, University of Lausanne, UNLV, the University of Texas at Austin, and Yale for 
helpful comments.



 1 

If you need medical treatment, you should consult a physician. If you need your car fixed, you 

should see an auto mechanic. If you need help managing your personal finances, should you get 

advice from a research economist? 

Academic economics research offers plenty of good qualitative advice. Diversify. Choose low-

cost index funds. All else equal, smoother consumption over time is desirable. But ultimately, 

individuals must make quantitative choices—what percent of their portfolio to allocate to each 

asset, how much of their income to save, etc. Here, guidance from academic economics research 

too often falls into one of two categories: a simple analytic formula for an unrealistic setting, or a 

numerical solution computed for only a few parameter sets in a realistic setting. 

The analytic formula provides an easy path to a solution, but it is the correct solution for 

circumstances that often bear little resemblance to your life.1 The numerical solution may be for 

a setting that qualitatively matches your circumstances, but the parameter values for which the 

authors provide solutions are usually quite different from your own. Your only choices are to 

implement as-is one of the mismatched solutions that are provided; make ad hoc adjustments to 

one of the solutions; ignore the solutions and resort to decision rules not based on academic 

research; or write your own code to obtain solutions that are appropriate for you, which is 

prohibitively costly even for professional economists. 

We propose that a middle-ground research approach should become more common, a style 

that we dub practical finance: research that provides an analytic approximation to the optimal 

solution in a realistic setting as a function of the relevant parameters that is easily computed in a 

spreadsheet, so that readers can obtain the solution that applies to their own parameter values. 

Although the research output could in principle be an atheoretical Taylor approximation, such an 

approximation would be less useful because it would be unpersuasive to the intended user. Ideally, 

the approximation would be structured to provide some economic intuition for its result. 

In this paper, we construct such an approximation for optimal lifecycle asset allocation 

 
1 The best-known formula for the optimal risky portfolio share is found in Merton (1969), but it is for the case where 
the investor has no future labor income. 
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between the stock market and a risk-free asset when labor supply is fixed, labor income is risky 

and non-tradable, and the investor has constant relative risk aversion (CRRA) utility. Cocco, 

Gomes, and Maenhout (2005), referred to as CGM hereafter, is the canonical paper that 

numerically solves for optimal portfolio policies in this setting. Despite the large scholarly impact 

of CGM, their solutions have had very little effect on financial advice in practice (Choi, 2022), 

perhaps due to the complexity of the mathematics and the inability for a reader to obtain solutions 

for different parameters without re-running the authors’ code. 

We provide an approximation to the CGM solution that is structured around the Merton (1971) 

and Bodie, Merton, and Samuelson (1992) formulas for the case where labor supply is fixed and 

labor income is riskless. 

Let 𝛼∗ be a CRRA investor’s optimal risky portfolio share if he had no labor income (Merton, 

1969; Restoy, 1992; Campbell and Viceira, 1999): the equity premium divided by the product of 

relative risk aversion and the variance of the stock market’s log return. With risk-free labor income, 

the investor should still invest a proportion 𝛼∗ of his wealth in the stock market, but his wealth is 

not just his financial wealth 𝑊, but also the present discounted value of his labor income 𝐻 

(human capital). Therefore, 𝛼∗(𝑊 + 𝐻) dollars should be invested in the stock market. Because 

riskless human capital is an implicit risk-free bond holding, 𝛼∗(1 + 𝐻/𝑊)  fraction of his 

financial wealth should be invested in the stock market in order to get 𝛼∗(𝑊 + 𝐻) dollars of 

exposure to the stock market. To calculate the value of 𝐻, discount future labor income using the 

risk-free interest rate (Merton, 1971; Bodie, Merton, and Samuelson, 1992).  

If labor income is risky yet uncorrelated with stock returns—as is the case empirically for the 

average household (Gomes, Haliassos, and Ramadorai, 2021)2—CGM find that human capital still 

behaves like an implicit fixed income position. But if we were to try to allocate 𝛼∗(1 +

𝐻/𝑊)	fraction of the financial portfolio to the stock market in this case, the discount rate that 

should be used to compute 𝐻 for the formula to deliver the correct solution becomes unclear.3 

 
2 Wuthenow (2024) estimates using the Panel Study of Income Dynamics that from 1980 to 2020, the correlation 
between real labor income growth and the S&P 500’s real returns for the average household is 0.007. 
3 Jorgensen and Fraumeni (1989), Winter, Schlafmann, and Rodepeter (2012), Love (2013) and Gomes and Smirnova 
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Our efforts will concentrate on providing approximately correct discount rates for expected future 

labor income as a function of the important model parameters. 

We begin by numerically solving the CGM model for 5,103 different parameter sets, 

independently varying relative risk aversion, the variance of permanent labor income shocks, the 

variance of temporary labor income shocks, the expected labor income path as a function of age, 

the fraction of final working-life income that is replaced by Social Security benefits, the risk-free 

rate, and the equity risk premium. For each age within each parameter set, we obtain the optimal 

asset allocation for many different values of current financial wealth W, imposing no-leverage and 

no-short-sale constraints. We then estimate the discount rates applied to future expected labor 

income that results in the H that minimizes the mean squared distance between the numerical 

solutions and the corresponding solutions produced by	 max{0,min{1, 𝛼∗(1 + 𝐻 𝑊⁄ )}}. 

More specifically, for a given parameter set, we begin by estimating the one-year-ahead 

discount rate 𝑟",$$ that applies to expected age 100 income from the perspective of the age 99 

self. We then hold fixed 𝑟",$$, and we estimate the one-year-ahead discount rate 𝑟",$%. The age 98 

self divides expected age 99 income by 1 + 𝑟",$% to obtain its present value, and divides expected 

age 100 income by (1 + 𝑟",$%)(1 + 𝑟",$$) to obtain its present value. We repeat this process of 

estimating one-year-ahead discount rates, moving one year younger each time until we have 

obtained 𝑟",&&, the one-year-ahead discount rate at age 22. The value of human capital at age 22, 

𝐻&&, is the sum of discounted expected future labor incomes 𝑌&', 𝑌&(, … , 𝑌)** (conditional on the 

age-22 information set and conditional on still being alive at the future age): 

 

𝐻&& =
𝐸&&(𝑌&')
1 + 𝑟",&&

+
𝐸&&(𝑌&()

91 + 𝑟",&&:91 + 𝑟",&':
+ ⋯+

𝐸&&(𝑌)**)
91 + 𝑟",&&:91 + 𝑟",&':… 91 + 𝑟",$$:

(1) 

 

We find that the one-year-ahead discount rate for labor income tends to be highest in early life, 

 
(2023) discount risky future labor income at the risk-free interest rate. Graham and Webb (1979) and Eisner (1980) 
discount by the average of the return on personal savings and the consumer loan interest rate. Huggett and Kaplan 
(2016) discount using their model agent’s stochastic discount factor. 
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decreases until mid-life to a level substantially above the risk-free rate, and drops discretely to 

nearly the risk-free rate at retirement, when the retirement income benefit is risk-free. 

Our final step develops simple functions of the model parameters (relative risk aversion, log 

equity premium, age, etc.) that approximate the one-year-ahead discount rate curves. These are the 

functions that a real-life household could use to estimate its own discount rates. We create these 

approximations by regressing one-year-ahead discount rates on the model parameters. 

To test the goodness of our approximation, we compute portfolio equity shares at every point 

in our discretized state space grid from the formula max{0,min{1, 𝛼∗(1 + 𝐻 𝑊⁄ )}}, using our 

approximate discount rates to calculate 𝐻 . We regress actual optimal equity shares on their 

corresponding approximately optimal equity shares. The resulting R2 is 0.99, with a slope of 0.95 

and an intercept of 0.05. This tight regression fit indicates that it is possible to obtain quite accurate 

approximations of optimal asset allocations using simple functions. The root mean square 

approximation error across all parameter sets and grid points is 3.66 percentage points. 

The above evaluation of our approximation’s accuracy equally weights all points in our state 

space grid, regardless of their likelihood of occurring and approximation error’s impact on welfare 

at each point. As an alternative, we compute the expected discounted lifetime utility for a 22-year-

old whose only financial wealth is the labor income she earned in the current period and who 

follows our approximate asset allocation policy. Across the 5,103 parameter sets, the average 

discounted expected utility loss relative to following the optimal asset allocation policy is 

equivalent to only a 0.06% reduction in lifetime consumption. The analogous loss from following 

the common “set your equity share to 100 minus your age” rule of thumb is 2.00%. A constant 60% 

stock portfolio allocation results in an average welfare loss of 3.75%. 

In an extension, we consider the case where labor income shocks are correlated with stock 

market returns. We find that using the formula max<0,min<1, 𝛼∗(1 + 𝐻 𝑊⁄ ) − 𝛽+,-. 𝐻 𝑊⁄ ?? 

during working life performs remarkably well, where 𝛽+,-. is the coefficient from regressing 

log permanent income shocks on log stock market returns, and 𝐻 is computed using the same 

discount rates as in the uncorrelated case. Correlations of temporary income shocks with stock 
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market returns do not have a material impact on the optimal asset allocation. 

Our paper adds to a small body of academic literature that can be classified as “practical 

finance,” although many of these previous papers stop at providing easily computable rules of 

thumb without allowing these rules to vary with model parameters. Winter, Schlafmann, and 

Rodepeter (2012) evaluate the performance of three consumption rules of thumb. Love (2013) 

estimates, for one set of parameters, optimal rules of thumb for asset allocation and savings rates 

that are linear in either age or the ratio of financial wealth to total (human plus financial) wealth. 

Fischer and Koch (2025) provide approximations to optimal asset allocations that are linear in age 

and the ratio of current labor income to financial wealth for a small number of parameter sets. 

Brown, Cederburg, and O’Doherty (2017) propose a rule of thumb for optimally allocating assets 

between traditional and Roth tax-advantaged retirement savings accounts. Agarwal, Driscoll, and 

Laibson (2013) derive an analytic approximation to the optimal fixed-rate mortgage refinancing 

strategy. 

Our work also contributes to the literature on optimal lifecycle asset allocation in the presence 

of risky labor income. Merton (1971) and Svensson and Werner (1993) provide solutions for agents 

with constant absolute risk aversion utility. He and Pearson (1991), He and Pagés (1993), Cuoco 

(1997), and El Karoui and Jeanblanc-Picqué (1998) consider settings where labor income risk is 

spanned by tradable asset risk. Duffie et al. (1997), Koo (1998, 1999), and Viceira (2001) study 

infinitely lived agents with stationary labor income growth processes that are not perfectly 

correlated with traded asset returns. While the analytic results in these works offer valuable insights, 

they are challenging to use for direct quantitative guidance in real-life financial decisions. 

Besides CGM, numerical solutions for settings with realistic uninsurable labor income 

processes and other complicating factors are provided, for example, by Cocco (2005), Gomes and 

Michaelides (2005), Yao and Zhang (2005), Davis, Kubler, and Willen (2006), Benzoni, Collin-

Dufresne, and Goldstein (2007), Gomes, Kotlikoff, and Viceira (2008), Gomes, Michaelides, and 

Polkovnichenko (2009), Wachter and Yogo (2010), Campanale, Fugazza, and Gomes (2015), 

Huggett and Kaplan (2016), Fagereng, Gottlieb, and Guiso (2017), Dahlquist, Setty, and Vestman 
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(2018), Catherine (2022), and Duarte et al. (2024). 

The rest of the paper is organized as follows. Section 1 describes the portfolio choice problem 

setup and its numerical solutions. Section 2 calculates the discount rates for human capital over 

the life cycle. Section 3 approximates the discount rates with regressions and uses the fitted 

discount rates to calculate approximately optimal portfolio allocations. Section 4 compares the 

utility cost of different portfolio choice rules. Section 5 presents the extension where permanent 

labor income shocks are correlated with stock market returns, and Section 6 concludes. 
 

1 The Portfolio Choice Problem and Its Solutions 

1.1 Problem Setup (Cocco, Gomes, and Maenhout, 2005) 
Let 𝑡 denote the agent’s age. The agent starts working life at age 𝑡*, lives to a maximum 

possible age of 𝑇, retires at the end of a fixed and exogenous age K ≤ T, and at each 𝑡 maximizes 

the discounted sum of CRRA utility, adjusted for stochastic mortality: 

 

𝐸/Bδ01/ DE𝑝2

01)

23/

G
𝐶0
)14

1 − 𝛾

5

03/

(2) 

 

where 0 < δ < 1 is the discount factor, 𝐶0 is age 𝜏 consumption, 𝛾 is the coefficient of relative 

risk aversion, and 𝑝0 is the probability that the agent is alive at age 𝜏	 + 	1 conditional on being 

alive at age 𝜏.  

Taxes are not explicitly modeled, so all variables are implicitly after-tax where relevant. 

During working life, log real labor income is the sum of a deterministic cubic function of age 

𝑓(𝑡) = 𝑎* + 𝑎)𝑡 + 𝑎&𝑡& + 𝑎'𝑡', a permanent shock 𝑣/, and a temporary shock ε/: 

 

log(𝑌/) = 𝑓(𝑡) + 𝑣/ + ε/	  for 𝑡 ≤ 𝐾 (3) 

 

The permanent shock 𝑣/  follows the random walk process	 𝑣/ = 𝑣/1) + 𝑢/ , 	 where	
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𝑢/~𝑁(0, 𝜎6&)  is independently and identically distributed (i.i.d.) each period. The temporary 

shock 𝜀/ ∼ 𝑁(0, 𝜎7&)  is i.i.d. and uncorrelated with the permanent shock. Define permanent 

income during working life as labor income excluding its temporary component: 𝑃/ ≡

exp	(𝑓(𝑡) + 𝜈/).  

In retirement, the real retirement income benefit is a fixed fraction 𝜆 of permanent real labor 

income in the final year of working life4: 

 

𝑌/ = 𝜆𝑃8 	  for 𝐾 < 𝑡 ≤ 𝑇 (4) 

 

We define permanent income in retirement to be the retirement income benefit. 

 There are two financial assets available: a risk-free asset and a risky asset (the stock market). 

Every period, the risk-free asset yields a fixed real gross return 𝑅9 > 0 whose log is 𝑟9. The risky 

asset’s real gross return 𝑅/ > 0 is drawn from a lognormal distribution, so that 𝑟/ ≡ log(𝑅/) ∼

𝑁(𝑟, σ-&). We assume in the baseline case that the risky asset return is uncorrelated with labor 

income shocks. 

 The agent enters each age t with real financial assets worth 𝐹/ and receives real labor income 

𝑌/. Define 𝑋/ ≡ 𝐹/ + 𝑌/ as cash-on-hand at t. The agent decides how much to consume and the 

fraction 𝛼/ of the remaining financial portfolio 𝑊/ ≡ 𝑋/ − 𝐶/ to invest in the risky asset. The 

agent cannot borrow or sell short. Thus, the agent is subject to the constraints 

 

𝑋/:) = (𝑋/ − 𝐶/)lmmnmmo
;!

9α/𝑅/:) + (1 − α/)𝑅9:qrrrrrrrrrsrrrrrrrrrt
<!"#

+ 𝑌/:) (5) 

0 < 𝐶/ ≤ 𝑋/ (6) 

0 ≤ 𝛼/ ≤ 1 (7) 

 

 
4 In the U.S. Social Security system, the retirement income benefit is a complicated nonlinear function of 35 years of 
labor income. Setting retirement income to depend only on final working-life permanent income allows us to not keep 
track of the history of labor income as a state variable. 
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Because the value function is homogeneous with respect to current permanent labor income5, we 

can drop permanent labor income as a state variable and replace the state variable 𝑋/ with the 

normalized variable 𝑥/ ≡ 𝑋//𝑃/. Consumption is solved for as a multiple of permanent income, 

𝑐/ ≡ 𝐶//𝑃/. Let 𝑤/ ≡ 𝑥/ − 𝑐/ . 

We solve this problem numerically at each grid point of a discretized state space. The 201 

normalized cash-on-hand values on the grid range from 0.25 to 50. Details of the numerical 

solution technique are given in the Appendix. 

 

1.2 Parameterization 
Agents start their economic life at age 22, work until the end of age 66 (the current Social 

Security full retirement age is 67), and live no longer than age 100. Mortality probabilities at each 

age are set to match the life table for the total U.S. population from the National Center for Health 

Statistics (NCHS). Following CGM, the time discount factor δ is set to 0.96. The standard 

deviation of the risky asset’s log return 𝜎- is set to 0.185, the annualized standard deviation of 

the CRSP value-weighted market index log monthly return in excess of the 1-month Treasury log 

return from July 1926 to July 2024. 

We solve the problem for a range of values of the parameter vector Ω =

9𝛾, 𝜎6, 𝜎= , 𝑎*, 𝑎), 𝑎&, 𝑎', 𝜆, 𝑟9 , 𝑟 − 𝑟9:  that covers much of the space that is likely to be 

economically relevant. 

• Relative risk aversion 𝛾: 4, 5, 6, 7, 8, 9, and 10. Risk aversion of 10 is commonly regarded 

as the upper limit of reasonable risk aversion (Mehra and Prescott, 1985). We find that at 

a risk aversion of 4, the optimal equity allocation is very frequently at the 100% upper 

boundary. Therefore, the optimal equity allocation for lower risk aversions will be even 

more uniformly 100%, making any approximation that weakly decreases with risk 

aversion and is accurate for risk aversions above 4 able to accurately fit solutions for risk 

 
5 See Carroll (2022, pp. 5-6) for a proof of this homogeneity. 
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aversions below 4. 

• Standard deviation of log permanent income shocks 𝜎6: 0.102, 0.103, and 0.130. These 

are CGM’s estimates for individuals with no high school, only a high school, and a college 

education, respectively. 

• Standard deviation of log temporary income shocks 𝜎7: 0.242, 0.272, and 0.325. These 

are CGM’s estimates for individuals with a college, only a high school, or no high school 

education, respectively. 

• Polynomial coefficients for the deterministic portion of the real log labor income path: {𝑎*,	

𝑎) ,	 𝑎& ,	 𝑎' } = {-2.1361, 0.1684, -0.00353, 0.000023}, {-2.1700, 0.1682, -0.00323, 

0.000020}, {-4.3148, 0.3194, -0.00577, 0.000033}. These are CGM’s estimates for 

individuals with no high school degree, only a high school degree, and a college degree, 

respectively. As education increases, income grows more steeply in early life and is higher 

on average. 

• Retirement income benefit replacement rate 𝜆: 0.4, 0.6, 0.8. Biggs and Springstead (2008) 

estimate that for a 64-66 year old beneficiary, the median Social Security benefit as a 

percent of the individual’s average inflation-adjusted labor income over the final five years 

prior to claiming benefits ranges from 40% in the highest lifetime earnings quintile to 82% 

in the second-lowest lifetime earnings quintile.6  

• Log real risk-free rate 𝑟9: 0, 0.01, and 0.02. 

• Log risk premium of the risky asset 𝑟 − 𝑟9: 0.02, 0.03, and 0.04. These are considerably 

lower than the 6.5% log equity premium realized from July 1926 to July 2024. However, 

even a 2% log equity premium results in optimal equity allocations that are frequently 

100%. Therefore, any approximation that accurately fits the solution for log equity premia 

of 4% or less should be accurate for log equity premia above 4%.  
 

 
6 The median replacement rate is infinite for the lowest lifetime earnings quintile because the median individual in 
that quintile had no labor income in the five years prior to claiming benefits. 



 10 

Allowing each of these parameters to vary independently of the others creates 7 × 3 × 3 × 3 × 3 × 

3 × 3 = 5,103 different pre-retirement parameter sets for which we solve the problem. In retirement, 

labor income (the retirement income benefit) is risk-free and constant over time; the parameters 

governing working-life labor income and the retirement income replacement rate become 

irrelevant, leaving only 7 × 3 × 3 = 63 different parameter sets to consider. 
 

1.3 Solutions 
Figure 1 plots, for a particular set of parameter values, the percent of the financial portfolio 

allocated to the risky asset at various ages as a function of normalized invested wealth 𝑤/ (cash-

on-hand at the beginning of the period minus current consumption, normalized by current 

permanent income). The investor in the graph has a relative risk aversion of 7 and faces the labor 

income process of a college graduate, a log risk-free rate of 2%, a log equity premium of 2%, and 

a retirement income benefit replacement rate of 40%. The risk-free rate approximately equals the 

five-year TIPS real yield in 2024. The equity premium is similar to the 1.9% forecast for U.S. 

large-cap equities’ log excess return over cash made by the hedge fund AQR at year-end 2023 

using dividend and payout discount models (Portfolio Solutions Group, 2024). 

If there is no labor income, the approximately optimal portfolio equity share is given by an 

analogue to the Merton (1969) continuous time solution that applies in a discrete time setting 

(Restoy, 1992; Campbell and Viceira, 1999), subject to leverage and short-sale constraints: 

 

𝛼∗ = max }0,min}1,
𝑟 − 𝑟9 +

1
2𝜎-

&

𝛾𝜎-&
~~ (8) 

 

For the parameter values described above, 𝛼∗ = 0.155, which is depicted by the horizontal solid 

gray line in Figure 1. 

The optimal allocation at age 99 also has an approximate analytic characterization. At this age, 

there is only one remaining period of labor income, and conditional on remaining alive, the labor 
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income is risk-free. The possibility of dying before age 100 does not alter the optimal asset 

allocation choice at age 99, which only affects utility if the agent survives to age 100. Therefore, 

the approximately optimal equity allocation is given by 𝛼$$ = max{0,min{1, 𝛼∗(1 +

𝐻$$ 𝑊$$⁄ )}} = max{0,min{1, 𝛼∗(1 + ℎ$$ 𝑤$$⁄ )}} , where 𝐻$$  is age-100 labor income 

(conditional on being alive at age 100) discounted at the risk-free interest rate, and ℎ$$ is 𝐻$$ 

divided by age-99 permanent income. As 𝑤$$ approaches infinity, 𝛼$$ asymptotes to 𝛼∗, since 

the economic importance of next period’s labor income becomes negligible. As 𝑤$$ approaches 

zero, 𝛼$$  rises to 100%, since an all-equity allocation in the financial portfolio constitutes a 

negligible amount of risk relative to remaining lifetime resources. We see these patterns in the 

black dotted line in Figure 1. 

 At age 75, the present discounted value of riskless retirement benefit payments is much higher 

than it is at age 99 because there are more such payments in expectation. Correspondingly, the 

optimal asset allocation for a given amount of invested financial wealth is much more aggressive 

at age 75. Whereas a 99-year-old who is investing financial wealth equal to ten times her annual 

Social Security benefit should only allocate 17% to stocks, a 75-year-old who is investing the same 

amount should allocate 44% to stocks. Like at age 99, 𝛼 at age 75 starts at 100% for low levels 

of invested financial wealth and declines towards the Merton asymptote 𝛼∗ as invested financial 

wealth increases. 

Before retirement, the relationship between invested financial wealth and optimal equity share 

is less straightforward to intuit; since working-life labor income is risky, it is unclear whether 

human capital should be treated more like a risk-free asset or a risky asset. We see in Figure 1 that 

qualitatively, the shape of working-life 𝛼 with respect to invested financial wealth is the same as 

in retirement, starting at 100% for low levels of wealth and asymptotically declining towards the 

Merton solution 𝛼∗  as wealth increases. Therefore, risky human capital whose growth is 

uncorrelated with the stock market’s return is akin to a fixed income holding. 

Even with relatively high risk aversion and an equity premium that is much lower than its 

historical realization, a 45-year-old optimally holds 100% of her portfolio in stocks as long as her 
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financial wealth to be invested is less than 1.6 times her permanent income. Common financial 

advice is to hold any money you might spend in the near term entirely in cash, and of the remaining 

money, allocate a percentage equal to one hundred minus your age to stocks (Choi, 2022). The 

CGM model does not recommend that this 45-year-old allocate 55% to stocks until invested wealth 

reaches 3.8 times her permanent income. The average target date retirement fund intended for 

somebody 20 years from retirement holds about 75% of its assets in stocks (Shoven and Walton, 

2021), which the CGM model recommends for this individual when invested wealth equals 2.4 

times permanent income. 
 

2 Labor Income Discount Rates  

2.1 Methodology 
We conjecture that even before age 99, the optimal equity share can be well-approximated by 

the expression  

 

𝛼�/ = max{0,min{1, 𝛼∗(1 + ℎ/ 𝑤/⁄ )}} (9) 

 

given appropriate discount rates to compute ℎ/, the present discounted value of normalized future 

labor income. This is not a vacuous conjecture because ℎ/ is not allowed to vary with normalized 

invested wealth 𝑤/  and the functional form constrains the shape of the relationship between 

𝛼�/	and 𝑤/. 

Fix a value of the parameter vector Ω. Our procedure for finding discount rates for an agent 

with these parameter values starts from the perspective of the agent at age 99. At this age, the only 

future labor income comes at age 100, 𝑌)**. The value of 𝑝$$ (the probability of dying before 

age 100) does not alter the optimal asset allocation choice at age 99. We calculate the value of 

human capital normalized by age-99 permanent income as 

 



 13 

ℎ$$ =
𝐸$$(𝑌)** 𝑃$$⁄ )
1 + 𝑟",$$

(10) 

 

Here and subsequently, any expectations operator applied to labor income realized at age t 

conditions on surviving until t, although we suppress the conditioning notation. 

Let i index the normalized cash-on-hand grid points 𝑥> in our discretized state space from 1 

to I. We have already numerically calculated the optimal equity share 𝛼$$,>  and normalized 

consumption 𝑐$$,> for each value of 𝑥>. We now search for the discount rate 𝑟",$$ that minimizes 

the sum of squared distances between our approximations 𝛼�$$,> and the true values 𝛼$$,> across 

all 𝑥>. 

 

𝑟",$$ = argmin-B9𝛼�$$,> − 𝛼$$,>:
&

?

>3)

(11) 

𝛼�$$,> = max �0,min �1, 𝛼∗ �1 +
𝐸$$(𝑌)** 𝑃$$⁄ ) (1 + 𝑟))⁄

𝑥> − 𝑐$$,>
��� (12) 

 

We next search for the discount rate to apply at age 98. At this age, there are two future income 

arrivals to discount in order to compute ℎ$%. We discount age-99 income by 1 + 𝑟",$%, and age-

100 income by 91 + 𝑟",$%:91 + 𝑟",$$:, holding 𝑟",$$ fixed at the value we identified in equation 

(11). Thus, we search for the value of the one-period-ahead discount rate 𝑟",$% that minimizes the 

sum of squared distances between 𝛼�$%,> and 𝛼$%,>: 

 

𝑟",$% = argmin-B9𝛼�$%,> − 𝛼$%,>:
&

?

>3)

(13) 

𝛼�$%,> = max

⎩
⎪
⎨

⎪
⎧

0,min

⎩
⎪
⎨

⎪
⎧

1, 𝛼∗

⎝

⎜
⎛
1 +

𝐸$%(𝑌$$ 𝑃$%⁄ )
1 + 𝑟 + 𝐸$%(𝑌)** 𝑃$%⁄ )

(1 + 𝑟)91 + 𝑟",$$:
𝑥> − 𝑐$%,>

⎠

⎟
⎞

⎭
⎪
⎬

⎪
⎫

⎭
⎪
⎬

⎪
⎫

(14) 
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 We continue this procedure, reducing age by one year at a time and holding fixed all discount 

rate values computed in previous steps. For age t, we have: 

𝑟",/ = argmin-B9𝛼�/,> − 𝛼/,>:
&

?

>3)

(15) 

𝛼�/,> = max

⎩
⎪
⎨

⎪
⎧

0,min

⎩
⎪
⎨

⎪
⎧

1, 𝛼∗

⎝

⎜
⎛
1 +

 ∑
𝐸𝑡9𝑌𝑗 𝑃𝑡⁄ :

(1 + 𝑟)∏ 91 + 𝑟𝑦,𝑚:
𝑗−1
𝑚=𝑡+1

100
𝑗=𝑡+1

𝑥𝑖 − 𝑐𝑡,𝑖

⎠

⎟
⎞

⎭
⎪
⎬

⎪
⎫

⎭
⎪
⎬

⎪
⎫

(16) 

 

Once in retirement, the value of normalized labor income is non-stochastic and always equal to 1, 

since permanent income in retirement is defined as the size of the retirement income benefit. 

Before retirement at the end of age 𝐾, there is uncertainty about income both during working life 

and during retirement. The expectations at 𝑡 < 𝐾  of normalized income earned at 𝑡 + 𝑛 

conditional on surviving to 𝑡 + 𝑛 are 

 

𝐸/(𝑌/:@/𝑃/) = exp �𝑓(𝑡 + 𝑛) − 𝑓(𝑡) +
1
2
(𝑛𝜎6& + 𝜎=&)� 				if	𝑡 + 𝑛 ≤ 𝐾 (17) 

 

𝐸/(𝑌/:@/𝑃/) = 𝜆 exp �𝑓(𝐾) − 𝑓(𝑡) +
1
2
(𝐾 − 𝑡)𝜎6&� 				if	𝑡 + 𝑛 > 𝐾 (18) 

 
 

2.2 Examples of Labor Income Discount Rates over the Life Cycle 
Figure 2 plots the life-cycle path of one-period-ahead labor income discount rates for relative 

risk aversion of 4, 7, or 10, holding all other parameters fixed at a particular vector of values (labor 

income process of a college graduate, a log risk-free rate of 2%, a log equity premium of 2%, and 

a retirement income benefit replacement rate of 40%).  

Higher values of risk aversion are associated with higher discount rates during working life. 
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Discount rates are highest when young because of liquidity constraints created by rising expected 

labor income during the first part of working life.7 In the second half of working life, discount 

rates are roughly flat with respect to age unless risk aversion is high, in which case discount rates 

rise with age. 

During retirement, discount rates do not vary with risk aversion, which makes sense because 

labor income in the form of the retirement benefit is risk-free. The discount rate is a bit above the 

risk-free rate and slightly hump-shaped with respect to age. Merton (1971) and Bodie, Merton, and 

Samuelson (1992) show analytically that in a continuous time setting with no borrowing 

constraints, risk-free labor income is discounted at the risk-free rate when constructing optimal 

portfolios. The fact that our discount rates do not exactly equal the risk-free rate is attributable to 

the difference between continuous time and our discrete time setting where the time unit is one 

year.8  

Figure 3 shows that higher retirement income benefit replacement rates do not materially 

affect early-life discount rates but make the rise in discount rates just before retirement more 

pronounced. A higher replacement rate increases the value of human capital, which makes optimal 

financial portfolios more aggressive. But higher discount rates on labor income decrease the value 

of human capital, making optimal financial portfolios more conservative. Therefore, the fact that 

discount rates rise with the replacement rate indicates that as retirement income increases relative 

to working-life income, financial risk-taking does not rise as quickly as it would if the discount 

rate remained unchanged.  

In Figure 4, we display the path of discount rates when the risk-free interest rate varies. As is 

intuitive, an increase in the risk-free rate increases labor income discount rates about one-for-one. 

Figure 5 illustrates that in contrast, an increase in the equity premium decreases labor income 

 
7 Online Appendix Figure 1 shows that when the deterministic portion of log labor income is constant during working 
life, discount rates are flat during the first half of working life. Discount rates in the second half of working life are 
not materially altered by switching the deterministic portion of working-life log labor income to a constant value. 
8 The presence of borrowing constraints in our setting may play a role as well, but we see that even at age 99, when 
the portfolio problem reduces to a one-period problem and borrowing constraints become irrelevant, our discount rates 
diverge from the risk-free rate.  
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discount rates. 
 

 

3 Low-Dimensional Approximations of Optimal Life-Cycle 

Portfolio Choices 

3.1 Discount Rate Approximation Method 
Having obtained one-period-ahead discount rates for each age and parameter set, we now 

create low-dimensional approximations of these discount rates using regressions of discount rates 

on model parameters. 

In retirement, the variance of labor income shocks during working life is irrelevant to the 

optimal asset allocation, as is the fraction of working life income replaced by the retirement income 

benefit. Therefore, we run two separate regressions: one for discount rates when the next period is 

in working life, and one for discount rates when the next period is in retirement. Visual inspection 

of Figures 2-5 reinforces the case for using separate approximations. 

For discount rates during working life, we regress discount rates on relative risk aversion, log 

equity premium, log risk-free rate, variance of the permanent income shock, variance of the 

temporary income shock, retirement income replacement rate, and in some specifications either 

age or a quadratic in age. We have 5,103 sets of parameter values and 44 years in which the next 

year is within working life, so there are 5,103 × 44 = 224,532 discount rate observations in this 

regression. For years where the following year is a retirement year, we regress discount rates on 

relative risk aversion, log equity premium, log risk-free rate, and in some specifications either age 

or a quadratic in age. Due to the smaller number of parameters that are relevant during retirement, 

there are only 63 sets of parameter values, so there are 63 × 34 years = 2,142 discount rate 

observations in the retirement regression. We also try a specification in the working-life and 

retirement regressions where age and the square of age are interacted with each of the other 

explanatory variables. 
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3.2 Approximation Coefficients 
Table 1 shows coefficients from the working-life discount rate regressions. The first column 

excludes age from the set of explanatory variables. With this simple form, we are already able to 

achieve an adjusted R2 of 0.864. Although this will not be our main specification, it may be 

appealing to many users because the approximate discount rate that comes out of this specification 

does not change with age within working life—that is, the term structure is flat. Nearly all finance 

students are accustomed to computing present values under a flat term structure, so that a cashflow 

occurring 𝜏  periods in the future is discounted by (1 + 𝑟)0 . Many students may find it 

challenging to compute present values when the one-period-ahead discount rate varies with each 

age.  

Consistent with the visual evidence from Figures 2 to 5, the discount rate is increasing in risk 

aversion, the risk-free rate, and the retirement income replacement rate, and decreasing in the 

equity premium. When risk aversion rises by 1, the discount rate rises by 0.9 percentage points. A 

1 percentage point rise in the log risk-free rate results in a 1.1 percentage point rise in the discount 

rate. The other two parameters have smaller effects. A 1 percentage point increase in the log equity 

premium decreases the discount rate by 0.3 percentage points. A 10 percentage point increase in 

the retirement income replacement rate raises the discount rate by only 0.1 percentage points.  

In addition, the discount rate increases with the riskiness of labor income. Permanent income 

shock risk has a much larger effect than temporary income shock risk. Going from the permanent 

income shock variance of a high school dropout to a college graduate increases the discount rate 

by 2.8 percentage points. Going from the temporary income shock variance of a high school 

dropout to a college graduate decreases the discount rate by a negligible 0.1 percentage points.  

The second column adds age as an explanatory variable. An additional 10 years of age 

decreases the discount rate by 0.3 percentage points. The addition of this explanatory variable 

raises the adjusted R2 from 0.864 to 0.880. The coefficients on the other explanatory variables 

remain unchanged relative to the first column because all model parameters are uncorrelated with 

each other in the data we created to feed into the regression. 
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The third column adds the square of age as an explanatory variable. This quadratic term is 

estimated to have a positive coefficient, consistent with the second derivative of the discount rate 

with respect to age being positive in Figures 2 to 5. With the square of age in the regression, the 

adjusted 𝑅& increases to 0.886.  

The fourth column contains coefficients from a regression where we add interactions of all 

non-age variables with age and the square of age. (The coefficients on the interactions are not 

shown.) Despite twelve additional explanatory variables, the adjusted 𝑅& rises only to 0.907. We 

judge this incremental 𝑅& gain to be insufficient to justify the additional complexity created for 

the end user. Therefore, we adopt the third column’s specification as our approximation going 

forward. 

Table 2 shows discount rate regressions for the retirement period. The first column excludes 

age from the set of explanatory variables. Risk aversion has nearly no effect on the discount rate 

for the risk-free retirement benefit. The effects of the equity premium and risk-free rate have the 

same signs as during working life, but their magnitudes are slightly attenuated. The adjusted 𝑅& 

in this specification is 0.721. Adopting the approximations that come from the first columns of 

Tables 1 and 2 allows users to compute the value of human capital while changing the one-period-

ahead discount rate only once—at the retirement threshold.  

Adding age as an explanatory variable in the second column of Table 2 raises the adjusted R2 

to 0.736, while adding the square of age in the third column substantially improves the adjusted 

𝑅& to 0.819 by capturing the hump shape of discount rates with respect to age in retirement. The 

adjusted 𝑅&  increase to 0.841 in the fourth column, which adds as explanatory variables 

interactions of age and age squared with all the non-age variables. Given the modest improvement 

in fit relative to the number of additional explanatory variables, and to maintain consistency with 

our main specification during working life, we adopt the specification in the third column for our 

approximation of discount rates in retirement.  
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3.3 Calculation Example 
Suppose we are calculating the optimal equity allocation for a 55-year-old with relative risk 

aversion of 7, a log real risk-free rate of 2%, a log equity premium of 2% (which translates into a 

exp(0.02 + 0.02 + 0.5 × 0.185&) − exp(0.02) = 3.86% level equity premium9), a retirement 

income benefit replacement rate of 40%, and the labor income risk of a college graduate (standard 

deviation of log permanent income shocks of 0.130, log temporary income shocks of 0.242). 

Expected annual real labor income is $100,000 through age 66 (the last year of working life) and 

$40,000 thereafter. 

Expected age-56 labor income is discounted by dividing it by gross discount rate 1 + 𝑟",AA, 

where 𝑟",AA equals the dot product of the parameter values and their corresponding coefficients 

in the third column of Table 1: 0.087 × 7/10 – 0.267 × 0.02 + 1.132 × 0.02 + 4.332 × 0.1302 + 

0.028 × 0.2422 + 0.010 × 0.40 – 0.149 × 55/100 + 0.142 × (55/100)2 – 0.020 = 0.0981. 

 Expected age-57 labor income is discounted by dividing it by the cumulative gross discount 

rate 91 + 𝑟",AA:91 + 𝑟",AB:, where 𝑟",AB = 0.087 × 7/10 – 0.267 × 0.02 + 1.132 × 0.02 + 4.332 × 

0.1302 + 0.028 × 0.2422 + 0.010 × 0.40 – 0.149 × 56/100 + 0.142 × (56/100)2 – 0.020 = 0.0981. 

 Expected age-67 labor income is discounted by dividing it by 91 + 𝑟",AA:91 + 𝑟",AB:⋯ (1 +

𝑟",BB), where we compute 𝑟",BB using the coefficients in the third column of Table 2 because age-

67 income comes from the retirement benefit: 0.0003 × 7/10 – 0.217 × 0.02 + 0.893 × 0.02 + 0.476 

× 66/100 – 0.295 × (66/100)2 – 0.166 = 0.0334. 

The third column of Table 3 contains the one-period-ahead gross discount rates 1 + 𝑟",/1) 

applied at each age t – 1 to income arriving at t. The fourth column contains the cumulative gross 

discount rates used by the 55-year-old to discount each future year’s income, which is the product 

of the one-period-ahead gross discount rates from age 55 up to the year before the given future 

year. The final column lists the discounted value of income at each age, the sum of which yields 

 
9 The expectation of a lognormally distributed random variable whose log has an expectation of 𝜇 and a variance of 
𝜎$ is exp	(𝜇 + 0.5𝜎$). 
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human capital value 𝐻 of $924,805. 

Suppose this individual is allocating a financial portfolio worth $1,000,000. In the absence of 

human capital, her optimal equity share would be given by equation (8) as 15.5%. Adjusting for 

human capital entails multiplying this percentage by 1 + 𝐻 𝑊⁄ = 1 + 924,805 1,000,000⁄ =

1.92, giving an optimal equity share of 30%. As a comparison, when we calculate the actual 

optimal equity share for this individual using dynamic programming, it is 33%. Note that this 

expected earnings trajectory is not one that was used to form our discount rate approximations, so 

this exercise is an out-of-sample test of our approximation’s accuracy. 

If alternatively, we had chosen to use discount rates that do not vary by age except across the 

retirement threshold, the one-period ahead discount rate would be 0.102 for all working life years 

and 0.0367 during all retirement years. The resulting human capital value is $907,681, which also 

yields an optimal equity share of 30%. 

 

4 Approximation Accuracy 
We systematically assess our approximation’s accuracy in three ways. 

First, we regress each optimal equity share on its corresponding approximately optimal equity 

share computed using our procedure. Each point in our (age, cash-on-hand as a multiple of 

permanent income) state space grid for every parameter set we consider constitutes an 

(approximately optimal equity share, optimal equity share) observation pair—80 million 

observations in total.10 This regression yields a slope coefficient of 0.946, an intercept of 0.054, 

and an R2 of 0.990.11 Figure 6 shows a bin-scatter plot of average optimal equity share within 1 

 
10 We have 5,103 parameter sets, 78 ages, and 201 cash-on-hand grid points, yielding 5,103 × 78 × 201 = 80,004,834 
observations. Because some parameters are relevant during working life but irrelevant in retirement, for each 
parameter set, there are 80 other parameter sets that have identical solutions during retirement. To avoid overweighting 
working life relative to retirement, we do not exclude the duplicate observations from the regression. 
11 One reason the R2 is higher for these equity allocation regressions than for the discount rate regressions in Tables 
1 and 2 is that in equation (9), the optimal equity share is less sensitive to discount rate movements of magnitudes 
comparable to our discount rate approximation errors than to financial wealth movements of the magnitudes we 
consider. 
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percentage point wide approximately optimal equity share bins. Our procedure yields an equity 

share that is somewhat too aggressive when the optimal equity share is below 83% and slightly 

too conservative when the optimal equity share is above 83%.12 

Second, we compute the root mean square difference between the equity portfolio share 

recommended by our approximation and the actual optimum. Across all the parameter sets and 

state space grid points, the root mean square error is 3.66 percentage points. Figure 7 shows the 

distribution of the root mean square error across parameter sets, where the height of the bars 

indicates the number of parameter sets. Sixty-six percent of parameter sets have a root mean square 

error of 4 percentage points or less, and 95% have a root mean squared error of 5 percentage points 

or less. 

Third, we compute the utility cost of following our approximate rule. A shortcoming of the 

previous two evaluation criteria is that they equally weight points in the state space that are likely 

and unlikely to be reached, and recommendation errors that have small and large welfare 

consequences. We consider a 22-year-old individual whose cash-on-hand equals current labor 

income. Allowing the individual to optimize her consumption policy given the asset allocation rule 

followed, we compute expected discounted lifetime utility under the optimal asset allocation rule 

and under our approximate rule. Each of these discounted utility values corresponds to the 

expected discounted utility delivered by a constant level of consumption while the agent is alive. 

The difference between these two levels is our measure of welfare loss. We calculate the average 

of this welfare loss across our 5,103 parameter sets. 

Table 4 shows that across all parameter sets, the average welfare loss from using our rule 

instead of the optimal rule is equivalent to a 0.06% reduction in lifetime consumption. Welfare 

losses are similar across different levels of risk aversion, equity premium, and education. The other 

columns show that welfare losses under other possible portfolio rules are significantly larger than 

under our rule. A perennial 100% equity allocation results in the largest average welfare loss—a 

 
12 One could obtain improved asset allocation recommendations by multiplying our procedure’s equity share by 0.946 
and adding 0.054. We do not add this extra step because the added complexity would yield only small welfare 
improvements. 
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11.85% reduction in lifetime consumption, driven by enormous losses for individuals with high 

risk aversion. Next most costly is permanent equity non-participation, which is equivalent to a 

7.86% reduction in lifetime consumption. Perhaps not coincidentally, neither of these investment 

strategies is commonly recommended. Two popular rules of thumb yield modest welfare losses, 

although neither do as well as our approximate rule. A lifetime of 60% equities reduces welfare by 

3.75%, while investing 100 minus your age percent in stocks reduces welfare by 2.00%. 
 

5 Extension: Positive Correlation Between Labor Income 

Shocks and Stock Returns 
 In this section, we develop approximately optimal asset allocations when labor income shocks 

are positively correlated with stock market returns. Although the contemporaneous correlation 

between labor income shocks and stock returns is nearly zero in aggregate, when Campbell et al. 

(2001) regress log labor income shocks in 27 industry × education level subsamples on excess 

stock returns lagged one year, they estimate regression coefficients of between -0.18 and 0.32. The 

vast majority of these lagged coefficients are not statistically distinguishable from zero, but for the 

aggregate population, the lagged coefficient is 0.08 and statistically significant. Campbell et al. 

(2001) treat these positive lagged correlations as if they were contemporaneous correlations when 

applying the CGM model. 

 Viceira (1998) and Campbell and Viceira (2002) derive an analytic approximation to the 

optimal equity share in a one-period setting where nontradable labor income is imperfectly 

correlated with the risky asset return. Their formula inspires the conjecture that the following 

approximation would work well in our setting: 

 

𝛼�/ = max<0,min<1, 𝛼∗(1 + ℎ/ 𝑤/⁄ ) − 9𝛽+,-. + 𝜙𝛽/,.+: ℎ/ 𝑤/⁄ ?? (19) 

 

where 𝛽+,-. = 𝑐𝑜𝑣(𝑢/ , 𝑟/)/𝜎-& is the population coefficient from regressing the log permanent 

income shock on the log stock market return, 𝛽/,.+ = 𝑐𝑜𝑣(𝜖/ , 𝑟/)/𝜎-&  is the population 
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coefficient from regressing the log temporary income shock on the log stock market return, and 𝜙 

is a constant to be estimated. Intuitively, a fraction 𝛽+,-. + 𝜙𝛽/,.+  of human capital is an 

implicit equity investment, so the optimal financial equity investment is reduced by 

9𝛽+,-. + 𝜙𝛽/,.+:𝐻/  dollars, or 9𝛽+,-. + 𝜙𝛽/,.+:ℎ/  times permanent income, relative to 

when labor income shocks are uncorrelated with stock market returns. We also conjecture that 

calculating ℎ/ in equation (19) using the same approximate discount rates as in the uncorrelated 

human capital case will yield good results. 

 We first consider positively correlated permanent income shocks. Figure 8 plots optimal equity 

shares for a particular parameter set when 𝛽+,-. = 0, 0.1, 0.2, or 0.3, and 𝛽/,.+ = 0. As expected, 

the more positively correlated labor income is with stock returns, the more conservative is the 

optimal financial portfolio allocation. When 𝛽+,-. = 0.3, the optimal equity share increases in 

invested wealth. This phenomenon arises in equation (19) when the Merton solution 𝛼∗ (which 

is 0.271 in this case) is smaller than 𝛽+,-.. In such a scenario, the implicit equity exposure in 

human capital is so high that at low levels of financial wealth, the individual’s stock market 

exposure is above her ideal even when there is no stock in her financial portfolio. It is only when 

financial wealth rises sufficiently that the individual needs to buy some stock to keep her stock 

market exposure at its ideal level. 

Also surprising is the fact that the downward shift in equity share is nearly as large at age 65 

as it is at age 30. This is an artifact created by the retirement income benefit being determined 

entirely by permanent income at age 66 in the CGM model. A negative stock market return at age 

66 that percolates into a -1% permanent income shock that year forces retirement income to be 

permanently 1% lower, so a 65-year-old has substantial stock market risk embedded in human 

capital despite having only one working year remaining. In contrast, in the U.S. Social Security 

system, a low income realization at age 65 has only a small effect on one’s Social Security benefit 

because the benefit payment is determined by the average of 35 years of indexed labor income. 

 We use equation (19) for equity shares through age 65 and equation (9) for equity shares from 
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age 66 onwards.13 We consider cases where 𝛽+,-. = 0.1, 0.2, or 0.3, and 𝛽/,.+ = 0, for all 

5,103 parameter sets. The root mean square approximation error for equity share before age 66 

across these 3 × 5,103 = 15,309 scenarios is 3.67 percentage points.14 Regressing optimal equity 

share on approximately optimal equity share before age 66 yields a slope coefficient of 0.988, an 

intercept of 0.0004, and an R2 of 0.990. The average welfare loss from using equations (9) and (19) 

instead of the optimal rule is equivalent to only a 0.02% drop in lifetime consumption. 

 We next study the case where temporary income shocks are positively correlated with stock 

market returns. Figure 9 contains optimal equity share graphs when 𝛽+,-. = 0 and 𝛽/,.+ = 0, 

0.1, 0.2, or 0.3. Although a positive correlation between temporary labor income shocks and the 

stock market also has a negative effect on equity shares, the magnitude of this effect is negligible.  

 We estimate the value of 𝜙 that minimizes the mean squared deviation between the output 

of (19) and the actual optimal equity allocations at all state space grid points and parameter value 

sets for 𝛽/,.+  = 0.1, 0.2, or 0.3, and 𝛽+,-. = 0 .15  We obtain 𝜙 = 0.0045 , implying that 

positively correlated temporary income shocks barely matter for the optimal equity share. 

Therefore, the formula max<0,min<1, 𝛼∗(1 + 𝐻 𝑊⁄ ) − 𝛽+,-. 𝐻 𝑊⁄ ?? is adequate in practice for 

calculating the optimal equity share during working life. The root mean square error before age 66 

is 5.47 percentage points whether or not 𝜙 =  0 or 0.0045.16  With 𝜙 = 0.0045 , regressing 

 
13 If we allow a constant 𝜉 to multiply 𝛽%&'( in equation (19) and choose its value to minimize the root mean square 
approximation error, we obtain 𝜉 = 1.014, which is essentially identical to the value of 1 we use. The root mean 
square error if 𝜉 = 1.014 is 3.52%. 
14 For all root mean square error calculations and regressions of optimal equity share on approximately optimal equity 
share in this section, we exclude cases where the individual endogenously chooses to save less than 0.1% of current 
permanent income. The welfare consequences of asset allocation choices are trivial for such a small amount of money, 
making the numerical solutions from the dynamic programming code unstable. Figures 8 and 9 also exclude these 
cases. 
15 We exclude cases where the individual saves less than 0.1% of current permanent income in estimating 𝜙. 
16 The root mean square error is larger when temporary income shocks are correlated with stock returns than when 
permanent income shocks are correlated with stock returns because in the former case, there are more instances where 
the optimal equity share has a non-monotonic relationship with wealth—falling for small values of wealth, quickly 
rising back to 100% as wealth increases modestly, and then resuming its usual weakly decreasing pattern. Such cases 
are most common at young ages and around retirement. 
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optimal equity share on approximately optimal equity share before age 66 yields a slope coefficient 

of 0.935, an intercept of 0.059, and an R2 of 0.973. The average welfare loss from using the 

approximation is 0.042% if 𝜙 = 0.0045 and 0.043% if 𝜙 = 0. 

 

6 Conclusion 
 We have developed a methodology for obtaining lifecycle asset allocation advice that closely 

approximates the recommendations from the canonical Cocco, Gomes, and Maenhout (CGM 2005) 

model. The methodology is economically interpretable, mathematically straightforward, and easily 

implemented. Unlike pre-existing analytic formulas, our recommendations are derived within a 

reasonably realistic setting. Unlike pre-existing rules of thumb, our recommendations are tailored 

to individual preferences and circumstances. 

 Real life is more complicated than the CGM setting, so the CGM solutions are probably not 

exactly optimal for a given individual. Deriving solutions for more realistic settings is an obvious 

direction for future work. However, as statistician George Box famously wrote, “All models are 

wrong, but some are useful.” A constraint on future research in practical finance is that in order to 

be useful, solutions for more complex, realistic settings should remain easily computable by a 

layperson and their economic rationale transparent enough to be persuasive.  

 

Appendix 

Numerical Solution Methodology 

We solve the model numerically using backward induction. At each age, we discretize the 

normalized cash-on-hand state variable into 201 points from 0.25 to 50, which are exponentially 

spaced with more density near zero (each value is 1.0268 times the prior value). We use 

exponentially spacing because the value function tends to be more concave at low levels of cash-

on-hand and close to linear at high levels. Exponential spacing allocates more points where the 
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function is more curved, improving the accuracy of the solution. 

We use grid search over choice variables to find the optimal decisions at each age × cash-on-

hand grid point, considering 101 equally spaced points for equity shares between 0% and 100%, 

and 101 equally spaced points for consumption as a multiple of permanent income. We use CGM’s 

algorithm for determining the range of consumption levels over which search occurs. Let i index 

cash-on-hand values on the grid. At each age, for i = 1 (the lowest cash-on-hand grid point), the 

consumption range we search over is 25% to 99.9% of cash-on-hand. For i = 2 to 9, the marginal 

propensity to consume (MPC) as we move from i – 1 to i is constrained to be between 0 and 1. For 

i ≥ 10, the MPC is constrained to be between 0 and the average MPC from i – 9 to i – 1. 

Normally distributed random variables are approximated as discrete random variables using a 

nine-point Gaussian quadrature following Tauchen and Hussey (1991). Following the method of 

Carroll (2022), we transform the CRRA value function into a quasi-linear form that is equivalent 

to the Epstein and Zin (1989) value function, which allows us to accurately evaluate the value 

function at points not on the state space grid points using linear interpolation and extrapolation. 

Following CGM, when evaluating the value function at cash-on-hand values below 0.25, we set 

its value equal to its value when cash-on-hand equals 0.25, which prevents the extrapolation 

procedure from assigning a negative value to the value function.  

 

References 
Agarwal, Sumit, John C. Driscoll, and David I. Laibson, 2013. “Optimal mortgage refinancing: A 

closed form solution.” Journal of Money, Credit and Banking 45, 591-622. 

Benzoni, Luca, Pierre Collin-Dufresne, and Robert S. Goldstein, 2007. “Portfolio choice over the 
life-cycle when the stock and labor markets are cointegrated.” Journal of Finance 62, 2123-
2167. 



 27 

Biggs, Andrew G., and Glenn R. Springstead, 2008. “Alternate measures of replacement rates for 
Social Security benefits and retirement income.” Social Security Bulletin 68(2). 
https://www.ssa.gov/policy/docs/ssb/v68n2/v68n2p1.html  

Bodie, Zvi, Robert C. Merton, and William F. Samuelson, 1992. “Labor supply flexibility and 
portfolio choice in a life cycle model.” Journal of Economic Dynamics and Control 16, 427-
449. 

Brown, David C., Scott Cederburg, and Michael S. O’Doherty, 2017. “Tax uncertainty and 
retirement savings diversification.” Journal of Financial Economics 126, 689-712. 

Campanale, Claudio, Carolina Fugazza, and Francisco Gomes, 2015. “Life-cycle portfolio choice 
with liquid and illiquid financial assets.” Journal of Monetary Economics 71, 67-83. 

Campbell, John Y., João Cocco, Francisco Gomes, and Pascal Maenhout, 2001. “Investing 
retirement wealth: A life-cycle model.” In John Y. Campbell and Martin Feldstein (eds), Risk 
Aspects of Investment-Based Social Security Reform. Chicago: University of Chicago Press. 

Campbell, John Y., and Luis M. Viceira, 1999. “Consumption and portfolio decisions when 
expected returns are time varying.” Quarterly Journal of Economics 114, 433-495. 

Campbell, John Y., and Luis M. Viceira, 2002. Strategic Asset Allocation: Portfolio Choice for 
Long-Term Investors. New York: Oxford University Press. 

Carroll, Christopher D., 2022. “Solution methods for microeconomic dynamic stochastic 
optimization problems.” Mimeo. 

Catherine, Sylvain, 2022. “Countercyclical labor income risk and portfolio choices over the life 
cycle.” Review of Financial Studies 35, 4016-4054. 

Choi, James J., 2022. “Popular personal financial advice versus the professors.” Journal of 
Economic Perspectives 36 (Fall), 167-192. 

Cocco, João F., Francisco J. Gomes, and Pascal J. Maenhout, 2005. “Consumption and portfolio 
choice over the life cycle.” Review of Financial Studies 18, 491-533. 

Cocco, João, F., 2005. “Portfolio choice in the presence of housing.” Review of Financial Studies 
18, 535-567. 

Cuoco, Domenico, 1997. “Optimal consumption and equilibrium prices with portfolio constraints 
and stochastic income.” Journal of Economic Theory 72, 33-73. 

Dahlquist, Magnus, Ofer Setty, and Roine Vestman, 2018. “On the asset allocation of a default 
pension fund.” Journal of Finance 73, 1893-1936. 

Davis, Steven J., Felix Kubler, and Paul Willen, 2006. “Borrowing costs and the demand for equity 
over the life cycle.” Review of Economics and Statistics 88, 348-362. 

Duarte, Victor, Julia Fonseca, Aaron Goodman, and Jonathan A. Parker, 2024. “Simple allocation 
rules and optimal portfolio choice over the lifecycle.” Working paper. 



 28 

Duffie, Darrell, Wendell Fleming, H. Mete Soner, and Thaleia Zariphopoulou, 1997. “Hedging in 
incomplete markets with HARA utility.” Journal of Economic Dynamics and Control 21, 753-
782. 

Eisner, Robert, 1980. “Capital gains and income: Real changes in the value of capital in the United 
States, 1946-77.” In The Measurement of Capital, Dan Usher, editor, 175-346. Chicago: 
University of Chicago Press. 

El Karoui, Nicole, and Monique Jeanblanc-Picqué, 1998. “Optimization of consumption with labor 
income.” Finance and Stochastics 2, 409-440. 

Epstein, Larry G., and Stanley E. Zin, 1989. “Substitution, risk aversion, and the temporal behavior 
of consumption and asset returns: A theoretical framework.” Econometrica 57, 937-969. 

Fagereng, Andreas, Charles Gottlieb, and Luigi Guiso, 2017. “Asset market participation and 
portfolio choice over the life-cycle.” Journal of Finance 72, 705-750. 

Fischer, Marcel, and Marlene Koch, 2025. “Heuristic portfolio rules with labor income.” European 
Journal of Finance 31, 1426-1444. 

Gomes, Francisco, Michael Haliassos, and Tarun Ramadorai, 2021. “Household finance.” Journal 
of Economic Literature 59, 919-1000. 

Gomes, Francisco J., Laurence J. Kotlikoff, and Luis M. Viceira, 2008. “Optimal life-cycle 
investing with flexible labor supply: A welfare analysis of life-cycle funds.” American 
Economic Review: Papers & Proceedings 98, 297-303. 

Gomes, Francisco, and Alexander Michaelides, 2005. “Optimal life-cycle asset allocation: 
Understanding the empirical evidence.” Journal of Finance 60, 869-904. 

Gomes, Francisco, Alexander Michaelides, and Valery Polkovnichenko, 2009. “Optimal savings 
with taxable and tax-deferred accounts.” Review of Economic Dynamics 12, 718-735. 

Gomes, Francisco, and Oksana Smirnova, 2023. “Stock market participation and portfolio shares 
over the life cycle.” Working paper. 

Graham, John W., and Roy H. Webb, 1979. “Stocks and depreciation of human capital: New 
evidence from a present-value perspective.” Review of Income and Wealth 25, 209-224. 

He, Hua, and Henri F. Pagès, 1993. “Labor income, borrowing constraints, and equilibrium asset 
prices.” Economic Theory 3, 663-696. 

He, Hua, and Neil D. Pearson, 1991. “Consumption and portfolio policies with incomplete markets 
and short-sale constraints: The infinite dimensional case.” Journal of Economic Theory 54, 
259-304. 

Huggett, Mark, and Greg Kaplan, 2016. “How large is the stock component of human capital?” 
Review of Economic Dynamics 22, 21-51. 



 29 

Jorgensen, Dale, and Barbara M. Fraumeni, 1989. “The accumulation of human and nonhuman 
capital, 1948-84.” In The Measurement of Saving, Investment, and Wealth, Robert E. Lipsey 
and Helen Stone Tice, editors, 227-286. Chicago: University of Chicago Press. 

Koo, Hyeng Keun, 1998. “Consumption and portfolio selection with labor income: A continuous 
time approach.” Mathematical Finance 8, 49-65. 

Koo, Hyeng Keun, 1999. “Consumption and portfolio selection with labor income: A discrete-time 
approach.” Mathematical Methods of Operations Research 50, 219-243. 

Love, David A., 2013. “Optimal rules of thumb for consumption and portfolio choice.” Economic 
Journal 123, 932-961. 

Mehra, Rajnish, and Edward C. Prescott, 1985. “The equity premium: A puzzle.” Journal of 
Monetary Economics 115, 145-161. 

Merton, Robert C., 1969. “Lifetime portfolio selection under uncertainty: The continuous-time 
case. Review of Economics and Statistics 51, 247-257. 

Merton, Robert C., 1971. “Optimum consumption and portfolio rules in a continuous-time model.” 
Journal of Economic Theory 3, 373-413. 

Portfolio Solutions Group, 2024. “Capital market assumptions for major asset classes.” Alternative 
Thinking 2024(1), AQR Capital Management, LLC.  

Restoy, Fernando, 1992. ‘‘Optimal portfolio policies under time-dependent returns.’’ Bank of 
Spain Working Paper 9207. 

Shoven, John B., and Daniel B. Walton, 2021. “An analysis of the performance of target date funds.” 
Journal of Retirement 8(4), 43-65. 

Svensson, Lars E.O., and Ingrid M. Werner, 1993. “Nontraded assets in incomplete markets: 
Pricing and portfolio choice.” European Economic Review 37, 1149-1168. 

Tauchen, George, and Robert Hussey, 1991. “Quadrature-based methods for obtaining 
approximate solutions to nonlinear asset pricing models.” Econometrica 59, 371-396. 

Viceira, Luis M., 1998. Optimal Consumption and Portfolio Choice for Long-Horizon Investors. 
Ph.D. thesis, Harvard University. 

Viceira, Luis M., 2001. “Optimal portfolio choice for long-horizon investors with nontradable 
labor income.” Journal of Finance 56, 433-470. 

Wachter, Jessica A., and Motohiro Yogo, 2010. “Why do household portfolio shares rise in wealth?” 
Review of Financial Studies 23, 3929-3965. 

Winter, Joachin K., Kathrin Schlafmann, and Ralf Rodepeter, 2012. “Rules of thumb in life-cycle 
saving decisions.” Economic Journal 122, 479-501. 

Wuthenow, Nicolas, 2024. “When it rains, it pours: Income risk perception and stock market 
participation.” Working paper. 



 30 

Yao, Rui, and Harold H. Zhang, 2005. “Optimal consumption and portfolio choices with risky 
housing and borrowing constraints.” Review of Financial Studies 18, 197-239. 



Table 1. Pre-retirement labor income discount rate approximation regressions 
This table shows coefficients from regressions where the dependent variable is the one-period-
ahead labor income discount rate at each age from 22 to 65 for each of the 5,103 sets of parameter 
values we consider. In the first column, the explanatory variables are relative risk aversion, log 
equity premium, log risk-free rate, permanent income shock variance, transitory income shock 
variance, and retirement income replacement rate. The second column adds age as an explanatory 
variable, and the third column adds the square of age. The fourth column adds interactions of each 
of the non-age variables with age and the square of age as explanatory variables; the coefficients 
on these interactions are not shown. Standard errors are in parentheses below the point estimates. 

 
Relative risk aversion 0.087 0.087 0.087 0.055 
÷ 10 (0.000) (0.000) (0.000) (0.001) 
Log equity premium -0.267 -0.267 -0.267 0.430 
 (0.002) (0.002) (0.002) (0.025) 
Log risk-free rate 1.132 1.131 1.132 1.225 
 (0.002) (0.002) (0.002) (0.025) 
Permanent income 4.332 4.332 4.332 5.888 
shock variance (0.007) (0.006) (0.006) (0.069) 
Transitory income 0.028 0.028 0.028 0.015 
shock variance (0.001) (0.001) (0.001) (0.010) 
Retirement income 0.010 0.010 0.010 0.124 
replacement rate (0.000) (0.000) (0.000) (0.001) 
Age ÷ 100  -0.026 -0.149 0.464 
  (0.000) (0.001) (0.009) 
(Age ÷ 100)2   0.142 -0.737 
   (0.001) (0.010) 
Constant -0.055 -0.044 -0.020 -0.106 
 (0.000) (0.000) (0.000) (0.002) 
Age interactions No No No Yes 
Observations 224,532 224,532 224,532 224,532 
Adj. R-squared 0.864 0.880 0.886 0.907 

  



Table 2. Retirement labor income discount rate approximation regressions 
This table shows coefficients from regressions where the dependent variable is the one-period-
ahead labor income discount rate at each age from 66 to 99 for each of the 63 sets of parameter 
values we consider for the retirement period. In the first column, the explanatory variables are 
relative risk aversion, log equity premium, and log risk-free rate. The second column adds age as 
an explanatory variable, and the third column adds the square of age. The fourth column adds 
interactions of each of the non-age variables with age and the square of age as explanatory 
variables; the coefficients on these interactions are not shown. Standard errors are in parentheses 
below the point estimates. 

 
Relative risk aversion 0.0003 0.0003 0.0003 0.056 
÷ 10 (0.001) (0.000) (0.000) (0.030) 
Log equity premium -0.217 -0.217 -0.217 8.447 
 (0.012) (0.012) (0.010) (0.733) 
Log risk-free rate 0.893 0.893 0.893 2.666 
 (0.012) (0.012) (0.010) (0.733) 
Age ÷ 100  -0.011 0.476 1.256 
  (0.001) (0.016) (0.078) 
(Age ÷ 100)2   -0.295 -0.769 
   (0.009) (0.047) 
Constant 0.023 0.032 -0.166 -0.482 
 (0.001) (0.001) (0.006) (0.032) 
Age interactions No No No Yes 
Observations 2,142 2,142 2,142 2,142 
Adj. R-squared 0.721 0.736 0.819 0.841 

 
  



Table 3. Human capital value calculation example 
This table contains a human capital value calculation for a 55-year-old with relative risk aversion 
of 7, a log real risk-free rate of 2%, a log equity premium of 2%, a retirement income benefit 
replacement rate of 40%, and the labor income risk of a college graduate. The first column contains 
the age t at which the expected real labor income (conditional on being alive) in the second column 
arrives. The third column shows the one-period-ahead gross discount rate that is applied at age t – 
1 to income arriving at t. The fourth column shows the cumulative gross discount rate that the 55-
year-old applies to income arriving at each future age, which is the product of all one-period-ahead 
gross discount rates from age 55 up to the year before that future age. The final column is each 
year’s discounted expected income from the perspective of the 55-year-old, which is expected 
income divided by the cumulative gross discount rate. In the bottom row, the value of human 
capital is computed as the sum of discounted expected income through age 100. 
 

Age t Expected income  
Gross discount 
rate 1 + 𝑟!,#$% 

Cumulative gross 
discount rate 

Discounted 
expected income  

56 100,000 1.0981 1.0981  91,070  
57 100,000 1.0981 1.2058  82,931  
58 100,000 1.0983 1.3243  75,512  
59 100,000 1.0984 1.4546  68,747  
60 100,000 1.0986 1.5980  62,579  
61 100,000 1.0988 1.7558  56,953  
62 100,000 1.0990 1.9297  51,823  
63 100,000 1.0993 2.1212  47,144  
64 100,000 1.0995 2.3323  42,876  
65 100,000 1.0999 2.5652  38,983  
66 100,000 1.1002 2.8222  35,433  
67 40,000 1.0334 2.9165  13,715  
68 40,000 1.0342 3.0163  13,261  
69 40,000 1.0350 3.1219  12,813  
70 40,000 1.0357 3.2334  12,371  
71 40,000 1.0364 3.3510  11,937  
72 40,000 1.0370 3.4749  11,511  
73 40,000 1.0375 3.6053  11,095  
74 40,000 1.0380 3.7423  10,689  
75 40,000 1.0384 3.8861  10,293  
76 40,000 1.0388 4.0369  9,909  
77 40,000 1.0391 4.1947  9,536  
78 40,000 1.0393 4.3598  9,175  
79 40,000 1.0395 4.5321  8,826  
80 40,000 1.0397 4.7119  8,489  
81 40,000 1.0397 4.8991  8,165  
82 40,000 1.0397 5.0938  7,853  
83 40,000 1.0397 5.2959  7,553  
84 40,000 1.0396 5.5056  7,265  
85 40,000 1.0394 5.7226  6,990  
86 40,000 1.0392 5.9469  6,726  



87 40,000 1.0389 6.1783  6,474  
88 40,000 1.0386 6.4165  6,234  
89 40,000 1.0382 6.6614  6,005  
90 40,000 1.0377 6.9125  5,787  
91 40,000 1.0372 7.1695  5,579  
92 40,000 1.0366 7.4319  5,382  
93 40,000 1.0360 7.6992  5,195  
94 40,000 1.0353 7.9707  5,018  
95 40,000 1.0345 8.2458  4,851  
96 40,000 1.0337 8.5236  4,693  
97 40,000 1.0328 8.8033  4,544  
98 40,000 1.0319 9.0840  4,403  
99 40,000 1.0309 9.3646  4,271  
100 40,000 1.0298 9.6441  4,148  

  Human capital 𝑯: 924,805 
 
  



Table 4. Welfare losses from following various portfolio rules 
This table shows the average welfare loss across the parameter sets indicated in the row label from 
using the portfolio allocation rule in the column label instead of the optimal rule, stated in terms 
of the reduction in level lifetime consumption that would generate the same discounted expected 
utility loss. The welfare losses are from the perspective of a 22-year-old whose cash-on-hand 
equals this period’s labor income. 
 
 Our rule 0% equity 60% equity 100% equity (100 – age)% 

equity 
All parameter sets 
 

0.06% 7.86% 3.75% 11.75% 2.00% 

RRA = 4 
 

0.03% 7.93% 1.58% 0.56% 2.11% 

RRA = 10 
 

0.07% 7.09% 9.27% 29.55% 4.11% 

Log equity 
premium = 2% 

0.05% 5.24% 4.72% 14.78% 2.21% 

Log equity 
premium = 4% 

0.06% 10.54% 2.95% 8.85% 1.93% 

College graduate 0.04% 5.55% 2.76% 9.21% 1.32% 

High school 
graduate 

0.06% 8.63% 3.96% 12.08% 2.17% 

No high school 0.07% 9.40% 4.54% 13.94% 2.51% 
 
 
  



Figure 1. Optimal equity shares for one parameter set 
This figure shows the optimal fraction of the financial portfolio allocated to the risky asset as a 
function of 𝑤# ≡ 𝑥# − 𝑐# (cash-on-hand at the beginning of the period minus current consumption 
normalized by current permanent income) at various ages for an investor with relative risk aversion 
of 7 facing the labor income process of a college graduate, a log risk-free rate of 2%, a log equity 
premium of 2%, and a retirement income benefit replacement rate of 40%.  

 
 



Figure 2. Labor income discount rates under three different risk aversion values 
This figure shows one-period-ahead discount rates for labor income by age for an individual with 
a coefficient of relative risk aversion equal to 4, 7, or 10. Under all scenarios, the individual faces 
the labor income process of a college graduate, a log risk-free rate of 2%, a log equity premium of 
2%, and a retirement income benefit replacement rate of 40%. 

 

 

  



Figure 3. Labor income discount rates under  
three different retirement income replacement rates 

This figure shows one-period-ahead discount rates for labor income by age for an individual facing 
a 40%, 60%, or 80% retirement income benefit replacement rate with relative risk aversion of 4, 
7, or 10. Under all scenarios, the individual faces the labor income process of a college graduate, 
a log equity premium of 2%, and a log risk-free rate of 2%.  
 

 

 
  



Figure 4. Labor income discount rates under three different risk-free rates 
This figure shows one-period-ahead discount rates for labor income by age for an individual facing 
a 0%, 1%, or 2% log risk-free interest rate. Under all scenarios, the individual has relative risk 
aversion of 7 and faces the labor income process of a college graduate, a log equity premium of 
2%, and a retirement income benefit replacement rate of 40%.  

 
  



Figure 5. Labor income discount rates under three different equity premia 
This figure shows one-period-ahead discount rates for labor income by age for an individual facing 
a 2%, 3%, or 4% log equity premium. Under all scenarios, the individual has relative risk aversion 
of 7 and faces the labor income process of a college graduate, a log risk-free rate of 2%, and a 
retirement income benefit replacement rate of 40%.  
 

 
 

 

  



Figure 6. Optimal equity share versus approximately optimal equity share 
This bin-scatter graph plots the optimal equity share against the corresponding approximately 
optimal equity share, computed using the procedure developed in this paper. Each point represents 
a bin of observations grouped by the approximately optimal equity share. The observations used 
to construct this graph are the (approximately optimal equity share, optimal equity share) pairs at 
every (age, cash-on-hand as a multiple of permanent income) point in our state space grid for every 
parameter set we consider. The dashed line is the 45-degree line. 
 

 
  



Figure 7. Distribution of root mean square approximation error across parameter sets 
This figure shows the number of parameter sets we consider for which the square root of the mean 
squared deviation between our approximately optimal equity share and the actual equity share, 
computed over all our state space grid points, equals the value on the horizontal axis. 
 

 
 
  



Figure 8. Optimal equity allocations when permanent labor income shocks are positively 
correlated with stock market returns 

This figure shows the optimal fraction of the financial portfolio allocated to the risky asset as a 
function of 𝑤# ≡ 𝑥# − 𝑐# (cash-on-hand at the beginning of the period minus current consumption 
normalized by current permanent income) at various ages for an investor with relative risk aversion 
of 4 facing the labor income process of a college graduate, a log risk-free rate of 2%, a log equity 
premium of 2%, and a retirement income benefit replacement rate of 40%. The temporary labor 
income shock is uncorrelated with stock returns, and the log permanent labor income shock has a 
coefficient when regressed on log stock returns of 0, 0.1, 0.2, or 0.3. 

  



Figure 9. Optimal equity allocations when temporary labor income shocks are positively 
correlated with stock market returns 

This figure shows the optimal fraction of the financial portfolio allocated to the risky asset as a 
function of 𝑤# ≡ 𝑥# − 𝑐# (cash-on-hand at the beginning of the period minus current consumption 
normalized by current permanent income) at various ages for an investor with relative risk aversion 
of 4 facing the labor income process of a college graduate, a log risk-free rate of 2%, a log equity 
premium of 2%, and a retirement income benefit replacement rate of 40%. The permanent labor 
income shock is uncorrelated with stock returns, and the log temporary labor income shock has a 
coefficient when regressed on log stock returns of 0, 0.1, 0.2, or 0.3. 

 



Online Appendix Figure 1. Labor income discount rates when  
deterministic portion of labor income is constant during working life 

This figure shows one-period-ahead discount rates for labor income by age for an individual with 
a coefficient of relative risk aversion equal to 4, 7, or 10. The gray lines correspond to scenarios 
where the individual faces log labor income whose deterministic portion is constant during 
working life and whose risk is that of a college graduate, a log risk-free rate of 2%, a log equity 
premium of 2%, and a retirement income benefit replacement rate of 40%. The black lines 
correspond to scenarios that are the same as for the gray lines, except that the deterministic portion 
of labor income during working life follows the path estimated for college graduates. 

  

 
 
 
 

 


