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Abstract

This is a set of notes on renewal processes that formed the basis for
a lecture in the PhD class Modeling Operational Processes offered in the
Spring of 2025 at the Yale School of Management.

1. Preliminaries

Let X be a non-negative continuous random variable with cumulative distribution
function (cdf) Fx(t) = Pr{X < t}, probability density function (pdf) fx(t) =
£ Fx(t), finite mean E(X) = 7 and variance Var(X) = ¢2. Starting from time 0,
“arrivals” or “events” or “renewals” occur with interarrival times independently
and identically distributed (iid) as random variable X. Let T, denote the time
(measured from the start of the process at time 0) of the n'* arrival. Clearly

S
=1

where all of the X,’s are iid as random variable X.
The cdf and pdf of random variable T,, are notated by Fr., (t) = Pr{T, <t}
and fr, (t) = % Fr,(t). Note the convolution relations

fr,. () = /0 fr, (t = s) fx(s)ds
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and .
Fr. (1) = / Fr, (t — ) fx(s)ds.

Roughly speaking, to find the probability (density) that the n+ 1% renewal occurs
at time t, we note that if the first renewal occurs at time s, then an additional n
renewals must occur over the remaining ¢ — s time periods; the integral accounts
for all possible first renewal times s between 0 and ¢t. Similarly, for the n + 1%
renewal to occur at or before time ¢, again note that if the first renewal occurs at
time s, then the remaining n renewals must occur within the remaining ¢t — s time
available.

2. Introducing N(t), the Number of Renewals by Time ¢

It is easy to study the timing of the n'* renewal by considering the probability
laws of random variable T},. Now we will turn the problem around, and consider
the number of renewals that occur by time ¢ (where by convention time 0 is taken
as the start of the process). We denote the number of renewals that occur by time
t as N(t), and define this variable mathematically as

N(t) = max{n|T,, <t}, t > 0.

Fix time to ¢, and ask yourself what is the largest value of n such that 7, < t7
The answer to that question must be N(t), the number of renewals by time ¢. A
sample path showing the evolution of N(¢) over time is shown in the figure on the
next page.

We would like to understand the random variable N (t), as it is a basic process
in operations research. N(t) could correspond to the number of customers who
have arrived to a service system by time ¢, the number of persons who have been
infected in a stable disease transmission process by time ¢, or the number of terror
attacks that have been attempted by time ¢, as examples. We certainly would like
to know how to calculate E(N(t)), Var(N(t)), and if possible Pr{N(t) = n} for
n =0,1,2, ... We would also like to be able to deduce asymptotic results describing
the behavior of N(t) as t becomes large (that is, as t — c0). Along the way we
will discover how we can do approximate versus exact calculations..



Sample Path for Number of Renewals N({)

N(t)

Ty T; r; T, Ts

3. Finding the Expected Number of Renewals F(N(t))

Suppose a renewal process has just started at time 0, and suppose that the first
renewal occurs at some (random) time S, 0 < .S < ¢. The number of renewals that
occur by time ¢ must then be given by

N(t) =1+ N(t—5)

since the first renewal at time S contributes one, while the remaining number of
renewals must occur between time S and ¢, which amounts to N(t — 5) renewals
since the process starts over (i.e. renews itself) at time S. Now, S is a random
variable corresponding to the time of the first renewal, which means that the
probability density of S is exactly the same as the probability density of X, the
interarrival time distribution that drives the entire renewal process.

3



We now seek the expected number of renewals that occur between 0 and ¢, that
is E(N(t)). We can obtain a defining equation simply by taking the expected value
of N(t) as defined above (where the expectation is with respect to the random
variable S). We obtain

BN@®) = E(l+N(t-S))
_ /0((1+N(t—s))fx(s)ds.

The integral only runs from 0 to ¢ as once the value of S exceeds ¢, the number
of renewals that occur within (0, ] equals zero.

The integral equation above is an example of a renewal equation (indeed some
refer to this as the renewal equation). Note that since fot fx(s)ds =Pr{T1 <t} =
Fr,(t) by definition (recall that T} is the time of the first renewal), expanding the
equation yields

E(N()) = Fn, (1) + /0 E(N(t — 5)) fx(s)ds.

We will show how to solve this momentarily, but first we will introduce the general
renewal equation. Suppose you know the (deterministic) function g(t), and seek
to discover the (deterministic) function z(¢) that is defined by

) = g(t) + /0 St — 5) fx(3)ds.

This is the general renewal equation. Given ¢(t) and the interarrival density
fx(s), find the function z(t) defined by the integral equation above. Note that
our equation for the expected number of renewals E(N(t)) is a special case of this
general question with g(t) = Fr,(t), and z(t) = E(N(t)).

Returning to the expected number of renewals, we can solve the equation using
successive approximations to deduce what the form of the solution must be, and
then verify the solution. Let z(t) now refer to E(N(t)), and let 2 (¢) denote
the i'" successive approximation to z(t). The successive approximation scheme
proceeds according to the schedule

D) = Fr (t) + /Ot 20 (t — 5) fx (s)ds.
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We start with 2(® (t) = 0, and inserting this into the approximation schedule
yields
2W(t) = Fpy (t).

Now we iterate to obtain

@) = P+ (1 = 5) fu(s)ds

— )+ / Fry(t — ) fx (s)ds
- FTl(t)+FT2(t)

where the second term follows from the convolution of the distribution of 77 with
the density of X introduced at the start of these notes. Iterating again we obtain

@) = )+ (1~ 5) fu(s)ds

Fr () + / (Fri(t — ) + Fry(t — 5)) fx(s)ds
- FTl(t) + FT2(t) + FTs(t)

where we have again taken advantage of the convolution of the distribution of T,
(for n = 1,2) with the density of X. A pattern is clearly emerging which leads to
the conjecture that

2(t) =Y Fr,(b).

Is this the solution to the renewal equation for z(t) = E(N(t))? To see that it is,
we verify by writing

2(t) = FTl(t)—i-/o 2(t — s)fx(s)ds

= Fnl)+ [ (O Fule - s)ix(ops



as was to be shown (with the integration result again following from the convo-
lution relating the distribution of 7}, (for n = 1,2,3,4,...) and the density of X.
We have thus shown that

E(N(t)) = Fr,(t).

There must be an intuitive explanation for this result, and here it is. Look
again at the sample path of the renewal process graphed earlier, and note the
following:

The events N(t) > n and T,, < ¢ are the same events!

If at time ¢ there have been at least n renewals, then the time at which the n'*
renewal occurred must be less than or equal to ¢! If T,, > ¢, then it would be
impossible for there to have been n renewals by time ¢ since T}, is the time of the
n'* renewal! Working in reverse, if you know that the n'* renewal happened at
or before time ¢ is reached, then you immediately know that the total number of
renewals that occurred by time ¢ must at least equal n. Since the events N(t) > n
and T, <t are equivalent, it must be true that

Pr{N(t) > n} = Pr{T, <t}

since equivalent events have the same probability. Now, from elementary proba-
bility theory, we know that

E(N(t)) = Y nPr{N(t)=n}

= > n(Pr{N(t) = n} —Pr{N(t) > n+1})

= ) Pr{N(t) >n}
= iPr{Tn <t}

= ) Fr(t).



So now we see two different ways to arrive at the same result for expressing
E(N(t)), the expected number of renewals by time ¢ in a renewal process that
starts at time O.

3.1. Example: The expected number of renewals when the interarrival
times are uniformly distributed

Consider a renewal process where the interarrival times X are uniformly distrib-
uted between 0 and 1, that is

1 0<s<1

fx(s) = fr.(s) =
0 all other s

It follows that .
Fr(®)= [ fn(s)ds=t0<t<1
0

Focusing only on values of ¢ that fall between 0 and 1, from the convolutions
relating the cumulative distribution of 7}, and the density of X we see that

Fr(t) = / Fry(t — ) fx(s)ds

= /Ot(t — s)ds

t2
- —,0<t<1
9 I

and

Fr(t) = / Fry(t — ) fx(s)ds

0

t3



Again we see a pattern developing, so conjecturing that Fr, (t) = % for0 <t <1,
we establish that

Fro(t) = / Fr (t — ) fx(s)ds

t _\n
= / —(t s) ds
0 n!

tn—l—l
- (n+1)!,0§t§1

which proves the conjecture. The expected number of renewals by time ¢ for
0 <t <1 for this uniform renewal process is thus given by

We can verify that this expression satisfies the renewal equation for E(N(t)) by
evaluating

E(N() = Fn(t)+ / E(N(t — ) fx(s)ds

t
= t+/ (" —1)ds
0

= t+e —t—1

= e -1

as was to be shown.

In this example, for 0 < ¢t < 1 it was possible to obtain the exact value for
E(N(t)) analytically, but this will not always be possible. However, numerical
approximations can always be obtained via our successive approximation scheme.
The figure below plots 2™ (t), 2 (t), 2®)(t), and the exact value z(t) for the
uniform example considered above. As shown in the figure, an excellent approx-
imation to z(t) = E(N(t)) is provided by just the first three iterations of our
successive approximation scheme.



Approximate and Exact Expected Number of Renewals

Interarrival Times Uniform (0, 1)

1.8

E(N(1))

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (t)

3.2. Example: The Poisson process

Perhaps the best known renewal process is the Poisson process. In the Poisson
process, the interarrival times are exponentially distributed with mean 1/\ where
A > 0 is the arrival rate, that is, the interarrival times have density

fx(s) = fr(s) =A™, 5>0

and cumulative distribution

t
Pr{X <t} =Fp(t) = / e Mds =1—e M,
0
It is of course well-known that the probability distribution of the number of arrivals
(or number of renewals) that occur by time ¢ (starting from time 0) is given by
the Poisson distribution

At)"
Pr{N(t) =n} = ( ‘) e M n=012.:t>0
n!




and from this probability distribution the expected number of renewals follows
immediately as

e M =\t

(AL)"
|

n.

E(N(t)) =) nx

Since the Poisson process is also a renewal process, it must be true that the
expected number of renewals also satisfies the renewal equation! Verification is
simple:

E(N() = Fn(t)+ / E(N(t — ) fx(s)ds

t
= 1—eM +/ At — s) x Ae™Mds
0

l—eMpMt+e M1
At

as was to be shown.

4. The Renewal Density h(t)

The renewal density h(t) is defined as the derivative of the expected number of
renewals, that is,

h(t) = %E(N(t)).

The interpretation of the renewal density is that the probability a renewal occurs
in a time interval (t,t + At) is given by h(t)At. For the Poisson process, where
E(N(t)) = At, the renewal density h(t) = A, the rate of the Poisson process. For
the uniform (0, 1) renewal process operating on 0 < ¢ < 1, we discovered earlier
that E(N(t)) = e — 1, and thus the renewal density h(t) = e’ for this process.

Working in reverse, it is clear that the renewal density integrates to the
expected number of renewals, that is, f(f h(s)ds = E(N(t)). To better under-
stand this relationship, we argue informally as follows: define the binary variable
B(t) = 1 if there is a renewal at time ¢, and 0 otherwise. Then the total number
of renewals that occur between 0 and ¢ is given by



Now B(t) is a Bernoulli random variable, which means that the expected value of
B(t) equals the probability of a renewal at time ¢. It follows that

E(N®) = E( /OtB(s)ds)
_ /O B(B(s))ds

= /Ot h(s)ds
since Pr{B(t) = 1} = h(t)At.

What else can we say about the renewal density? Recalling that

E(N()) = Fry (1) + / E(N(t — ) fx(s)ds,

taking the derivative yields

M) = LBV

- %(FTl(t)—i—/O E(N(t —s))fx(s)ds)

= Jn(1)+ /Ot h(t — ) fx(s)ds.

This is another renewal equation, but now expressed in terms of the renewal
density instead of the expected number of renewals. This is a special case of the
general renewal equation obtained by setting ¢(t) = fr,(t) and recognizing z(t)
as the renewal density h(t). We can easily verify this equation for the Poisson
process where h(t) = X and fx(t) = Ae™™ for

)+ | h(t = 5)fx(s)ds

t
= e M4 / A\ X Ae Mds
0

= A M+ A1 —e M)
= A
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Similarly, for the uniform (0, 1) renewal process operating on 0 < ¢ < 1 we have
h(t) = €' and fx(t) = 1; plugging into the renewal equation for the renewal
density we obtain

i)+ | h(t = 5)fx(s)ds

t
= 1+/ e sds
0

= 1+ -1
= €.

What else can we say about the renewal density? Recall that we previously
determined that

E(N(t)) = Fr,(t).

Since the renewal density h(t) is just the derivative of the expected number of
renewals, we immediately obtain

M) = S B(N()

= ) frn(b).

Now it should be crystal clear why h(t) At represents the probability that a renewal
occurs in the time slice (¢, + At): since fr, (t)At is the probability that the n'
renewal occurs in (¢,t + At), summing fr, (t)At over all n yields the probability
that some renewal occurs in (¢,¢ + At)! This is just another way of saying that
h(t)At is the probability that a renewal occurs within (¢, ¢ + At).

5. Solving the General Renewal Equation

Recall the definition of the general renewal equation: given a known deterministic
function g(¢) and known interarrival time distribution fx(t¢), the general renewal
equation yields that function z(¢) that satisfies

2(t) = g(t) +/0 2(t — s) fx(s)ds.
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To solve this equation, we will utilize the same successive approximation scheme
we used earlier to determine E(N(t)). To recap, we start by defining 2 (¢) = 0,
and then iterate according to the schedule

%”szmﬂ+élwa—@ﬁ@m5

and search for a pattern that we can then verify by substitution. First, we define
functions

t
0,0)= [ att = ) (5)ds.
0
Now begin iterating. Clearly z(!)(¢) = g(t), so now we evaluate
t
200 = gl)+ [ 20 9)fx()ds
0

_ mw+£2a—wﬁ@m5
g0 + (8

for recall that the random variables X and 7T} have the same probability distrib-
utions. Pressing ahead to the next iterate, we have

) = g+ [ 20— )i
= 90+ [ (olt=5)+ oult =) fx(5)ds

We immediately recognize fot g(t — s)fx(s)ds = ¢,(t) so it remains to evaluate

[ ot =) sxtspas

- Zﬁ{Lﬂg@_S_Wﬁﬂwm%fﬂﬁw.
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Make the substitution w = s + u, which implies that v = w — s. With this

substitutior s
/_ {/ Sg( S U)fjl(U)du} fX<S)d8
s=0 u=0

~ [ { [ - a

= [ gt -

We conclude that
2B(t) = g(t) + ¢, (t) + by(t).

This is enough to suggest a pattern, namely

() = g(t) + ) ault),

=1

which leads to a conjecture for the overall solution to the general renewal equation,
namely

A0 =90+ 6,0)

Now, note that

o) = Y [ att= 9

= [ate-9 {2&(8)}@
- / gl — $)h(s)ds.

We have thus arrived at an amazing result: the solution to the general renewal
equation is given by

2(t) = g(t) —l—/o g(t — s)h(s)ds.
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The solution depends upon two functions: ¢(¢) (which is presumed known), and
the renewal density h(t) (which can be evaluated by different methods as discussed
earlier). We leave it as an exercise for the reader to show that the solution above
verifies the original general renewal equation.

Consider again the renewal equation for the expected number of renewals,
E(N(t)). That equation sets g(t) = Fr,(t), so substituting this while writing the
renewal density h(t) as Y 2, fr,(¢) in the general renewal equation yields

E(N(t) = FTl<t>+/0 Fr(t—s) {an }

= FT1 —+ ZFT”

= Z Fr,(t)

as shown previously.

5.1. Understanding the Solution to the General Renewal Equation

Imagine initiating a series of investments starting a times 0,77, Ty, T3, Ty, ... From
the time an investment is initiated, revenue accrues according to the function g(s)
where s is the elapsed time from the start of the investment. An initial investment
is made at time 0, but afterwards investments are made in accord with a renewal
process — each new renewal corresponds to the initiation of a new investment.
Now ask, at some time ¢ > 0, how much revenue has been accrued in total over all
investments? Since the elapsed time from the initiation of an investment at time
T; until time ¢ is just ¢ —7;, it must be that the total revenue accrued starting from
the beginning investment at time 0 until time ¢ is given by the random quantity

)+ gt—T)*
=1

where g(s)T = g(s) for s > 0 and 0 otherwise. The figure below illustrates the
situation when four renewals occur before time ¢, in which case the total revenue
accrued is given by Z(t) = g(t)+3.+_, g(t—T;) (we don’t need the "+" superscript
as we know that all four renewals happened before time t.
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Understanding the Solution to the General Renewal Equation

4 g(t-T,) N
3 g(t-T;3) >
2 g(t-T5) ,
1 glt-T4) .
o g(t) .

T, T, T T, t

The general renewal equation can thus be thought of as finding the expected total
revenue generated from investments that start at times 0 and then at each renewal
epoch afterwards up until time ¢ where the expectation is over the times of the
renewal epochs. That is,

B(Z(0) = 0) = glt)+ B> gft —T)"]
= 90+ [ ot =s)n(s)as

= g(t) +/0 g(t — s)h(s)ds.
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5.1.1. Example: g(t) = rt

Suppose that revenue accrues at a constant rate r from the time of investment.
Then

Z(t) =r x t+/0 r x (t —s)h(s)ds.

If the renewal process in question is a Poisson process, then h(s) = A, the arrival
rate of the process, and we have

2

2(t) =rt+ )\7’5.
If on the other hand the renewal process has uniformly distributed interarrival
times between 0 and 1, then for 0 <t < 1 we have h(s) = e® and thus

¢
z(t) = Tt+/ rx (t— s)e’ds
0

= Tt—r(t—et+1)
= r(e' —1).

Since the mean interarrival time for the uniform renewal process just described is
equal to 1/2, a Poisson process with the same mean interarrival time would have
A =2, and for 0 < ¢ < 1 such a process would generate rt+7rt? > r(e! — 1) revenue
in total. A Poisson process with the same mean interarrival time as a uniform (0,
1) renewal process would generate more revenue in expectation.

5.1.2. Example: g(t) = e

Imagine a terrorist organization that initializes bioterror attacks in different loca-
tions at times given by a renewal process. Further, imagine that the number of
persons infected following the initiation of an attack grows exponentially with rate
r, and thus the number of infected persons s time units after an attack equals .
The expected total number of infected persons over all attacks at time ¢ would
then follow

t
2(t) = e +/ et h(s)ds.
0
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If the renewal process initiating attacks was Poisson with rate A, the expected
number of infected persons by time ¢ would then be given by

t
2(t) = e”—k/ "= \ds
0
A
— rt - rt_l )
e+ T(e )

If instead the renewal process was uniform (0, 1), then for 0 < ¢ < 1 the expected
total number of infected person by time ¢ would equal

¢
2(t) = ert+/ eedds
0

t

_ ert(1+/ e(l—r)sds)
0

1

— T(e(l—r)t _ 1))

= e"(1+

The expected number of infections over time for the Poisson and uniform renewal
processes when 7 = 0.1 and A = 2 (so the uniform and Poisson processes have the
same mean interarrival times) are shown in the graph below.

Expected Number of Infections when g(t) = e%1t

3.5
2.5
1.5

0.5

Time ()

Expected Number of Infections (z(t))
[

Poisson

Uniform
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5.1.3. Finding F(N(t)?)

To find the variance of the number of renewals in a given time period, one first com-
putes the mean square F(N(t)?), and then subtracts the squared mean E(N (t))2.
Recall that if S is the time of the first renewal, then

N({t)=14+N(t-25).
We can use this relationship to write

E(N(t)?*) = E[(1+N(t-S5))]
= 1+2BE(N(t—29))+ E(N(t—95)?).

To evaluate the expectation on the right hand side above, we must integrate over
the density fy(s) which yields

E(N(t)*) = /Ot (L+2E(N(t —s)) + E(N(t — 5)*)) fx(s)ds
= /Ot (24 2E(N(t —s)) =1+ E(N(t — 5)%)) fx(s)ds
= 2BV~ P+ [ BOVG 9 x(6)ds
This is a renewal equation with z(t) = E(N(¢)?) and g(t) = 2E(N(t)) — Fr,(t).
Can you deduce the solution for z(¢) via the general renewal equation? Can

you verify your solution by taking advantage of the facts that Pr{N(t) > n} =
Pr{T, <t}, and

E(N(t)*) =Y n’Pr{N(t) = n}?

I leave that as an exercise for the reader.

6. Asymptotic Results for N(t) and h(t)

By now the reader should be convinced that there is a rich theory underlying
renewal processes, with the general renewal equation providing a unifying ap-
proach to formulating the expected value of desired functions defined on renewal
processes. However, other than in special cases where the probability densities
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and/or distributions of fr. (t)/Fr, (t) can be calculated explicitly (examples in-
clude the Poisson and uniform renewal processes), analytical results are not forth-
coming for finite values of time. Numerical calculations, however, can always
be obtained via the successive approximation scheme introduced for the general
renewal equation, that is, by setting 2()(t) = 0 and iterating in accordance with

PAGRY (t)=g(t) + /Ot 20 (t—s)fx(s)ds.

One iterates until successive approximations z()(t) and z(+(¢) are sufficiently
close. In this way, one can solve for the moments of the number of renewals,
or the expected value of different functions deriving from carefully chosen ¢(t)
functions.

However, the analytical difficulty of proceeding with all but a select few re-
newal processes should help sober the reader regarding why analytically tractable
processes such as the Poisson are often the default choice in operations research
models. This same difficulty might also cause the reader to ask whether there are
simpler asymptotic results for renewal processes that work well as ¢ gets large. We
will now focus on this second set of questions, and show that there are very easy-
to-use asymptotic results that apply to the distribution of N(t¢), and consequently
to the renewal density h(t).

To begin, recall the random walk definition of the time of the n'* renewal

epoch T,
T,=> X
i=1

where all of the X;’s are iid as random variable X, the interarrival time for the
renewal process. As n gets large, the central limit theorem assures us that 7,, —
N(nt,no?), that is, the distribution of 7}, tends towards a normal distribution
with mean n7 and variance no? where 7 and o2 are the mean and variance of the
interarrival time X.

What about the number of renewals N (¢)7 It should come as no surprise that

. t
i, BINV() = T

for arguing informally, if the expected time between renewals equals 7, then the
expected total time due to N(t) renewals should (roughly) equal 7E(N(t)) = t.
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An immediate consequence of this is that

) . d
tll]ISIIlG h(t) - tll]gIIlG %E(N@))
= lim i <£>
t—BIG dt \ T
B 1
-7

This is pretty consequential — as t — BIG, no matter the specifics of the underlying
interarrival time distribution that drives the renewal process, the renewal density
approaches the constant 1/7, also known as the rate of the renewal process. Far
enough in the future, all renewal processes have that Poisson feel in that the
probability of a renewal in any interval (¢, ¢+ At) just equals At/7. Note that for
the Poisson process, 7 = 1/ and thus h(t) = A for all t.

But what of the probability distribution for N(t) as t becomes large? Recall
the crucial event equivalence of renewal processes:

The events N(t) > n and T,, <t are the same events!

which implies that
Pr{N(t) > n} = Pr{T, < t}.

The central limit theorem implied normality for 7T,, allows us to write (with slight
abuse of notation in letting Z represent the standard normal random variable)

t— E(Tn)
TS T

t—nT
= PrizZ <
{7 < O’\/T_L}

)

Pr{T, <t}

Q

}

t—nT
ovn

where ®(-) denotes the standard normal cdf. In turn this suggests writing

o(

t—nT
o\v/n

which due to the symmetry of the standard normal distribution about zero is

Pr{N(t) > n} ~ ®( )
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equivalent to writing

Pr{N(t) <n} =~ @(”;J_ﬁt)
_ q)(n—t/T )

(o/T)Vn

The problem with this latter expression, however, is that it does not define a
constant-parameter probability distribution for N(¢) — the appearance of y/n in
the denominator ruins the idea that there is a stable variance for N(¢). The
problem can be immediately recognized — the values of n that N(¢) can assume
must scale with ¢ (just like the values of ¢ that T,, can assume essentially scale
with n via StDev(T,,) = o+/n).

To fix this, for some arbitrary constant 1 we define

t
ng = —+nNo\—=
T

t /1
s —_ ]_ i
7'( o tT)

This appears arbitrary, but watch what happens — with this value of n; we consider
the time of the n!" renewal, T},,, and write

t—nt’]—

Pr{T,, <t} =Pr{Z <

}.

o/

Now

t—mT = t—7T
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Consequently, we have
t
t— Ny T no T

o\/ny _a\/n_t
_
VAT

. n
(1+n0\/2)
Taking the limit as ¢t — BIG we obtain
L—mT n

lim lim —
t—BIG o./N t—BIG
- (1+n0y/2)
=~y ()

Now we can comfortably claim that

t—nt’]—

1 < = i <
tllgllc Pr{Ty, <t} tlllgll(} Pr{Z < o\/ny }
tl}gIlG Pr{Z B 77}
= 2(=n).

Finally we can write that

. > — <
S PrN O 2 )= Ly Prif <)
= ®(-n)

and therefore
lim Pr{N(t) < n.} = o(n)

t—BI

again owing to the symmetry of the standard normal distribution about zero.
Almost there! Recall that since

t t
ng=—+no —3
T T
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we recognize 1) as

But if lim;_gig Pr{N(t) < n;} = ®(n), and we know that lim; .gic E(N(t)) =t/T,
we have just learned that

0.2

tﬂgllG Var(N(t)) = ﬁt'
We have our asymptotic result for the number of renewals by time ¢ — as t — BIG,
N(t) becomes normally distributed with mean ¢/7 and variance (02/73)t. How
cool is that???

6.1. Example: Poisson Process

For the Poisson process, you already know that for any ¢, E(N(t)) = Var(N(t)) =
At while the number of renewals is Poisson distributed. What does our asymptotic
result say? The Poisson process derives from exponential interarrival times with

mean 7 = 1/) and variance 0> = 1/A®. The asymptotic result says that as t —
BIC,

B(N(t) 2¢ t/7
= t/(1/A)
— M.

How about the variance? Our asymptotic result says that

t—BIG o
H

Var(N(t))

= .

So for the Poisson process, our asymptotic result says that the number of renewals
by time ¢ is normally distributed with mean and variance both equal to At. And
as you already know, the normal distribution provides an excellent approximation
to the Poisson distribution if the Poisson mean is at least equal to 10.
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6.2. Example: Uniform (0, 1) Process

If the interarrival times are uniformly distributed between 0 and 1, then the mean
interarrival time is given by 7 = 1/2, while the variance of the interarrival time is

equal to
1
1, 1
— =)dr = —.
/O(x 3/ 4= 1

All of our examples with this uniform process to this point have focused only
properties of N(t) for 0 < ¢t < 1 to keep the examples simple, but now we are
allowing ¢t — BIG! We see that asymptotically, for the uniform (0,1) process that

t—BIG T
PBIG U

E(N(t) = 2t

and

Compared to the Poisson process with A = 2 (so both renewal processes have the
same rate), we see that the number of renewals N (t) for the uniform (0, 1) process
is much less variable than the corresponding Poisson process.

7. Random Incidence

Suppose that a renewal process with interarrival times X distributed according to
the pdf fx(z) has been operating for some time. Suppose further than an outside
“observer” arrives at a time ¢ chosen independently of the renewal process (the
arrival of the observer does not constitute a renewal as the observer is “outside”
the process). Let random variable G denote the duration of the interarrival time
(or gap) that is entered by the randomly arriving observer. What can we say
about this random variable?

The key observation is that the likelihood of entering a gap of duration g
depends upon two things: the relative frequency with which such gaps occur (as
determined by the interarrival pdf fx(g)), and the duration of the gap g itself.
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This enables us to write immediately a proportionality condition that the density
of G' must obey, namely

falg) < g x fx(g), g > 0.

Since G is a random variable, its density must integrate to 1, which means that

B g X fx(g)

o T X [x(x)dr

g9 % fx(g)
TEx) =0

We have just derived the probability density function of the gap duration for
a randomly arriving observer. We refer to this entire phenomenon as “random
incidence” because our outside observer randomly intrudes on (or is incident to)
the process.

From this density it is easy to derive the moments of that gap duration entered
via random incidence. We have

E(G") = /OO 9" fa(g)dg

_ Oook g x [x(g)
=[x B
E(ch+1)
E(X)

In particular, setting £ = 1 we learn that

E(X?)
E(X)
Var(X) + E(X)?
E(X)
Var(X)
E(X)

E@G) =

Y
&
s’

The expected duration of a gap entered via random incidence is always at least
as large as the expected interarrival time for the corresponding renewal process.
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We can also quickly obtain
Var(G) = E(G?) — E(G)?

7.1. Example: Uniform (0, 1) Renewal Process

Suppose that the interarrival times X are uniformly distributed between 0 and 1,
which means that fx(z) =1 for 0 < z <1 and zero elsewhere. Then

EX) = /Ola:da:: =,

and thus

and

from which we deduce

Var(G) = E(G?) — E(G)?

12,
= 5-&
1
- 18

1
< — = X
<5 Var(X)



Also, the density of the gap duration entered at random is given by

9fx(g)
9
1/2
= 29,0<g<1l

This density shows clearly that random incidence biases our observer towards
longer gaps compared to the uniform interarrival times. It also explains why
Var(G) < Var(X) since the values of G are more concentrated around F(G) than
the values of the uniformly distributed random variable X are around E(X).

7.2. Example: Poisson Process

Suppose that the interarrival times X are exponentially distributed with mean
/A ie. fx(z) = Ae ™ x > 0. Then the pdf of a gap entered by random
incidence is given by

g% fx(9)
Age™ N

1/A

= Nge ™, g>0.
This is a second order Erlang density (equivalently, a gamma density with shape
parameter o = 2), which is also the density function for the sum of two iid

exponential random variables, each with mean 1/\. From this characterization
we immediately deduce that

E(G) = 2B(X)

while

Var(G) = 2Var(X)

The reader can verify these results using the general formulas for F(G) and
Var(G) reported above.
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8. Recurrence Times

Continuing with the random incidence model where an outside observer randomly
enters some interarrival gap in a renewal process that has been operating for a
long time, we ask the following question: how much time elapsed from the most
recent arrival in the renewal process to the moment of random incidence? We
refer to this duration as a backwards recurrence time and denote it by X*. What
can we say about this random variable?

First, we know that the pdf for the duration of a gap (G) entered by random
incidence is given by

fatg) = R g > 0

Conditional on entering a gap of duration G' = g, the specific location within this
gap where random incidence occurs is equally likely to be anywhere within the
gap (remember, the random arrival time of the outside observer is independent of
the renewal process). This then means that the conditional pdf of X* given that
G = g is uniformly distributed between 0 and g, that is

1
fx@lG=g) =2, 0=y

and zero elsewhere. Unconditioning over G we obtain the joint pdf of X* and G
as

fxea(z,g) = fx-(2|G=g) x falg)
1, 9xfx(g)

g  EX)

fx(9)

= — 0<zx<q.

E(x) 0 ST=Y
Integrating out to obtain the marginal pdf of the backwards recurrence time X*
yields

fe@) = [ fxecle9)dg

9=z

> fx(9)
B

g=a
Pr{X >z}

— v =) > (.

E(x) "7 0
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We know that this is a valid pdf that integrates to 1 for
E(X) :/ Pr{X > z}dx
0

for any (proper) non-negative random variable X, a formula often referred to as
“integrating the tail.”

To obtain the moments of the backwards recurrence time X*, we integrate by
parts to evaluate

dx

Sy [TaxPr{X >z}
I

E(XkJrl)
(k+1)E(X)

As an aside, the integration by parts proceeds by letting u = ZHX22 gy = 2k,

E(X)
and then recognizing that du = —];X(—g?))d:v and v = ”2’:;1 . In particular, for £ = 1,

we see that the mean backwards recurrence time is given by

E(X?)

B = 35m)

We could have obtained this result directly by noting that due to the randomness
of the arrival time of random incidence,

B(X*|G=g)=12

[\V) e

and consequently

E(X™") = /000% X fa(g)dg

as claimed.
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8.1. Example: Poisson Process

For the Poisson process, interarrival times are exponentially distributed with mean
1/ and thus the pdf for the backwards recurrence time is given by

Pr{X >z}
E(X)

67}\I

/A
= )\e’)‘w, x> 0.

fxe(z) =

This is yet another manifestation of the “memoryless property” of the exponential
distribution. The elapsed time from the previous renewal until the moment of
random incidence has exactly the same exponential distribution as the interarrival
time distribution itself!

8.2. Example: Uniform (0, 1) Process

If the interarrival times are uniformly distributed between 0 and 1, then the back-
wards recurrence time pdf is given by

Pr{X >z}
E(X)
11—z
1/2
= 2x(1—2),0<z< 1.

fx-(z) =

8.3. Forwards Recurrence Time

Suppose that we redefine X *as representing the remaining time from the moment
of random incidence to a renewal process until the next renewal occurs. This
is referred to as the forwards recurrence time. A vivid example is to imagine
a bus stop where the interarrival times of successive buses constitute a renewal
process, and our observer arrives at a random time to catch the bus. The forward
recurrence time X* reports the waiting time from arrival until the next bus arrives.

One can again condition on entering an interarrival gap G = ¢ via random
incidence, which as before results in a time of entry uniformly distributed between
0 and g. But if the time of entry is uniformly distributed, so is the remaining time
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until the next renewal! This means that exactly the same arguments used to
derive the probability distribution for the backwards recurrence time apply to the
forwards recurrence time. We thus have that the remaining time from random
incidence until the next renewal occurs also has pdf

~ Pr{X >2a}

fx«(x) = E(X) , x> 0.

In the bus stop interpretation, the expected waiting time until the next bus arrives
is given by E(X*) = E(X?)/2E(X).

If buses arrive according to a Poisson process, then the mean waiting time
until the next bus is exactly the same as if one had literally just missed the bus.
More generally, for the Poisson process, the forward recurrence time is distributed
exactly as the underlying exponential interarrival times. Talk about a memoryless
process!

8.4. Example: Expected Waiting Time in M/G/1 Queue

Here we show how understanding renewal theory provides an almost instant
derivation of one of the most celebrated results in queueing theory. First, re-
call the M/M/1 queueing model where customers arrive according to a Poisson
process with rate A, service times are exponentially distributed with mean 1/,
and the utilization p = A/p < 1 (the utilization is the probability that the server
is busy). The expected waiting time W, for a newly arriving customer to the
M/M/1 queue is easily derived as

W, = Pr{Server is busy} x E(Remaining Service Time for Customer in Service)

1
+— x E(Number of Customers in Queue)

The expected number of customers in queue, L, is related to the expected waiting
time in queue via Little’s Theorem

L, = \W,.

And, since the service times are exponential, the expected remaining service time
for a customer in service at the time of a randomly arriving new customer is just
the forward recurrence time on the service time distribution, which in the case
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of the exponential distribution equals 1/u. Substituting these insights into our
equation for W, we have

1 AW,
Wy=px—+—=
Y 2
which solves to
w, = Pl
L—p

as is well known.

Now let’s dispense with the exponential service time assumption, and allow
service times to be arbitrarily distributed in accord with some random variable S.
Exactly the same logic as was used to derive W, for the M/M/1 queue applies,
except that now the expected remaining time for a customer in service corresponds
to a forward recurrence time on the service process — if someone is already in
service at the time a new customer arrives (which is at random with respect to
the service process), then the remaining service time from when our new customer
arrives is the same as a forward recurrence time on the service process! The mean
forward recurrence time is just F(S*) = E(S?)/2E(S) (and we take E(S) = 1/pu
as before), and thus for the M/G/1 queue we have

W, = Pr{Server is busy} x E(Remaining Service Time for Customer in Service)
+E(S) x E(Number of Customers in Queue)
E(S?%)

pXT(S)—FE(S)X)\Wq

which solves to yield (upon noting that AE(S) = \/u = p)
p_ . E(S)
1—p 2E(9)
AE(S?)
2(L=p)
This is known as the Pollaczek-Khinchine formula, and is one of the most famous
results in queueing theory.

W,

8.5. The Race to Trace

Imagine an infectious disease that provides vaccination to exposed persons via
contact tracing. You are likely familiar with this setup from the Covid-19 pan-
demic, but the operational aspects were worked out much earlier in the context of
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smallpox vaccination in response to a bioterrorism attack. Consider the diagram
below:

Index

Remaining Infectious Period |Index Case Detection

Contact ‘ >
I Vaccine Sensitive Period Contact Detection -- Too Late!

The index case is infected at the leftmost time shown in the diagram; for conve-
nience let this be at time ¢ = 0. The index is interacting at random with other
persons in the population. Suppose that the index infects a contact at a random
time during the infectious period. If the duration of the infectious period is given
by random variable X, then relative to the time the the contact is infected, the
remaining time left in the index case’s infectious period is the forward recurrence
time X*. Now, suppose that when a person is infected, they remain vaccine sensi-
tive for duration V. Vaccine sensitivity means that if a newly infected person (in
this case, the contact) is vaccinated within the vaccine sensitive period, they are
protected from infection (or at least from serious consequences of disease, which
for something like smallpox can be fatal). Now, the index case develops symp-
toms at the end of their infectious period, at which point contact tracing ensues.
Optimistically presuming that contact tracing occurs at the speed of light (1), a
contact infected by an index case will be vaccinated in time if V' > X*. This
is to say, if the duration of the vaccine sensitive period for the contact exceeds
the remaining time from infection until symptoms for the index, then the contact
can be vaccinated in time. On the other hand, if V' < X* (which is the situation
shown in the diagram above), then even instantaneous vaccination of the contact
upon the discovery that the index is infected (via the appearance of symptoms)
will occur too late to save the contact.

We refer to this scenario as the race to trace, and seek the probability that a
contact can be “saved” from infection with an index via (instantaneous) contact
tracing and vaccination. Noting that V' and X* are independent, the probability
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of saving the contact is given by

Pr{Save Contact} = Pr{V > X"}
= Ex«(Pr{V > z|X* = 2})

= /000 Pr{V > a} fx«(x)dz

- /000 Pr{V >z} x —Pr{E)iX?) x}dx

1 o0
- TX)/O Pr{V >z, X > z}dx
1 > .
= m/o Pr{min(V, X) > x}dx
E[min(V, X)]

E(X)

This is a very telling result. If V << X, then min(V,X) ~ V and Pr{Save
Contact} ~ F(V)/E(X) which will be a very small probability. At the other
extreme, if V' >> X, then min(V, X) =~ X and Pr{Save Contact} = 1.

9. The Superposition of Renewal Processes

Suppose we have a basic renewal process with interarrival times X governed by
pdf fx(z) and survivor function

Sx(z) = Pr{X >z}
1 — Fx(z), z > 0.

Now imagine having n different renewal processes, each of which has interarrival
times distributed as X. The superposition of these renewal processes is found by
keeping track of the successive times at which each new arrival occurs without
regard to which renewal process the arrival corresponds to. This situation is
shown in the diagram below.
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Process 1 X X X X

Process 2 X X X X X

Process 3 X X X X X X

Process 4 X X X X

Process 5 X X X X X X

Superpositioned Process J_‘\_l 1 L

The diagram shows the arrival epochs for five different renewal processes (each
arrival marked with an “x”), and the arrival epochs of the superpositioned process
(the arrowheads along the bottom axis).

We are interested in the random variable Y, which denotes the durations of
the interarrival times in the superpositioned process. It is immediately clear that
the mean duration of the interarrival times in the superpositioned process is given
by

By)=ZX)
n
for if we are combining n independent processes, each with the same mean interar-
rival time F(X), then the mean interarrival time duration in the superpositioned
process must be 1/n™ as long. What else can we say about the distribution of Y7
Let us define
G(y) = Pr{Y >y}
as the survivor function for random variable Y. Suppose an outside observer was
to arrive at the superpositioned process independently of the process itself. From
the moment of random incidence to the superpositioned process, what is the time
until the next superpositioned arrival, that is, what is the forward recurrence time
Y*? Clearly the pdf for this forward recurrence time must be given by
froy) = T2V
(Y)
Gly)
EY)
G(y)

E(X)/n
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But, the time until the next superpositioned arrival from the moment of random
incidence must also equal the minimum of the forward recurrence times for each
of the constituent renewal processes — random incidence to the superpositioned
process implies random incidence to each of the renewal processes being superpo-
sitioned! This means that

Y* = min X}

1<j<n 7/

and as a consequence we must have

Pr{Y* >y} = Pr{min X7 >y}

1<j<n

= (Pr{X">y})"

ey
_ (1_/0 E(g?))dm)”.

An alternative expression for the pdf of Y* can be obtained via the negative
derivative of Pr{Y* > y}, that is

foely) = 7%%&”2%
. d Y Sx(x) , \n
B dy(l / )d °)

_ ( n—1 X(y)
- ”“‘/o 2™ B

S x(l—/oy S)Eg?))dx)”lxsx(y),yZO.
(

E(X) E

Equating our two expressions for fy«(y) yields

n n v SX(x) n—1
700 = gy * (0 | Fa e < sk

which leaves us with

Gly) = Sx(y) x (1 / ' f;;;;; dzy", y > 0

as the survival function for random variable Y.
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It is convenient at this point to scale random variable Y by its mean, so
define a new variable W by

= % x Y.
Then we have
P 2w} = Prfy 2 Zu)
- o B8y
— SX(EE:LX)w) x (1— /OE("X)w ijz%)dx)”—l, w > 0.

Let us take the limit as the number of constituent renewal processes n — BIG.
Note that

SX<E(nX)w) n—BIG S (0) =1
while B
/ no W SX(x)dx n—BIG Sx(0) o E(X)w _w
; E(X) E(X) n n

Taken together we have that

PI'{W Z w} nﬁIG (1 _ %)n—l — eV (”)

Returning to our original random variable Y, the interarrival time in the super-
positioned process, we have

P{Y >y} = Gly) "=" Pr{W = psu)

We have our result! As the number of renewal processes being superpositioned,
n, gets large, the distribution of the time between arrivals in the superpositioned
process tends towards an exponential distribution with mean F(Y) = E(X)/n and
variance Var(Y) = (F(X)/n)?. If the original renewal processes had been Poisson
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processes with the same arrival rate A, then the superpositioned process would
also be a Poisson process with arrival rate 1/E(Y) =n/E(X) =n/(1/)\) = An.

You can build further upon this result. Suppose you had ¢ classes of renewal
processes, and in each class j you superpositioned n; iid renewal processes. Then
you would reach an exponential limit for each of the ¢ renewal classes. The
superposition of all of the renewal processes across all classes would then also
reach an exponential limit for the interarrival times in the superpositioned process,
since the minimum of exponential random variables is also exponential, as you well
know.

10. Additional Topics in Renewal Theory

We have exhausted the time we have allotted to the study of renewal processes,
but there are a few additional topics you can explore on your own. If a renewal
process begins with a special interarrival time that is different from all subsequent
interarrival times, you obtain a modified renewal process. Suppose you are study-
ing an equipment failure time problem. If the times between successive failures
are iid from some distribution, starting from the time of a new machine, counting
machine failures would constitute an ordinary renewal process of the type we have
studied. But suppose you begin the process with a machine that has been in use
for exactly a units of time. The remaining time until that machine fails depends
upon the age a, and its distribution is of course determined by conditioning on
the original failure time distribution. So you would have a first time to renewal
given by this conditional remaining life given the machine has lived for exactly
a, followed by regular renewal intervals. And as a very special case of a modified
renewal process, suppose that you first encounter a machine that has been work-
ing for a random amount of time. The remaining life in this machine would thus
be distributed as a forward recurrence time, after which all subsequent renewals
would follow the regular process. A modified process that begins this way is
called an equilibrium renewal process.

One can also study alternating renewal processes. Imagine a machine that is
up or down (or imagine a patient who is in treatment or under observation). In
the machine example, all up times are drawn from one probability distribution
and on their own would constitute an ordinary renewal process. Similarly the
down times are drawn from a different probability distribution and would on their
own constitute a different ordinary renewal process. In an alternating renewal
process, you switch between these two processes whenever there is a renewal —
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the machine’s up time is followed by down time, which is then followed by up
time, which is then followed by down time, etc. Suppose that T, and T}, are
the expected times the machine stays up and down respectively. You arrive at a
random time. What is the probability that the machine is up? Congratulate
yourself if you guessed E(T,,)/E((Tup) + E(Tuaown))-

There are many more extensions to the theory, but I hope these notes have
given you some flavor of the beauty and applicability of renewal processes in
operations research.
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