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Abstract

This is a set of notes on renewal processes that formed the basis for

a lecture in the PhD class Modeling Operational Processes offered in the

Spring of 2025 at the Yale School of Management.

1. Preliminaries

Let  be a non-negative continuous random variable with cumulative distribution

function (cdf) () = Pr{ ≤ }, probability density function (pdf) () =


(), finite mean () =  and variance  () = 2. Starting from time 0,

“arrivals” or “events” or “renewals” occur with interarrival times independently

and identically distributed (iid) as random variable . Let  denote the time

(measured from the start of the process at time 0) of the  arrival. Clearly

 =

X
=1



where all of the ’s are iid as random variable 

The cdf and pdf of random variable  are notated by () = Pr{ ≤ }
and () =



() Note the convolution relations

+1() =

Z 

0

(− )()
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and

+1() =

Z 

0

(− )()

Roughly speaking, to find the probability (density) that the +1 renewal occurs

at time , we note that if the first renewal occurs at time , then an additional 

renewals must occur over the remaining −  time periods; the integral accounts

for all possible first renewal times  between 0 and . Similarly, for the  + 1

renewal to occur at or before time , again note that if the first renewal occurs at

time , then the remaining  renewals must occur within the remaining − time

available.

2. Introducing (), the Number of Renewals by Time 

It is easy to study the timing of the  renewal by considering the probability

laws of random variable . Now we will turn the problem around, and consider

the number of renewals that occur by time  (where by convention time 0 is taken

as the start of the process). We denote the number of renewals that occur by time

 as (), and define this variable mathematically as

() = max{| ≤ }  ≥ 0

Fix time to , and ask yourself what is the largest value of  such that  ≤ ?

The answer to that question must be (), the number of renewals by time . A

sample path showing the evolution of () over time is shown in the figure on the

next page.

We would like to understand the random variable (), as it is a basic process

in operations research. () could correspond to the number of customers who

have arrived to a service system by time , the number of persons who have been

infected in a stable disease transmission process by time , or the number of terror

attacks that have been attempted by time , as examples. We certainly would like

to know how to calculate (()),  (()), and if possible Pr{() = } for
 = 0 1 2 We would also like to be able to deduce asymptotic results describing

the behavior of () as  becomes large (that is, as  → ∞). Along the way we
will discover how we can do approximate versus exact calculations..
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3. Finding the Expected Number of Renewals (())

Suppose a renewal process has just started at time 0, and suppose that the first

renewal occurs at some (random) time , 0   ≤  The number of renewals that

occur by time  must then be given by

() = 1 +(− )

since the first renewal at time  contributes one, while the remaining number of

renewals must occur between time  and , which amounts to (− ) renewals

since the process starts over (i.e. renews itself) at time . Now,  is a random

variable corresponding to the time of the first renewal, which means that the

probability density of  is exactly the same as the probability density of , the

interarrival time distribution that drives the entire renewal process.
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We now seek the expected number of renewals that occur between 0 and , that

is (()). We can obtain a defining equation simply by taking the expected value

of () as defined above (where the expectation is with respect to the random

variable ). We obtain

(()) = (1 +(− ))

=

Z 

0

((1 +(− ))()

The integral only runs from 0 to  as once the value of  exceeds , the number

of renewals that occur within (0 ] equals zero.

The integral equation above is an example of a renewal equation (indeed some

refer to this as the renewal equation). Note that since
R 
0
() = Pr{1 ≤ } =

1() by definition (recall that 1 is the time of the first renewal), expanding the

equation yields

(()) = 1() +

Z 

0

((− ))()

We will show how to solve this momentarily, but first we will introduce the general

renewal equation. Suppose you know the (deterministic) function (), and seek

to discover the (deterministic) function () that is defined by

() = () +

Z 

0

(− )()

This is the general renewal equation. Given () and the interarrival density

(), find the function () defined by the integral equation above. Note that

our equation for the expected number of renewals (()) is a special case of this

general question with () = 1(), and () = (())

Returning to the expected number of renewals, we can solve the equation using

successive approximations to deduce what the form of the solution must be, and

then verify the solution. Let () now refer to (()), and let ()() denote

the  successive approximation to (). The successive approximation scheme

proceeds according to the schedule

(+1)() = 1() +

Z 

0

()(− )()
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We start with (0)() = 0, and inserting this into the approximation schedule

yields

(1)() = 1()

Now we iterate to obtain

(2)() = 1() +

Z 

0

(1)(− )()

= 1() +

Z 

0

1(− )()

= 1() + 2()

where the second term follows from the convolution of the distribution of 1 with

the density of  introduced at the start of these notes. Iterating again we obtain

(3)() = 1() +

Z 

0

(2)(− )()

1() +

Z 

0

(1(− ) + 2(− ))()

= 1() + 2() + 3()

where we have again taken advantage of the convolution of the distribution of 
(for  = 1 2) with the density of  A pattern is clearly emerging which leads to

the conjecture that

() =

∞X
=1

()

Is this the solution to the renewal equation for () = (())? To see that it is,

we verify by writing

() = 1() +

Z 

0

(− )()

= 1() +

Z 

0

(

∞X
=1

(− ))()

= 1() +

∞X
=2

()

=

∞X
=1

()
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as was to be shown (with the integration result again following from the convo-

lution relating the distribution of  (for  = 1 2 3 4 ) and the density of .

We have thus shown that

(()) =

∞X
=1

()

There must be an intuitive explanation for this result, and here it is. Look

again at the sample path of the renewal process graphed earlier, and note the

following:

The events () ≥  and  ≤  are the same events!

If at time  there have been at least  renewals, then the time at which the 

renewal occurred must be less than or equal to ! If   , then it would be

impossible for there to have been  renewals by time  since  is the time of the

 renewal! Working in reverse, if you know that the  renewal happened at

or before time  is reached, then you immediately know that the total number of

renewals that occurred by time  must at least equal . Since the events () ≥ 

and  ≤  are equivalent, it must be true that

Pr{() ≥ } = Pr{ ≤ }

since equivalent events have the same probability. Now, from elementary proba-

bility theory, we know that

(()) =

∞X
=0

Pr{() = }

=

∞X
=0

(Pr{() ≥ }− Pr{() ≥ + 1})

=

∞X
=1

Pr{() ≥ }

=

∞X
=1

Pr{ ≤ }

=

∞X
=1

()
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So now we see two different ways to arrive at the same result for expressing

(()), the expected number of renewals by time  in a renewal process that

starts at time 0.

3.1. Example: The expected number of renewals when the interarrival

times are uniformly distributed

Consider a renewal process where the interarrival times  are uniformly distrib-

uted between 0 and 1, that is

() = 1() =

⎧⎨⎩ 1 0 ≤  ≤ 1

0 all other 

It follows that

1() =

Z 

0

1() = , 0 ≤  ≤ 1

Focusing only on values of  that fall between 0 and 1, from the convolutions

relating the cumulative distribution of  and the density of  we see that

2() =

Z 

0

1(− )()

=

Z 

0

(− )

=
2

2
, 0 ≤  ≤ 1

and

3() =

Z 

0

1(− )()

=

Z 

0

(− )2

2


=
3

3!
, 0 ≤  ≤ 1
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Again we see a pattern developing, so conjecturing that () =


!
for 0 ≤  ≤ 1,

we establish that

+1() =

Z 

0

(− )()

=

Z 

0

(− )

!


=
+1

(+ 1)!
, 0 ≤  ≤ 1

which proves the conjecture. The expected number of renewals by time  for

0 ≤  ≤ 1 for this uniform renewal process is thus given by

(()) =

∞X
=1



!
=  − 1

We can verify that this expression satisfies the renewal equation for (()) by

evaluating

(()) = 1() +

Z 

0

((− ))()

= +

Z 

0

(− − 1)
= +  − − 1
=  − 1

as was to be shown.

In this example, for 0 ≤  ≤ 1 it was possible to obtain the exact value for
(()) analytically, but this will not always be possible. However, numerical

approximations can always be obtained via our successive approximation scheme.

The figure below plots (1)(), (2)(), (3)(), and the exact value () for the

uniform example considered above. As shown in the figure, an excellent approx-

imation to () = (()) is provided by just the first three iterations of our

successive approximation scheme.
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3.2. Example: The Poisson process

Perhaps the best known renewal process is the Poisson process. In the Poisson

process, the interarrival times are exponentially distributed with mean 1 where

  0 is the arrival rate, that is, the interarrival times have density

() = 1() = −,  ≥ 0
and cumulative distribution

Pr{ ≤ } = 1() =

Z 

0

− = 1− −

It is of course well-known that the probability distribution of the number of arrivals

(or number of renewals) that occur by time  (starting from time 0) is given by

the Poisson distribution

Pr{() = } = ()

!
−,  = 0 1 2 ;  ≥ 0
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and from this probability distribution the expected number of renewals follows

immediately as

(()) =

∞X
=0

× ()


!
− = 

Since the Poisson process is also a renewal process, it must be true that the

expected number of renewals also satisfies the renewal equation! Verification is

simple:

(()) = 1() +

Z 

0

((− ))()

= 1− − +
Z 

0

(− )× −

= 1− − + + − − 1
= 

as was to be shown.

4. The Renewal Density ()

The renewal density () is defined as the derivative of the expected number of

renewals, that is,

() ≡ 


(())

The interpretation of the renewal density is that the probability a renewal occurs

in a time interval (  +∆) is given by ()∆. For the Poisson process, where

(()) = , the renewal density () = , the rate of the Poisson process. For

the uniform (0, 1) renewal process operating on 0 ≤  ≤ 1, we discovered earlier
that (()) =  − 1, and thus the renewal density () =  for this process.

Working in reverse, it is clear that the renewal density integrates to the

expected number of renewals, that is,
R 
0
() = (()). To better under-

stand this relationship, we argue informally as follows: define the binary variable

() = 1 if there is a renewal at time , and 0 otherwise. Then the total number

of renewals that occur between 0 and  is given by

() =

Z 

0

()
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Now () is a Bernoulli random variable, which means that the expected value of

() equals the probability of a renewal at time . It follows that

(()) = (

Z 

0

())

=

Z 

0

(())

=

Z 

0

()

since Pr{() = 1} = ()∆.

What else can we say about the renewal density? Recalling that

(()) = 1() +

Z 

0

((− ))()

taking the derivative yields

() =



(())

=



(1() +

Z 

0

((− ))())

= 1() +

Z 

0

(− )()

This is another renewal equation, but now expressed in terms of the renewal

density instead of the expected number of renewals. This is a special case of the

general renewal equation obtained by setting () = 1() and recognizing ()

as the renewal density (). We can easily verify this equation for the Poisson

process where () =  and () = − for

1() +

Z 

0

(− )()

= − +
Z 

0

× −

= − + (1− −)

= 
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Similarly, for the uniform (0, 1) renewal process operating on 0 ≤  ≤ 1 we have
() =  and () = 1; plugging into the renewal equation for the renewal

density we obtain

1() +

Z 

0

(− )()

= 1 +

Z 

0

−

= 1 +  − 1
= 

What else can we say about the renewal density? Recall that we previously

determined that

(()) =

∞X
=1

()

Since the renewal density () is just the derivative of the expected number of

renewals, we immediately obtain

() =



(())

=

∞X
=1

()

Now it should be crystal clear why ()∆ represents the probability that a renewal

occurs in the time slice (  +∆): since ()∆ is the probability that the 

renewal occurs in (  +∆), summing ()∆ over all  yields the probability

that some renewal occurs in (  +∆)! This is just another way of saying that

()∆ is the probability that a renewal occurs within ( +∆).

5. Solving the General Renewal Equation

Recall the definition of the general renewal equation: given a known deterministic

function () and known interarrival time distribution (), the general renewal

equation yields that function () that satisfies

() = () +

Z 

0

(− )()
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To solve this equation, we will utilize the same successive approximation scheme

we used earlier to determine (()). To recap, we start by defining (0)() = 0,

and then iterate according to the schedule

(+1)() = () +

Z 

0

()(− )()

and search for a pattern that we can then verify by substitution. First, we define

functions

() ≡
Z 

0

(− )()

Now begin iterating. Clearly (1)() = (), so now we evaluate

(2)() = () +

Z 

0

(1)(− )()

= () +

Z 

0

(− )()

= () + 1()

for recall that the random variables  and 1 have the same probability distrib-

utions. Pressing ahead to the next iterate, we have

(3)() = () +

Z 

0

(2)(− )()

= () +

Z 

0

((− ) + 1(− ))()

We immediately recognize
R 
0
(− )() = 1() so it remains to evaluate

Z 

0

1(− )()

=

Z 

=0

½Z −

=0

(− − )1()

¾
()
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Make the substitution  =  + , which implies that  =  − . With this

substitution, Z 

=0

½Z −

=0

(− − )1()

¾
()

=

Z 

=0

(− )

½Z 

=0

1( − )()

¾


=

Z 

=0

(− )2()

= 2()

We conclude that

(3)() = () + 1() + 2()

This is enough to suggest a pattern, namely

(+1)() = () +

X
=1

()

which leads to a conjecture for the overall solution to the general renewal equation,

namely

() = () +

∞X
=1

()

Now, note that

∞X
=1

() =

∞X
=1

Z 

0

(− )()

=

Z 

0

(− )

( ∞X
=1

()

)


=

Z 

0

(− )()

We have thus arrived at an amazing result: the solution to the general renewal

equation is given by

() = () +

Z 

0

(− )()
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The solution depends upon two functions: () (which is presumed known), and

the renewal density () (which can be evaluated by different methods as discussed

earlier). We leave it as an exercise for the reader to show that the solution above

verifies the original general renewal equation.

Consider again the renewal equation for the expected number of renewals,

(()). That equation sets () = 1(), so substituting this while writing the

renewal density () as
P∞

=1 () in the general renewal equation yields

(()) = 1() +

Z 

0

1(− )

( ∞X
=1

()

)


= 1() +

∞X
=2

()

=

∞X
=1

()

as shown previously.

5.1. Understanding the Solution to the General Renewal Equation

Imagine initiating a series of investments starting a times 0 1 2 3 4  From

the time an investment is initiated, revenue accrues according to the function ()

where  is the elapsed time from the start of the investment. An initial investment

is made at time 0, but afterwards investments are made in accord with a renewal

process — each new renewal corresponds to the initiation of a new investment.

Now ask, at some time   0, how much revenue has been accrued in total over all

investments? Since the elapsed time from the initiation of an investment at time

 until time  is just −, it must be that the total revenue accrued starting from
the beginning investment at time 0 until time  is given by the random quantity

() = () +

∞X
=1

(− )
+

where ()+ = () for  ≥ 0 and 0 otherwise. The figure below illustrates the
situation when four renewals occur before time , in which case the total revenue

accrued is given by () = ()+
P4

=1 (−) (we don’t need the "+" superscript
as we know that all four renewals happened before time .
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The general renewal equation can thus be thought of as finding the expected total

revenue generated from investments that start at times 0 and then at each renewal

epoch afterwards up until time  where the expectation is over the times of the

renewal epochs. That is,

(()) ≡ () = () +[

∞X
=1

(− )
+]

= () +

∞X
=1

Z 

0

(− )()

= () +

Z 

0

(− )()
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5.1.1. Example: () = 

Suppose that revenue accrues at a constant rate  from the time of investment.

Then

() =  × +

Z 

0

 × (− )()

If the renewal process in question is a Poisson process, then () = , the arrival

rate of the process, and we have

() = + 
2

2


If on the other hand the renewal process has uniformly distributed interarrival

times between 0 and 1, then for 0 ≤  ≤ 1 we have () =  and thus

() = +

Z 

0

 × (− )

= − 
¡
−  + 1

¢
= ( − 1)

Since the mean interarrival time for the uniform renewal process just described is

equal to 1/2, a Poisson process with the same mean interarrival time would have

 = 2, and for 0 ≤  ≤ 1 such a process would generate +2 ≥ (−1) revenue
in total. A Poisson process with the same mean interarrival time as a uniform (0,

1) renewal process would generate more revenue in expectation.

5.1.2. Example: () = 

Imagine a terrorist organization that initializes bioterror attacks in different loca-

tions at times given by a renewal process. Further, imagine that the number of

persons infected following the initiation of an attack grows exponentially with rate

, and thus the number of infected persons  time units after an attack equals .

The expected total number of infected persons over all attacks at time  would

then follow

() =  +

Z 

0

(−)()
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If the renewal process initiating attacks was Poisson with rate , the expected

number of infected persons by time  would then be given by

() =  +

Z 

0

(−)

=  +



( − 1)

If instead the renewal process was uniform (0, 1), then for 0 ≤  ≤ 1 the expected
total number of infected person by time  would equal

() =  +

Z 

0

(−)

= (1 +

Z 

0

(1−))

= (1 +
1

1− 
((1−) − 1))

The expected number of infections over time for the Poisson and uniform renewal

processes when  = 01 and  = 2 (so the uniform and Poisson processes have the

same mean interarrival times) are shown in the graph below.
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5.1.3. Finding (()2)

To find the variance of the number of renewals in a given time period, one first com-

putes the mean square (()2), and then subtracts the squared mean (())2.

Recall that if  is the time of the first renewal, then

() = 1 +(− )

We can use this relationship to write

(()2) = [(1 +(− ))2]

= 1 + 2((− )) +((− )2)

To evaluate the expectation on the right hand side above, we must integrate over

the density () which yields

(()2) =

Z 

0

¡
1 + 2((− )) +((− )2)

¢
()

=

Z 

0

¡
2 + 2((− ))− 1 +((− )2)

¢
()

= 2(())− 1() +

Z 

0

((− )2)()

This is a renewal equation with () = (()2) and () = 2(()) − 1().

Can you deduce the solution for () via the general renewal equation? Can

you verify your solution by taking advantage of the facts that Pr{() ≥ } =
Pr{ ≤ }, and

(()2) =

∞X
=0

2 Pr{() = }?

I leave that as an exercise for the reader.

6. Asymptotic Results for () and ()

By now the reader should be convinced that there is a rich theory underlying

renewal processes, with the general renewal equation providing a unifying ap-

proach to formulating the expected value of desired functions defined on renewal

processes. However, other than in special cases where the probability densities

19



and/or distributions of ()/() can be calculated explicitly (examples in-

clude the Poisson and uniform renewal processes), analytical results are not forth-

coming for finite values of time. Numerical calculations, however, can always

be obtained via the successive approximation scheme introduced for the general

renewal equation, that is, by setting (0)() = 0 and iterating in accordance with

(+1)() = () +

Z 

0

()(− )()

One iterates until successive approximations ()() and (+1)() are sufficiently

close. In this way, one can solve for the moments of the number of renewals,

or the expected value of different functions deriving from carefully chosen ()

functions.

However, the analytical difficulty of proceeding with all but a select few re-

newal processes should help sober the reader regarding why analytically tractable

processes such as the Poisson are often the default choice in operations research

models. This same difficulty might also cause the reader to ask whether there are

simpler asymptotic results for renewal processes that work well as  gets large. We

will now focus on this second set of questions, and show that there are very easy-

to-use asymptotic results that apply to the distribution of (), and consequently

to the renewal density ()

To begin, recall the random walk definition of the time of the  renewal

epoch 

 =

X
=1



where all of the ’s are iid as random variable , the interarrival time for the

renewal process. As  gets large, the central limit theorem assures us that  −→
( 2), that is, the distribution of  tends towards a normal distribution

with mean  and variance 2 where  and 2 are the mean and variance of the

interarrival time .

What about the number of renewals ()? It should come as no surprise that

lim
→BIG

(()) =




for arguing informally, if the expected time between renewals equals  , then the

expected total time due to () renewals should (roughly) equal (()) = .
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An immediate consequence of this is that

lim
→BIG

() = lim
→BIG




(())

= lim
→BIG





µ




¶
=

1




This is pretty consequential — as → BIG, no matter the specifics of the underlying

interarrival time distribution that drives the renewal process, the renewal density

approaches the constant 1 , also known as the rate of the renewal process. Far

enough in the future, all renewal processes have that Poisson feel in that the

probability of a renewal in any interval ( +∆) just equals ∆ . Note that for

the Poisson process,  = 1 and thus () =  for all .

But what of the probability distribution for () as  becomes large? Recall

the crucial event equivalence of renewal processes:

The events () ≥  and  ≤  are the same events!

which implies that

Pr{() ≥ } = Pr{ ≤ }
The central limit theorem implied normality for  allows us to write (with slight

abuse of notation in letting  represent the standard normal random variable)

Pr{ ≤ } ≈ Pr{ ≤ −()p
 ()

}

= Pr{ ≤ − 


√

}

≡ ©(
− 


√

)

where ©(·) denotes the standard normal cdf. In turn this suggests writing

Pr{() ≥ } ≈ ©(− 


√

)

which due to the symmetry of the standard normal distribution about zero is
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equivalent to writing

Pr{() ≤ } ≈ ©(
 − 


√

)

= ©(
− 

()
√

)

The problem with this latter expression, however, is that it does not define a

constant-parameter probability distribution for () — the appearance of
√
 in

the denominator ruins the idea that there is a stable variance for (). The

problem can be immediately recognized — the values of  that () can assume

must scale with  (just like the values of  that  can assume essentially scale

with  via () = 
√
).

To fix this, for some arbitrary constant  we define

 =



+ 

r


 3

=



(1 + 

r
1


)·

This appears arbitrary, but watch what happens — with this value of  we consider

the time of the th renewal, , and write

Pr{ ≤ } = Pr{ ≤ − 


√

}

Now

−  = − 

"



(1 + 

r
1


)

#

= − − 

r
1



= −
r





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Consequently, we have

− 


√


= −

q





√


= −

q


r



(1 + 

q
1

)

= − r
(1 + 

q
1

)

Taking the limit as → BIG we obtain

lim
→BIG

− 


√


= lim
→BIG

− r
(1 + 

q
1

)

= − (!!!)

Now we can comfortably claim that

lim
→BIG

Pr{ ≤ } = lim
→BIG

Pr{ ≤ − 


√

}

= lim
→BIG

Pr{ ≤ −}
= ©(−)

Finally we can write that

lim
→BIG

Pr{() ≥ } = lim
→BIG

Pr{ ≤ }
= ©(−)

and therefore

lim
→BIG

Pr{() ≤ } = ©()
again owing to the symmetry of the standard normal distribution about zero.

Almost there! Recall that since

 ≡ 


+ 

r


 3
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we recognize  as

 =
 − 




q


3



But if lim→BIG Pr{() ≤ } = ©(), and we know that lim→BIG (()) =  ,

we have just learned that

lim
→BIG

 (()) =
2

 3


We have our asymptotic result for the number of renewals by time  — as → BIG,

() becomes normally distributed with mean  and variance (2 3). How

cool is that???

6.1. Example: Poisson Process

For the Poisson process, you already know that for any , (()) =  (()) =

 while the number of renewals is Poisson distributed. What does our asymptotic

result say? The Poisson process derives from exponential interarrival times with

mean  = 1 and variance 2 = 12. The asymptotic result says that as  →
BIG,

(())
→BIG→ 

= (1)

= 

How about the variance? Our asymptotic result says that

 (())
→BIG→ 2

 3


=
(12)

(13)


= 

So for the Poisson process, our asymptotic result says that the number of renewals

by time  is normally distributed with mean and variance both equal to . And

as you already know, the normal distribution provides an excellent approximation

to the Poisson distribution if the Poisson mean is at least equal to 10.
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6.2. Example: Uniform (0, 1) Process

If the interarrival times are uniformly distributed between 0 and 1, then the mean

interarrival time is given by  = 12, while the variance of the interarrival time is

equal to Z 1

0

(− 1
2
)2 =

1

12


All of our examples with this uniform process to this point have focused only

properties of () for 0 ≤  ≤ 1 to keep the examples simple, but now we are
allowing → BIG! We see that asymptotically, for the uniform (0,1) process that

(())
→BIG→ 


= 2

and

 (())
→BIG→ 2

 3


=
112

18


=
2

3


Compared to the Poisson process with  = 2 (so both renewal processes have the

same rate), we see that the number of renewals () for the uniform (0, 1) process

is much less variable than the corresponding Poisson process.

7. Random Incidence

Suppose that a renewal process with interarrival times  distributed according to

the pdf () has been operating for some time. Suppose further than an outside

“observer” arrives at a time  chosen independently of the renewal process (the

arrival of the observer does not constitute a renewal as the observer is “outside”

the process). Let random variable  denote the duration of the interarrival time

(or gap) that is entered by the randomly arriving observer. What can we say

about this random variable?

The key observation is that the likelihood of entering a gap of duration 

depends upon two things: the relative frequency with which such gaps occur (as

determined by the interarrival pdf ()), and the duration of the gap  itself.
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This enables us to write immediately a proportionality condition that the density

of  must obey, namely

() ∝  × (),  ≥ 0

Since  is a random variable, its density must integrate to 1, which means that

() =
 × ()R∞

0
× ()

=
 × ()

()
,  ≥ 0

We have just derived the probability density function of the gap duration for

a randomly arriving observer. We refer to this entire phenomenon as “random

incidence” because our outside observer randomly intrudes on (or is incident to)

the process.

From this density it is easy to derive the moments of that gap duration entered

via random incidence. We have

() =

Z ∞

0

()

=

Z ∞

0

 ×  × ()

()


=
(+1)

()
·

In particular, setting  = 1 we learn that

() =
(2)

()

=
 () +()2

()

= () +
 ()

()

≥ ()

The expected duration of a gap entered via random incidence is always at least

as large as the expected interarrival time for the corresponding renewal process.
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We can also quickly obtain

 () = (2)−()2

=
(3)

()
−
µ
(2)

()

¶2


7.1. Example: Uniform (0, 1) Renewal Process

Suppose that the interarrival times  are uniformly distributed between 0 and 1,

which means that () = 1 for 0 ≤  ≤ 1 and zero elsewhere. Then

() =

Z 1

0

 =
1

2


() =

Z 1

0

 =
1

 + 1

and thus

() =
(2)

()

=
13

12

=
2

3

and

(2) =
(3)

()

=
14

12

=
1

2

from which we deduce

 () = (2)−()2

=
1

2
− (2
3
)2

=
1

18

≤ 1

12
=  ()
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Also, the density of the gap duration entered at random is given by

() =
()

()

=


12

= 2, 0 ≤  ≤ 1
This density shows clearly that random incidence biases our observer towards

longer gaps compared to the uniform interarrival times. It also explains why

 ()   () since the values of  are more concentrated around () than

the values of the uniformly distributed random variable  are around ()

7.2. Example: Poisson Process

Suppose that the interarrival times  are exponentially distributed with mean

1, i.e. () = −,  ≥ 0. Then the pdf of a gap entered by random

incidence is given by

() =
 × ()

()

=
−

1

= 2−,  ≥ 0
This is a second order Erlang density (equivalently, a gamma density with shape

parameter  = 2), which is also the density function for the sum of two iid

exponential random variables, each with mean 1. From this characterization

we immediately deduce that

() = 2()

=
2



while

 () = 2 ()

=
2

2


The reader can verify these results using the general formulas for () and

 () reported above.
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8. Recurrence Times

Continuing with the random incidence model where an outside observer randomly

enters some interarrival gap in a renewal process that has been operating for a

long time, we ask the following question: how much time elapsed from the most

recent arrival in the renewal process to the moment of random incidence? We

refer to this duration as a backwards recurrence time and denote it by ∗. What
can we say about this random variable?

First, we know that the pdf for the duration of a gap () entered by random

incidence is given by

() =
 × ()

()
,  ≥ 0

Conditional on entering a gap of duration  = , the specific location within this

gap where random incidence occurs is equally likely to be anywhere within the

gap (remember, the random arrival time of the outside observer is independent of

the renewal process). This then means that the conditional pdf of ∗ given that
 =  is uniformly distributed between 0 and , that is

∗(| = ) =
1


, 0 ≤  ≤ 

and zero elsewhere. Unconditioning over  we obtain the joint pdf of ∗ and 

as

∗( ) = ∗(| = )× ()

=
1


×  × ()

()

=
()

()
, 0 ≤  ≤ 

Integrating out to obtain the marginal pdf of the backwards recurrence time ∗

yields

∗() =

Z ∞

=

∗( )

=

Z ∞

=

()

()


=
Pr{ ≥ }

()
,  ≥ 0
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We know that this is a valid pdf that integrates to 1 for

() =

Z ∞

0

Pr{ ≥ }

for any (proper) non-negative random variable , a formula often referred to as

“integrating the tail.”

To obtain the moments of the backwards recurrence time ∗, we integrate by
parts to evaluate

(∗) =

Z ∞

0

× Pr{ ≥ }
()



=
(+1)

( + 1)()


As an aside, the integration by parts proceeds by letting  =
Pr{≥}
()

,  = ,

and then recognizing that  = −()

()
 and  = +1

+1
. In particular, for  = 1,

we see that the mean backwards recurrence time is given by

(∗) =
(2)

2()


We could have obtained this result directly by noting that due to the randomness

of the arrival time of random incidence,

(∗| = ) =


2

and consequently

(∗) =

Z ∞

0



2
× ()

=

Z ∞

0



2
×  × ()

()


=
(2)

2()

as claimed.
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8.1. Example: Poisson Process

For the Poisson process, interarrival times are exponentially distributed with mean

1 and thus the pdf for the backwards recurrence time is given by

∗() =
Pr{ ≥ }

()

=
−

1

= −,  ≥ 0

This is yet another manifestation of the “memoryless property” of the exponential

distribution. The elapsed time from the previous renewal until the moment of

random incidence has exactly the same exponential distribution as the interarrival

time distribution itself!

8.2. Example: Uniform (0, 1) Process

If the interarrival times are uniformly distributed between 0 and 1, then the back-

wards recurrence time pdf is given by

∗() =
Pr{ ≥ }

()

=
1− 

12

= 2× (1− ), 0 ≤  ≤ 1

8.3. Forwards Recurrence Time

Suppose that we redefine ∗as representing the remaining time from the moment
of random incidence to a renewal process until the next renewal occurs. This

is referred to as the forwards recurrence time. A vivid example is to imagine

a bus stop where the interarrival times of successive buses constitute a renewal

process, and our observer arrives at a random time to catch the bus. The forward

recurrence time∗ reports the waiting time from arrival until the next bus arrives.
One can again condition on entering an interarrival gap  =  via random

incidence, which as before results in a time of entry uniformly distributed between

0 and . But if the time of entry is uniformly distributed, so is the remaining time
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until the next renewal! This means that exactly the same arguments used to

derive the probability distribution for the backwards recurrence time apply to the

forwards recurrence time. We thus have that the remaining time from random

incidence until the next renewal occurs also has pdf

∗() =
Pr{ ≥ }

()
,  ≥ 0

In the bus stop interpretation, the expected waiting time until the next bus arrives

is given by (∗) = (2)2().

If buses arrive according to a Poisson process, then the mean waiting time

until the next bus is exactly the same as if one had literally just missed the bus.

More generally, for the Poisson process, the forward recurrence time is distributed

exactly as the underlying exponential interarrival times. Talk about a memoryless

process!

8.4. Example: Expected Waiting Time in 1 Queue

Here we show how understanding renewal theory provides an almost instant

derivation of one of the most celebrated results in queueing theory. First, re-

call the 1 queueing model where customers arrive according to a Poisson

process with rate , service times are exponentially distributed with mean 1,

and the utilization  ≡   1 (the utilization is the probability that the server

is busy). The expected waiting time  for a newly arriving customer to the

1 queue is easily derived as

 = Pr{Server is busy} ×(Remaining Service Time for Customer in Service)

+
1


×(Number of Customers in Queue)

The expected number of customers in queue, , is related to the expected waiting

time in queue via Little’s Theorem

 = 

And, since the service times are exponential, the expected remaining service time

for a customer in service at the time of a randomly arriving new customer is just

the forward recurrence time on the service time distribution, which in the case
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of the exponential distribution equals 1. Substituting these insights into our

equation for  we have

 = × 1


+





which solves to

 =


1− 

as is well known.

Now let’s dispense with the exponential service time assumption, and allow

service times to be arbitrarily distributed in accord with some random variable .

Exactly the same logic as was used to derive  for the 1 queue applies,

except that now the expected remaining time for a customer in service corresponds

to a forward recurrence time on the service process — if someone is already in

service at the time a new customer arrives (which is at random with respect to

the service process), then the remaining service time from when our new customer

arrives is the same as a forward recurrence time on the service process! The mean

forward recurrence time is just (∗) = (2)2() (and we take () = 1

as before), and thus for the 1 queue we have

 = Pr{Server is busy} ×(Remaining Service Time for Customer in Service)

+()×(Number of Customers in Queue)

= × (2)

2()
+()× 

which solves to yield (upon noting that () =  = )

 =


1− 
× (2)

2()

=
(2)

2(1− )


This is known as the Pollaczek-Khinchine formula, and is one of the most famous

results in queueing theory.

8.5. The Race to Trace

Imagine an infectious disease that provides vaccination to exposed persons via

contact tracing. You are likely familiar with this setup from the Covid-19 pan-

demic, but the operational aspects were worked out much earlier in the context of
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smallpox vaccination in response to a bioterrorism attack. Consider the diagram

below:

Index
Remaining Infectious Period Index Case Detection

Contact
  Vaccine Sensitive Period Contact Detection -- Too Late!

The index case is infected at the leftmost time shown in the diagram; for conve-

nience let this be at time  = 0. The index is interacting at random with other

persons in the population. Suppose that the index infects a contact at a random

time during the infectious period. If the duration of the infectious period is given

by random variable , then relative to the time the the contact is infected, the

remaining time left in the index case’s infectious period is the forward recurrence

time ∗ Now, suppose that when a person is infected, they remain vaccine sensi-
tive for duration  . Vaccine sensitivity means that if a newly infected person (in

this case, the contact) is vaccinated within the vaccine sensitive period, they are

protected from infection (or at least from serious consequences of disease, which

for something like smallpox can be fatal). Now, the index case develops symp-

toms at the end of their infectious period, at which point contact tracing ensues.

Optimistically presuming that contact tracing occurs at the speed of light (!), a

contact infected by an index case will be vaccinated in time if  ≥ ∗. This
is to say, if the duration of the vaccine sensitive period for the contact exceeds

the remaining time from infection until symptoms for the index, then the contact

can be vaccinated in time. On the other hand, if   ∗ (which is the situation
shown in the diagram above), then even instantaneous vaccination of the contact

upon the discovery that the index is infected (via the appearance of symptoms)

will occur too late to save the contact.

We refer to this scenario as the race to trace, and seek the probability that a

contact can be “saved” from infection with an index via (instantaneous) contact

tracing and vaccination. Noting that  and ∗ are independent, the probability
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of saving the contact is given by

Pr{Save Contact} = Pr{ ≥ ∗}
= ∗(Pr{ ≥ |∗ = })
=

Z ∞

0

Pr{ ≥ }∗()

=

Z ∞

0

Pr{ ≥ } × Pr{ ≥ }
()



=
1

()

Z ∞

0

Pr{ ≥  ≥ }

=
1

()

Z ∞

0

Pr{min() ≥ }

=
[min()]

()


This is a very telling result. If   , then min() ≈  and Pr{Save
Contact} ≈ ( )() which will be a very small probability. At the other

extreme, if   , then min() ≈  and Pr{Save Contact} ≈ 1

9. The Superposition of Renewal Processes

Suppose we have a basic renewal process with interarrival times  governed by

pdf () and survivor function

() ≡ Pr{ ≥ }
= 1− (),  ≥ 0

Now imagine having  different renewal processes, each of which has interarrival

times distributed as . The superposition of these renewal processes is found by

keeping track of the successive times at which each new arrival occurs without

regard to which renewal process the arrival corresponds to. This situation is

shown in the diagram below.
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Process 1 x x         x x        x

Process 2 x x    x   x   x

Process 3    x x  x    x                x x    x

Process 4 x x x      x x x  

Process 5           x        x x               x x x       x

Superpositioned Process

The diagram shows the arrival epochs for five different renewal processes (each

arrival marked with an “x”), and the arrival epochs of the superpositioned process

(the arrowheads along the bottom axis).

We are interested in the random variable  , which denotes the durations of

the interarrival times in the superpositioned process. It is immediately clear that

the mean duration of the interarrival times in the superpositioned process is given

by

( ) =
()


for if we are combining  independent processes, each with the same mean interar-

rival time (), then the mean interarrival time duration in the superpositioned

process must be 1th as long. What else can we say about the distribution of  ?

Let us define

() = Pr{ ≥ }
as the survivor function for random variable  . Suppose an outside observer was

to arrive at the superpositioned process independently of the process itself. From

the moment of random incidence to the superpositioned process, what is the time

until the next superpositioned arrival, that is, what is the forward recurrence time

 ∗? Clearly the pdf for this forward recurrence time must be given by

 ∗() =
Pr{ ≥ }

( )

=
()

( )

=
()

()

=


()
×(),  ≥ 0.
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But, the time until the next superpositioned arrival from the moment of random

incidence must also equal the minimum of the forward recurrence times for each

of the constituent renewal processes — random incidence to the superpositioned

process implies random incidence to each of the renewal processes being superpo-

sitioned! This means that

 ∗ = min
1≤≤

∗


and as a consequence we must have

Pr{ ∗ ≥ } = Pr{ min
1≤≤

∗
 ≥ }

= (Pr{∗  })

=

µ
1−

Z 

0

∗()

¶

= (1−
Z 

0

()

()
)

An alternative expression for the pdf of  ∗ can be obtained via the negative
derivative of Pr{ ∗ ≥ }, that is

 ∗() = − 


Pr{ ∗ ≥ }

= − 


(1−

Z 

0

()

()
)

= (1−
Z 

0

()

()
)−1 × ()

()

=


()
× (1−

Z 

0

()

()
)−1 × (),  ≥ 0

Equating our two expressions for  ∗() yields



()
×() =



()
× (1−

Z 

0

()

()
)−1 × ()

which leaves us with

() = ()× (1−
Z 

0

()

()
)−1  ≥ 0

as the survival function for random variable  .
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It is convenient at this point to scale random variable  by its mean, so

define a new variable  by

 =


( )

=


()
× 

Then we have

Pr{ ≥ } = Pr{ ≥ ()


}

= (
()


)

= (
()


)× (1−

Z ()




0

()

()
)−1  ≥ 0

Let us take the limit as the number of constituent renewal processes  → BIG.

Note that

(
()


)

→BIG→ (0) = 1

while Z ()




0

()

()


→BIG→ (0)

()
× ()


 =






Taken together we have that

Pr{ ≥ } →BIG→ (1− 


)−1 = − (!!)

Returning to our original random variable  , the interarrival time in the super-

positioned process, we have

Pr{ ≥ } = ()
→BIG→ Pr{ ≥ 

()
}

= 
− 
()


,  ≥ 0

We have our result! As the number of renewal processes being superpositioned,

, gets large, the distribution of the time between arrivals in the superpositioned

process tends towards an exponential distribution with mean( ) = () and

variance  ( ) = (())2. If the original renewal processes had been Poisson
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processes with the same arrival rate , then the superpositioned process would

also be a Poisson process with arrival rate 1( ) = () = (1) = 

You can build further upon this result. Suppose you had  classes of renewal

processes, and in each class  you superpositioned  iid renewal processes. Then

you would reach an exponential limit for each of the  renewal classes. The

superposition of all of the renewal processes across all classes would then also

reach an exponential limit for the interarrival times in the superpositioned process,

since the minimum of exponential random variables is also exponential, as you well

know.

10. Additional Topics in Renewal Theory

We have exhausted the time we have allotted to the study of renewal processes,

but there are a few additional topics you can explore on your own. If a renewal

process begins with a special interarrival time that is different from all subsequent

interarrival times, you obtain a modified renewal process. Suppose you are study-

ing an equipment failure time problem. If the times between successive failures

are iid from some distribution, starting from the time of a new machine, counting

machine failures would constitute an ordinary renewal process of the type we have

studied. But suppose you begin the process with a machine that has been in use

for exactly  units of time. The remaining time until that machine fails depends

upon the age , and its distribution is of course determined by conditioning on

the original failure time distribution. So you would have a first time to renewal

given by this conditional remaining life given the machine has lived for exactly

, followed by regular renewal intervals. And as a very special case of a modified

renewal process, suppose that you first encounter a machine that has been work-

ing for a random amount of time. The remaining life in this machine would thus

be distributed as a forward recurrence time, after which all subsequent renewals

would follow the regular process. A modified process that begins this way is

called an equilibrium renewal process.

One can also study alternating renewal processes. Imagine a machine that is

up or down (or imagine a patient who is in treatment or under observation). In

the machine example, all up times are drawn from one probability distribution

and on their own would constitute an ordinary renewal process. Similarly the

down times are drawn from a different probability distribution and would on their

own constitute a different ordinary renewal process. In an alternating renewal

process, you switch between these two processes whenever there is a renewal —
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the machine’s up time is followed by down time, which is then followed by up

time, which is then followed by down time, etc. Suppose that  and  are

the expected times the machine stays up and down respectively. You arrive at a

random time. What is the probability that the machine is up? Congratulate

yourself if you guessed ()(() +())

There are many more extensions to the theory, but I hope these notes have

given you some flavor of the beauty and applicability of renewal processes in

operations research.
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