

Yale SCHOOL of MANAGEMENT

YALE UNIVERSITY
School of Public Health

YALE UNIVERSITY
School of Engineering and
Applied Science

Run Value Added and Win Probability in Baseball

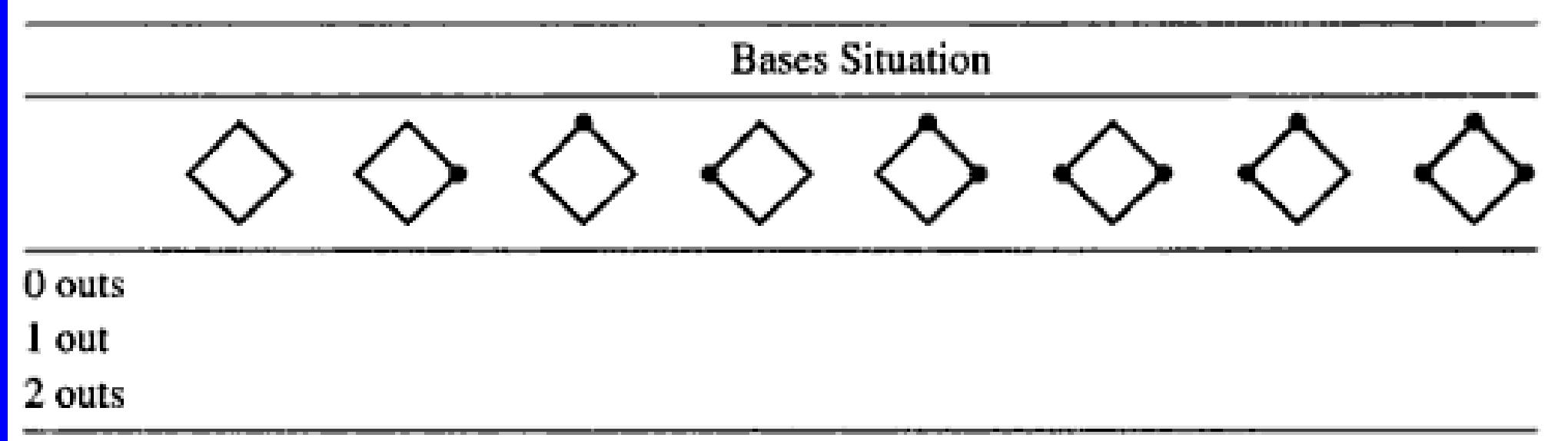
Edward H. Kaplan

William N and Marie A Beach Professor of Operations Research
Yale School of Management

Professor of Public Health
Yale School of Public Health

Professor of Engineering
Yale School of Engineering and Applied Science
New Haven, Connecticut

Context in Baseball



- ◆ What key attributes describe context?
 - Score differential
 - Inning
 - Top/Bottom of inning
 - Balls/strikes
 - Outs
 - Men on base (which bases are occupied)

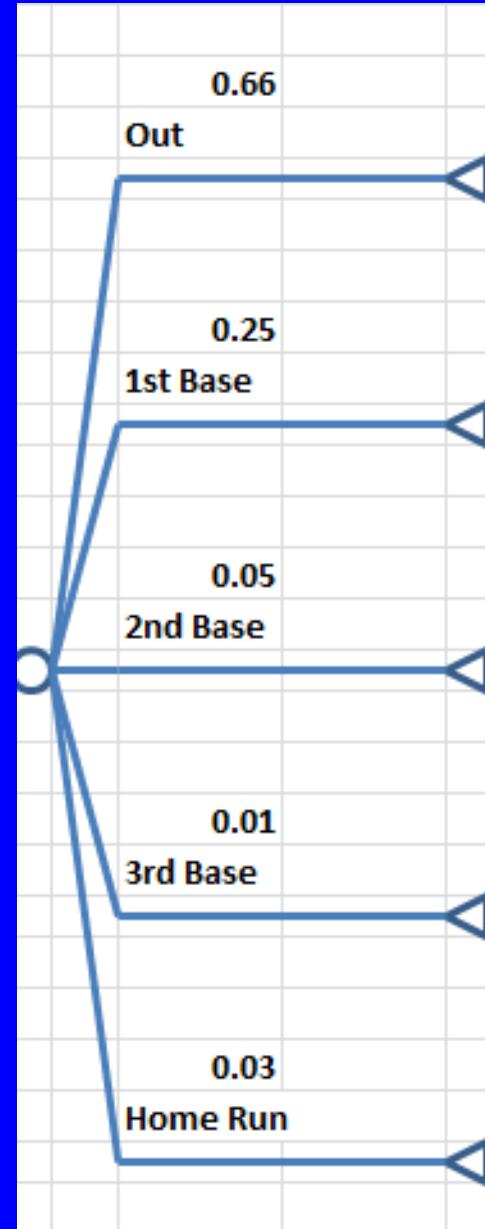
Starting Point for Baseball: Consider a Half-Inning

- ◆ Think of 24 different possible base/out combinations at start of each plate appearance

» Source: Albert J, *Teaching Statistics Using Baseball*, Washington, DC: Mathematical Association of America, 2003.

State Space Evolution

- ◆ Baseball is a game of situations
- ◆ Game moves from state to state
- ◆ Given that the game is currently in a base/out state i , let p_{ij} denote the probability that the next base/out state is state j
- ◆ Can assess these by looking at empirical transition rates


Example: Bases Empty/0 Outs

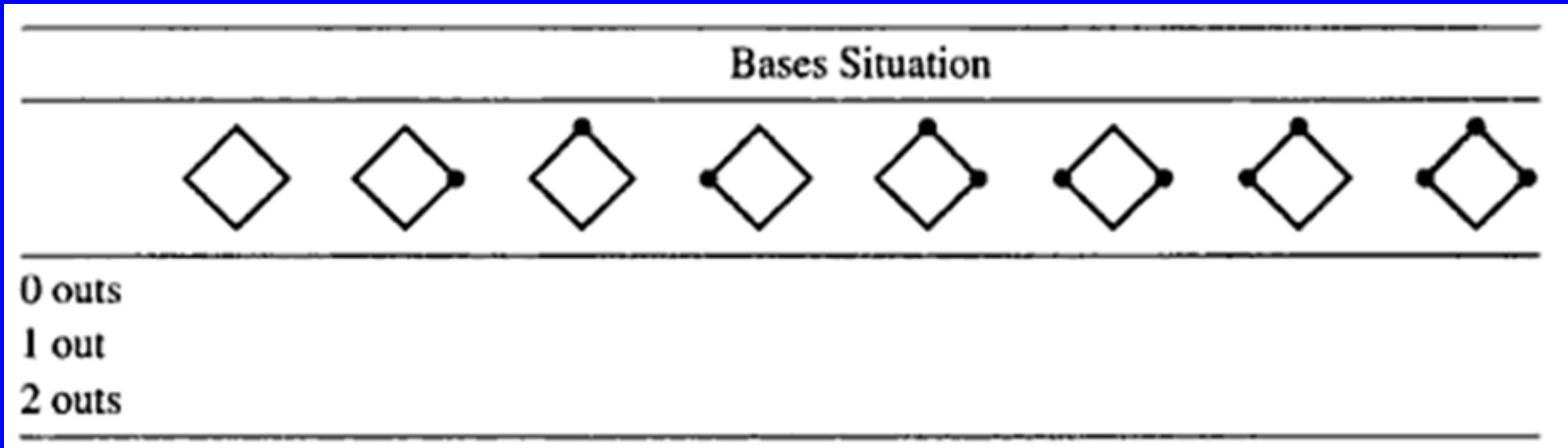
- ◆ With prob 0.66, batter out, next state is Bases Empty/1 Outs
- ◆ With prob 0.25, batter reaches 1st base, next state is Man on 1st/0 Outs
- ◆ With prob 0.05, batter reaches 2nd base, next state is Man on 2nd/0 Outs
- ◆ With prob 0.01, batter reaches 3rd base, next state is Man on 3rd/0 Outs
- ◆ With prob 0.03, batter hits home run, next state is Bases Empty/0 Outs

State Space Evolution

- ◆ Given that the game is currently in a base/out state i , let p_{ij} denote the probability that the next base/out state is state j
- ◆ Can assess p_{ij} 's by looking at empirical transition rates
- ◆ e.g. 0 out bases empty

State Space Evolution

- ◆ Can think of one-step transitions for *all* possible base/out states
- ◆ Result: state transition matrix showing probability of going from any state to any other state
- ◆ Most of these probabilities equal 0 (can't reach Bases Empty/1 Out from Man on 2nd/2 Outs!)


The Base-Out Transition Matrix

What's The Value of a Play?

- ♦ How do individual plays contribute to the success of a baseball team as measured by:
 - Runs scored
 - Change in “run expectancy”
 - Change in “win expectancy”
- ♦ For example, bases loaded/no outs, home run!
 - How many runs score? (4, duhhh...)
 - How much credit should batter get? (4 RBI?)
 - How much does this change chance of winning?

Back to the State Space!

- ◆ Define r_{ij} = expected runs scored transitioning from state i to state j
 - e.g. Suppose state #1 is bases empty/0 outs
 - $r_{11} = 1$ (why?)
 - If state 8 is bases loaded/0 outs, what's r_{81} ?

Runs and State Transitions

- ◆ Define $b_i = \# \text{ men on base in state } i$
- ◆ Define $o_i = \# \text{ outs in state } i$
- ◆ Suppose batter either goes out or reaches base in transitioning from state i to state j (so ignore stolen base/advance on error)
- ◆ Then (drum roll):

$$1 + b_i = r_{ij} + b_j + o_j - o_i$$

- ◆ Batter + men on base either score, stay on base, or go out!

Runs and State Transitions

- ♦ Since $1 + b_i = r_{ij} + b_j + o_j - o_i$ we have

$$r_{ij} = 1 + b_i - b_j + o_i - o_j$$

- ♦ e.g. state $i = 1$ out/1st and 3rd, state $j = 1$ out/2nd, assume no steals/error, how many runs?

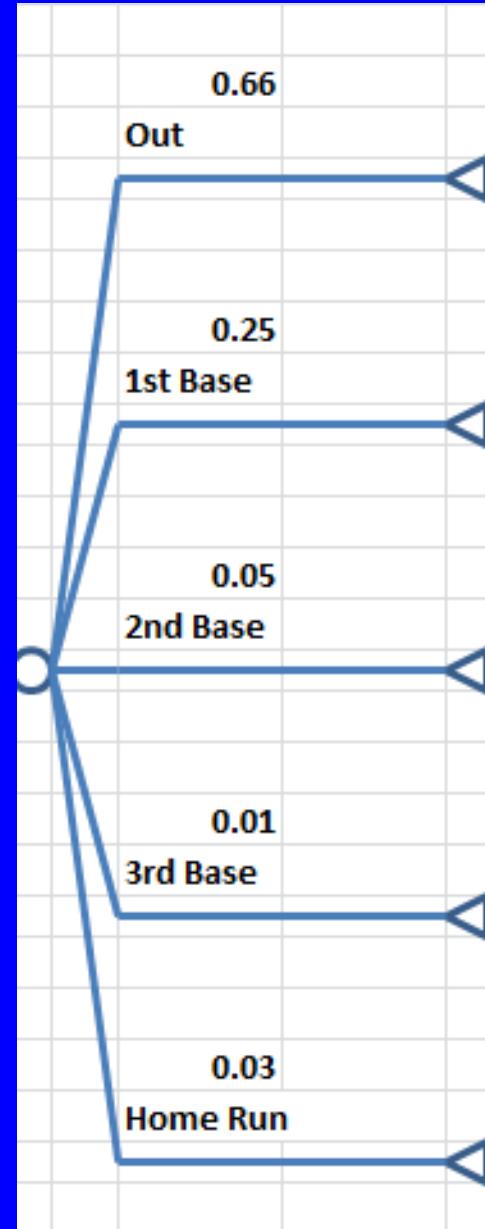
- ♦ Answer: $r_{ij} = 1 + 2 - 1 + 1 - 1 = 2$

- ♦ Suppose state j had 2 outs instead of 1?

- ♦ $r_{ij} = 1 + 2 - 1 + 1 - 2 = 1$

Runs and State Transitions

- ♦ So *if* the batter reaches base or goes out, then


$$r_{ij} = 1 + b_i - b_j + o_i - o_j$$

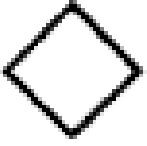
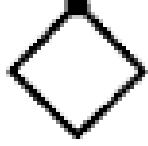
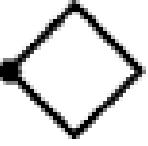
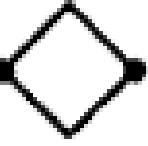
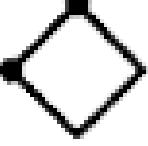
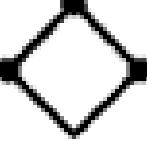
- ♦ Suppose we start with no outs, man on 1st
- ♦ Next state is man on 2nd, no out
- ♦ Formula above yields $1 + 1 - 1 + 0 - 0 = 1$
 - True if batter hit double and guy on 1st scores!
 - False if guy on 1st just steals second base!

Recall State Space Evolution

- ◆ Given that the game is currently in a base/out state i , let p_{ij} denote the probability that the next base/out state is state j
- ◆ Can assess p_{ij} 's by looking at empirical transition rates
- ◆ e.g. 0 out bases empty

Expected Runs to End of Inning

- ♦ Suppose start in some base/out state i , and imagine averaging the number of runs scored from entering state i thru the end of the inning; call this v_i (for the *value* of state i)
- ♦ Can look up v_i 's empirically, or can model as







$$v_i = \sum_{j=1}^{24} p_{ij} (r_{ij} + v_j)$$

- ♦ States with high values of v are **worth more** than states with low values of v

Expected Runs to End of Inning

(Kaplan computations from Markov model; compare to Table 6.2, p. 55 in text)

- ◆ Each cell entry below gives expected runs to the end of the inning starting from the specified state

		Bases Situation							
		None	1st	2nd	3rd	None	1st	2nd	3rd
0 outs	0.55	0.94	1.17	1.43	1.57	1.85	2.07	2.40	
1 out	0.30	0.57	0.70	0.98	0.97	1.22	1.44	1.65	
2 outs	0.11	0.24	0.35	0.37	0.49	0.50	0.61	0.81	

Run Expectancy Matrix, 1950-2010

**Actual Runs Scored,
following each base/out state to end of inning**

© [Tangotiger](#)

The following table presents the average number of runs that scored, from that base/out state, to the end of that inning.

All data is from 1950-2010, courtesy of [Retrosheet](#), our sabremetric sliced bread.

Note: Only includes: completed innings; through the 8th inning.

Base Runners			1993-2010			1969-1992			1950-1968		
1B	2B	3B	0 outs	1 outs	2 outs	0 outs	1 outs	2 outs	0 outs	1 outs	2 outs
—	—	—	0.544	0.291	0.112	0.477	0.252	0.094	0.476	0.256	0.098
1B	—	—	0.941	0.562	0.245	0.853	0.504	0.216	0.837	0.507	0.216
—	2B	—	1.170	0.721	0.348	1.102	0.678	0.325	1.094	0.680	0.330
1B	2B	—	1.556	0.963	0.471	1.476	0.902	0.435	1.472	0.927	0.441
—	—	3B	1.433	0.989	0.385	1.340	0.943	0.373	1.342	0.926	0.378
1B	—	3B	1.853	1.211	0.530	1.715	1.149	0.484	1.696	1.151	0.504
—	2B	3B	2.050	1.447	0.626	1.967	1.380	0.594	1.977	1.385	0.620
1B	2B	3B	2.390	1.631	0.814	2.343	1.545	0.752	2.315	1.540	0.747

Source: <http://www.tangotiger.net/re24.html>

Updated to 2021-24

(fangraphs.com)

Runners On	0 Outs	1 Out	2 Outs
—	0.50	0.27	0.10
1-	0.90	0.54	0.23
-2-	1.14	0.71	0.33
-3	1.37	0.98	0.38
12-	1.51	0.94	0.46
1-3	1.82	1.19	0.51
-23	2.04	1.41	0.57
123	2.38	1.63	0.82

Run Value Added

- ◆ Keeping score with runs to end of inning
- ◆ Start play in some state i
- ◆ Play takes game to state j
- ◆ Team at bat gains r_{ij} runs going from $i \rightarrow j$
- ◆ State i worth v_i runs to end of inning
- ◆ State j worth v_j runs to end of inning
- ◆ So the play changed value from v_i to $r_{ij} + v_j$

Run Value Added: $\Delta v_{ij} = r_{ij} + v_j - v_i$

$$\Delta v_{ij} = r_{ij} + v_j - v_i$$

Bases Situation								
	None	1st	2nd	3rd	None	1st	2nd	3rd
0 outs	0.55	0.94	1.17	1.43	1.57	1.85	2.07	2.40
1 out	0.30	0.57	0.70	0.98	0.97	1.22	1.44	1.65
2 outs	0.11	0.24	0.35	0.37	0.49	0.50	0.61	0.81

- ♦ What is run value added for 0 outs, bases loaded, grand slam? Should the batter get 4 runs credit?

$$\Delta v_{ij} = 4 + 0.55 - 2.40 = 2.15$$

$$\Delta v_{ij} = r_{ij} + v_j - v_i$$

Bases Situation								
0 outs	0.55	0.94	1.17	1.43	1.57	1.85	2.07	2.40
1 out	0.30	0.57	0.70	0.98	0.97	1.22	1.44	1.65
2 outs	0.11	0.24	0.35	0.37	0.49	0.50	0.61	0.81

- ◆ What is run value added for 2 outs, bases loaded, grand slam? Higher or lower than 0 outs?

$$\Delta v_{ij} = 4 + 0.11 - 0.81 = 3.30$$

$$\Delta v_{ij} = r_{ij} + v_j - v_i$$

Bases Situation								
0 outs	0.55	0.94	1.17	1.43	1.57	1.85	2.07	2.40
1 out	0.30	0.57	0.70	0.98	0.97	1.22	1.44	1.65
2 outs	0.11	0.24	0.35	0.37	0.49	0.50	0.61	0.81

- ♦ How about 0 outs, bases loaded, hit into double play scoring runner from 3rd base?

$$\Delta v_{ij} = 1 + 0.37 - 2.40 = -1.03$$

Is This Fair?

- ◆ Some batters get chance to play hero (high potential run value added), while others come up with 2 outs and bases empty
- ◆ BUT: expected value of run value added equals 0 for every batter in every state!!!!

$$\sum_{j=1}^{24} p_{ij} \Delta v_{ij} = \sum_{j=1}^{24} p_{ij} (r_{ij} + v_j - v_i) = v_i - v_i = 0$$

How About Bunting With Runner on 1st and No Outs?

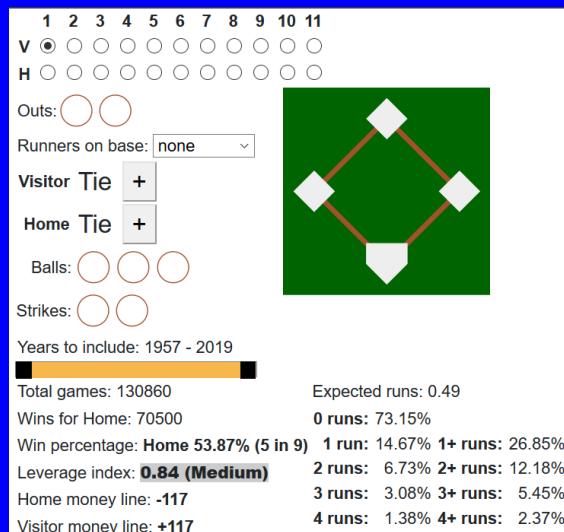
		Bases Situation								
		None	1st	2nd	3rd	None	1st	2nd	3rd	
		0 outs	0.55	0.94	1.17	1.43	1.57	1.85	2.07	2.40
1 out		0.30	0.57	0.70	0.98	0.97	1.22	1.44	1.65	
2 outs		0.11	0.24	0.35	0.37	0.49	0.50	0.61	0.81	

♦ Bunting hurts team at bat on average!

Run Value Added Now Standard Player Evaluation Statistics

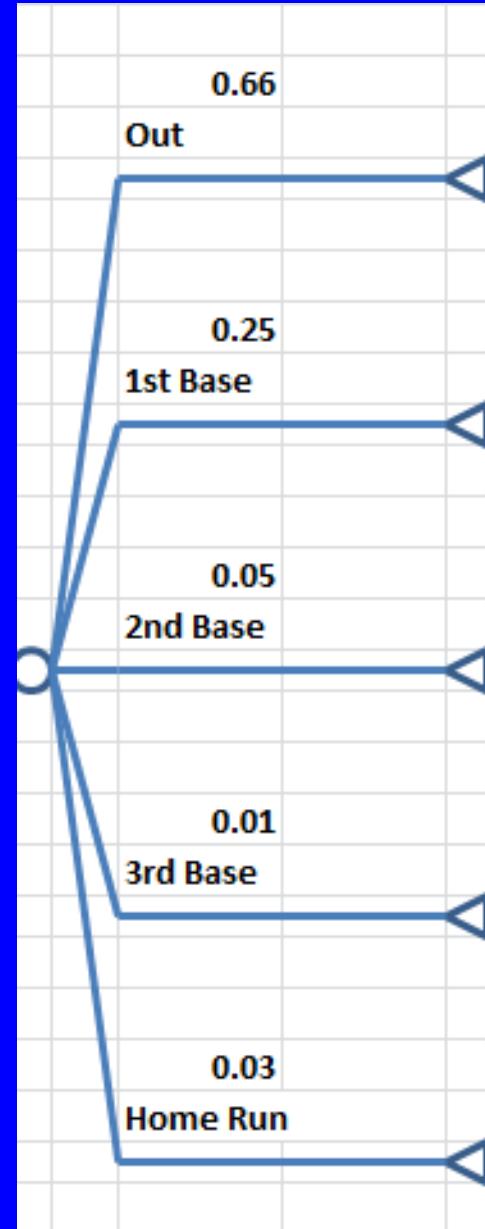
- ♦ Sabremetricians refer to this as RE24
- ♦ Included in standard sites such as
<http://www.baseball-reference.com> and
<http://www.fangraphs.com>

To Summarize:



- ◆ Baseball state space gives us unique metric for “keeping score” – run value added
- ◆ Can use this to analyze baseball strategy
- ◆ Can use this to follow game evolution
- ◆ Can use this to measure value-added of individual plays, and hence individual players

Win Expectancy ($\Pr\{\text{Win}\}$): For Each Base/Out State, Half Inning, and Score Differential


- ◆ Look at historical number of times this situation occurred
- ◆ Calculate fraction of times the team in this situation eventually won the game
- ◆ Easy to access such data over the internet
 - <http://gregstoll.dyndns.org/~gregstoll/baseball/stats.php>

Recall State Space Evolution

- ◆ Given that the game is currently in a base/out state i , let p_{ij} denote the probability that the next base/out state is state j
- ◆ Can assess p_{ij} 's by looking at empirical transition rates
- ◆ e.g. 0 out bases empty



Baseball Win Expectancy

- ♦ During any game, one actually observes transitions from one state to another
- ♦ Recall that we can compute win probabilities for any state by just looking up empirical relative frequencies
- ♦ So, why not watch the evolution of win expectancy over the course of a game?

Easy To Watch Win Probability Change Over Course of a Game

Same Game on ESPN.com

Source: https://www.espn.com/mlb/game/_/gameId/401809279/dodgers-phillies

What Does Win Expectancy Really Tell Us?

- ♦ Is it the probability Dodgers beat Phillies?
- ♦ No – win expectancy based on relative frequencies across all games; represents chance *randomly selected team* would win in a given state
- ♦ BUT – Dodgers/Phillies determine actual game situations!
- ♦ SO – win expectancy reports how randomly selected team would do *given actual situations dictated by the game*

Worded Differently...

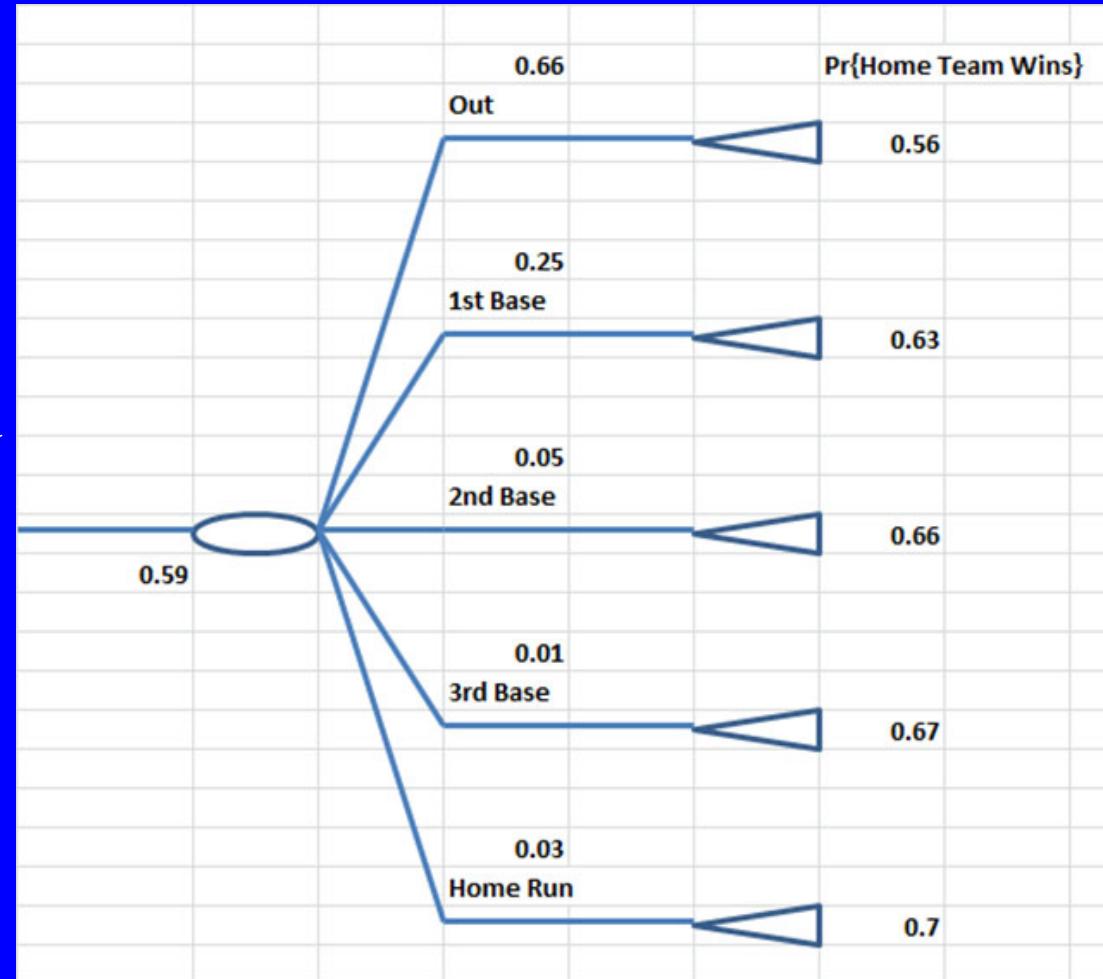


- ♦ Win expectancy provides a different metric for keeping score!
 - How well do the Yankees play?
 - We'll score them according to the chance a randomly selected team wins *given the game situations the Yankees create*
 - Later we'll score individual players

Really Interested in Winning the Game!

- ♦ Recall win expectancy as function of base/out state, score differential, half-inning
- ♦ Think of as fraction of times team in given situation (i.e. state) won historically
- ♦ Let WE_i = Win expectancy of state i where now state includes score differential and half-inning in addition to base/out info

Win Probability Added


- ◆ To see impact of different plays on game, look at change in win probability!
- ◆ If game takes you from state i to state j then

$$WPA_{ij} = WE_j - WE_i$$

- ◆ Plays with $WPA > 0$ are good (for the team at bat); $WPA < 0$ plays are bad
- ◆ Can assess WPA for *every* play in a game, and attach to batter/pitcher pair responsible (or baserunner/pitcher pair)

Is *WPA* Fair?

- ◆ Some batters get opportunity for walk-off hit to win, others get 2 outs, bases empty in top of 9th and down by 5
- ◆ But, for *any* batter in *any* situation, the *expected WPA* equals zero!

$$\sum_j p_{ij} WPA_{ij} = \sum_j p_{ij} (WE_j - WE_i) = WE_i - WE_i = 0$$

Win Probability Added

- ♦ In actual game play, from vantage of batting team:
 - *Credit* batters/baserunners with *WPA*
 - *Penalize* pitchers with $-WPA$
- ♦ Note that if $WPA < 0$ (e.g. batter strikes out), then pitcher gets *positive* *WPA*
- ♦ On any play,

WPA for home team = $-WPA$ for visiting team

Standard *WPA* Implementation

- ◆ Assume each team as 50% chance of winning at start (not really true...)
- ◆ Let WE_k = win expectancy after k plays
 - Note: Home $WE_k = 1 -$ Away WE_k
- ◆ Let WPA_k = WPA assessed after k^{th} play
$$WPA_k = WE_k - WE_{k-1}$$
- ◆ Then after k plays we have

$$WE_k = \frac{1}{2} + WPA_1 + WPA_2 + \dots + WPA_k$$

Properties of *WPA*

- ♦ If team wins the game, then

$$\sum_{\substack{\text{all plays} \\ \text{at bat}}} WPA_{batter} + \sum_{\substack{\text{all plays} \\ \text{in field}}} WPA_{pitcher} = \frac{1}{2}$$

- ♦ If team loses the game, then

$$\sum_{\substack{\text{all plays} \\ \text{at bat}}} WPA_{batter} + \sum_{\substack{\text{all plays} \\ \text{in field}}} WPA_{pitcher} = -\frac{1}{2}$$

Over Entire Season For Given Team

$$\begin{aligned} & \sum_{all\ games} \left\{ \sum_{bats} WPA_{batter} + \sum_{field} WPA_{pitcher} \right\} \\ &= \frac{1}{2} \times \# Wins - \frac{1}{2} \times \# Losses \\ &= \frac{1}{2} \times \# Wins - \frac{1}{2} \times (162 - \# Wins) \\ &= \# Wins - 81 = \# Wins \text{ over } .500!!! \end{aligned}$$

- ♦ So, sum of WPA over season = Wins over .500!

Player Value Added!

- ♦ Suppose keep track of WPA over all plays involving individual players

$$\sum_{all \ plays} WPA = \sum_{all \ players} \sum_{\substack{all \ plays \\ for \ player}} WPA_{play,player}$$

Therefore

$$\sum_{\substack{all \ plays \\ for \ player}} WPA_{play,player} = Player \ contributed \\ Wins \ over .500$$

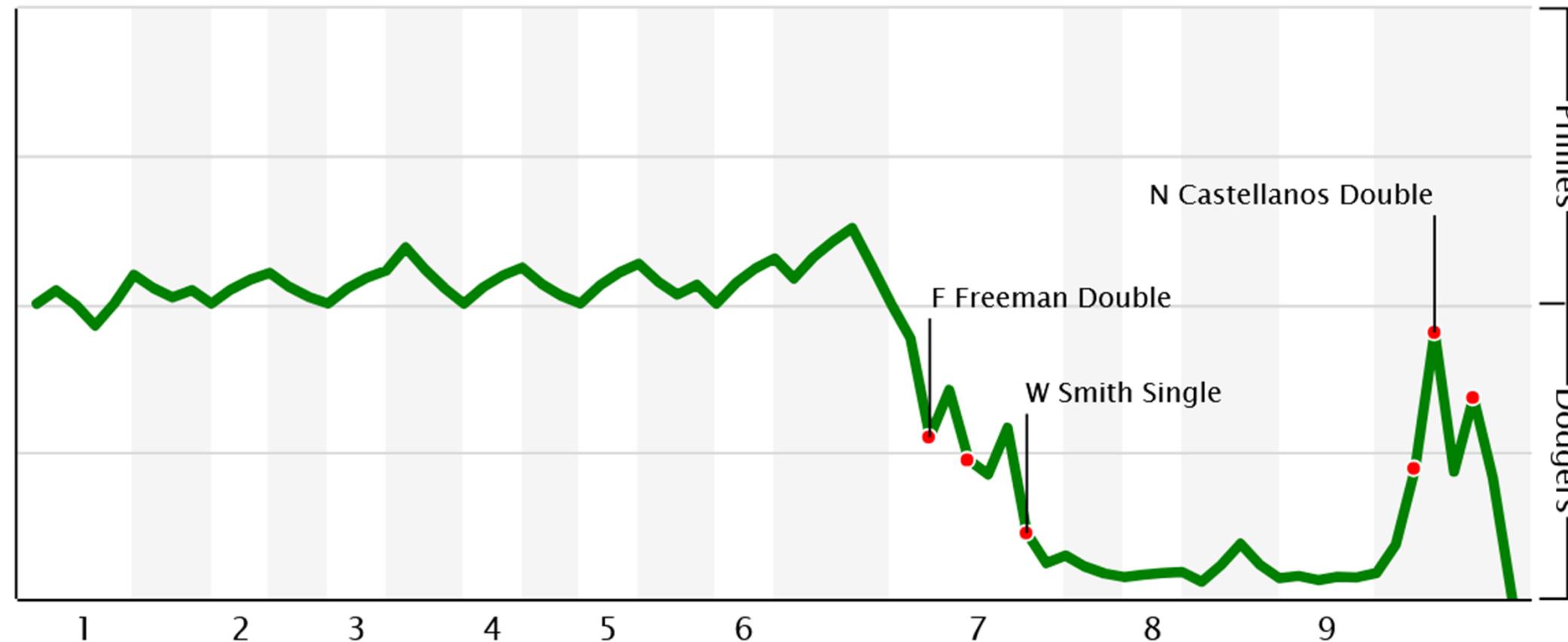
WPA Leaders for 2025

#	Name	Team	WPA
1	Shohei Ohtani	LAD	5.99
2	Aaron Judge	NYY	5.61
3	Juan Soto	NYM	5.08
4	Freddie Freeman	LAD	4.84
5	José Ramírez	CLE	4.24
6	Fernando Tatis Jr.	SDP	4.11
7	Pete Alonso	NYM	4.00
8	Cal Raleigh	SEA	3.85
9	Jorge Polanco	SEA	3.85
10	Vladimir Guerrero Jr.	TOR	3.64

Source: <http://www.fangraphs.com>

Entire System Implemented

at <http://fangraphs.com>


- ♦ For every game and every play, fangraphs records runs to end of inning (RE), run value added by base/out state ($RE24$), win expectancy (WE), and win probability added (WPA)
- ♦ Can follow all of above in play-by-play log
- ♦ At end of game, note that sum of WPA for batters/pitchers on winning team equals 0.5, same sum for losing team equals -0.5

10/6/2025 – Dodgers(4) @ Phillies(3)

Phillies

Dodgers

Inn	Batter	Pitcher	Outs	Bases	Score	Play	LI	RE	WE			WPA	RE24	
									WE	WPA	RE24	WE	WPA	RE24
1	▲ 1 S Ohtani	J Luzardo	0	__	0-0	Shohei Ohtani struck out looking.	0.87	0.52	52.2%	-.022	-.025			
2	▲ 1 M Betts	J Luzardo	1	__	0-0	Mookie Betts singled to left (Grounder).	0.62	0.28	49.8%	.024	0.27			
3	▲ 1 T Hernandez	J Luzardo	1	1__	0-0	Teoscar Hernandez walked. Mookie Betts advanced to 2B.	1.15	0.54	46.3%	.035	0.39			
4	▲ 1 F Freeman	J Luzardo	1	12__	0-0	Freddie Freeman flied out to right. Mookie Betts advanced to 3B.	1.90	0.94	50.0%	-.037	-.42			
5	▲ 1 T Edman	J Luzardo	2	1_3	0-0	Tommy Edman grounded out to second.	1.71	0.51	54.9%	-.048	-.51			
6	▼ 1 T Turner	B Snell	0	__	0-0	Trea Turner struck out looking.	0.87	0.52	52.6%	-.022	-.24			
7	▼ 1 K Schwarber	B Snell	1	__	0-0	Kyle Schwarber flied out to left.	0.62	0.28	51.1%	-.016	-.17			
8	▼ 1 B Harper	B Snell	2	__	0-0	Bryce Harper walked.	0.40	0.11	52.3%	.012	0.13			
9	▼ 1 A Bohm	B Snell	2	1__	0-0	Alec Bohm grounded out to second.	0.79	0.24	50.0%	-.023	-.24			
10	▲ 2 E Hernandez	J Luzardo	0	__	0-0	Enrique Hernandez struck out swinging.	0.93	0.52	52.4%	-.024	-.24			
11	▲ 2 M Rojas	J Luzardo	1	__	0-0	Miguel Rojas grounded out to second.	0.66	0.28	54.1%	-.017	-.17			
12	▲ 2 A Pages	J Luzardo	2	__	0-0	Andy Pages flied out to left.	0.42	0.11	55.2%	-.011	-.11			
13	▼ 2 J Realmuto	B Snell	0	__	0-0	J.T. Realmuto grounded out to shortstop.	0.92	0.52	52.8%	-.024	-.24			
14	▼ 2 N Castellanos	B Snell	1	__	0-0	Nick Castellanos struck out swinging.	0.67	0.28	51.1%	-.017	-.17			
15	▼ 2 E Sosa	B Snell	2	__	0-0	Edmundo Sosa struck out swinging.	0.43	0.11	50.0%	-.011	-.11			
16	▲ 3 B Rortvedt	J Luzardo	0	__	0-0	Ben Rortvedt struck out swinging.	0.99	0.52	52.6%	-.026	-.24			
17	▲ 3 S Ohtani	J Luzardo	1	__	0-0	Shohei Ohtani grounded out to second.	0.72	0.28	54.4%	-.018	-.17			
18	▲ 3 M Betts	J Luzardo	2	__	0-0	Mookie Betts grounded out to shortstop.	0.46	0.11	55.6%	-.012	-.11			
19	▼ 3 B Marsh	B Snell	0	__	0-0	Brandon Marsh walked.	0.99	0.52	59.5%	.039	0.39			
20	▼ 3 O Kemp	B Snell	0	1__	0-0	Otto Kemp struck out swinging.	1.59	0.91	55.8%	-.037	-.37			
21	▼ 3 T Turner	B Snell	1	1__	0-0	Trea Turner struck out swinging.	1.31	0.54	52.6%	-.032	-.30			
22	▼ 3 B Marsh	B Snell	2	1__	0-0	Brandon Marsh was caught stealing.	0.92	0.24	50.0%	-.026	-.24			

Inn	Batter	Pitcher	Outs	Bases	Score	Play	LI	RE	WE	WPA	RE24
72	▼ 9 N Castellanos	B Treinen	0 _23	1-4		Nick Castellanos doubled to left (Liner). Alec Bohm scored. J.T. Realmuto scored.	3.43	2.02	45.1%	.230	1.13
51	▲ 7 W Smith	O Kerkering	2 123	0-1		Will Smith singled to left (Liner). Freddie Freeman scored. Enrique Hernandez scored. Max Muncy advanced to 2B.	3.07	0.79	11.2%	.178	1.66
46	▲ 7 F Freeman	J Luzardo	0 1_	0-0		Freddie Freeman doubled to right (Liner). Teoscar Hernandez advanced to 3B.	2.39	0.91	27.4%	.167	1.11
71	▼ 9 J Realmuto	B Treinen	0 1_	1-4		J.T. Realmuto doubled to left (Liner). Alec Bohm advanced to 3B.	1.91	0.91	22.1%	.130	1.11
74	▼ 9 H Bader	A Vesia	1 1_	3-4		Harrison Bader singled to left (Liner). Bryson Stott advanced to 2B.	4.74	0.54	34.1%	.126	0.39
48	▲ 7 E Hernandez	O Kerkering	1 _23	0-0		Enrique Hernandez reached on fielder's choice to shortstop. Teoscar Hernandez scored. Freddie Freeman advanced to 3B.	2.57	1.43	23.5%	.118	0.78
45	▲ 7 T Hernandez	J Luzardo	0 __	0-0		Teoscar Hernandez singled to center (Liner).	1.54	0.52	44.1%	.059	0.39
52	▲ 7 S Ohtani	M Strahm	2 12_	0-3		Shohei Ohtani singled to right (Grounder). Max Muncy scored. Will Smith advanced to 3B.	0.71	0.45	6.0%	.051	1.07

73	▼ 9 B Stott	A Vesia	0 _2_	3-4		Bryson Stott reached on fielder's choice to third. Nick Castellanos out at third.	4.33	1.15	21.5%	-.236	-.61
76	▼ 9 T Turner	R Sasaki	2 1_3	3-4		Trea Turner grounded out to second.	7.29	0.51	0.0%	-.205	-.51
75	▼ 9 M Kepler	A Vesia	1 12_	3-4		Max Kepler reached on fielder's choice to first. Bryson Stott advanced to 3B. Weston Wilson out at second.	7.15	0.94	20.5%	-.136	-.42
47	▲ 7 T Edman	O Kerkering	0 _23	0-0		Tommy Edman struck out swinging.	2.03	2.02	35.4%	-.079	-.59
50	▲ 7 A Pages	O Kerkering	1 123	0-1		Andy Pages fouled out to first.	2.58	1.60	28.9%	-.078	-.81
44	▼ 6 A Bohm	B Snell	2 12_	0-0		Alec Bohm reached on fielder's choice to third. Trea Turner out at third. Kyle Schwarber advanced to 2B.	2.49	0.45	50.0%	-.065	-.45
43	▼ 6 B Harper	B Snell	1 12_	0-0		Bryce Harper struck out swinging.	2.75	0.94	56.5%	-.063	-.49
5	▲ 1 T Edman	J Luzardo	2 1_3	0-0		Tommy Edman grounded out to second.	1.71	0.51	54.9%	-.048	-.51
4	▲ 1 F Freeman	J Luzardo	1 12	0-0		Freddie Freeman flied out to right.	1.90	0.94	50.0%	-.037	-.42

More on Value Added

- ♦ Always true that sum of *WPA* for winning batters = – sum of *WPA* for losing pitchers
- ♦ Always true that sum of *WPA* for winning pitchers = – sum of *WPA* for losing hitters
- ♦ Let's look at an example

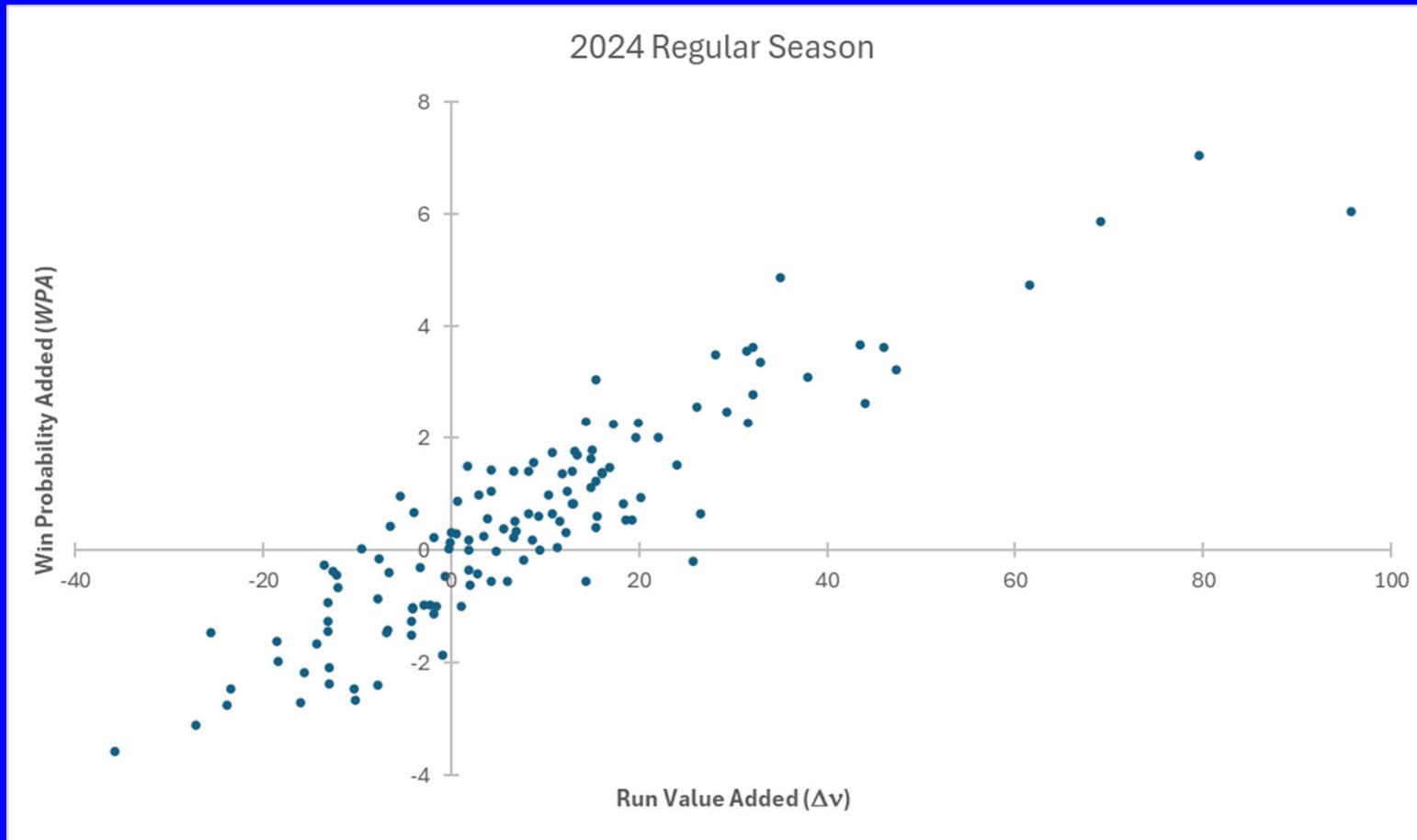
<http://fangraphs.com>

Dodgers and Phillies 10/6/2025

Phillies

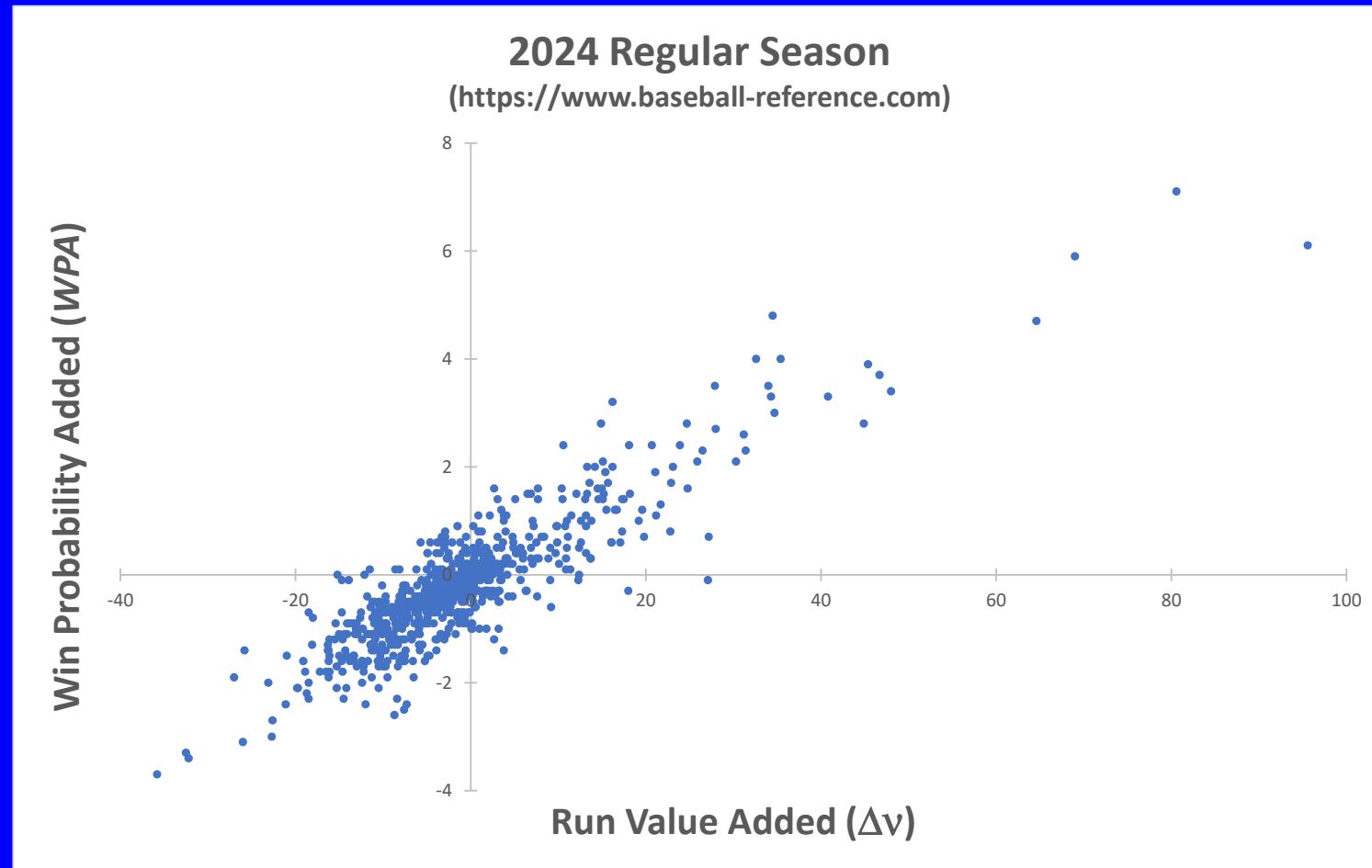
Name	BO	PA	H	HR	R	RBI	BB	SO	wOBA	pLI	WPA
Trea Turner - SS	1	5	1	0	0	1	1	2	.315	2.17	-0.16
Kyle Schwarber - DH	2	4	0	0	0	0	1	2	.173	1.24	-0.06
Bryce Harper - 1B	3	4	0	0	0	0	1	1	.173	1.18	-0.09
Alec Bohm - 3B	4	4	1	0	1	0	0	1	.221	1.19	-0.05
J.T. Realmuto - C	5	4	1	0	1	0	0	0	.313	1.18	0.06
Nick Castellanos - RF	6	4	1	0	0	2	0	1	.313	1.36	0.18
Bryson Stott - PH-2B	7	2	0	0	0	0	0	0	.000	2.28	-0.24
Edmundo Sosa - 2B	7	2	1	0	0	0	0	1	.441	0.51	0.01
Brandon Marsh - CF	8	3	0	0	0	0	1	0	.231	0.91	-0.04
Weston Wilson - PR	8	0	0	0	0	0	0	0	.000		
Harrison Bader - PH	8	1	1	0	0	0	0	0	.882	4.74	0.13
Max Kepler - PH-LF	9	2	1	0	1	0	0	0	.792	3.76	-0.11
Otto Kemp - LF	9	2	0	0	0	0	0	2	.000	1.45	-0.07
Total	-	37	7	0	3	3	4	10	.281	1.59	-0.45

Dodgers

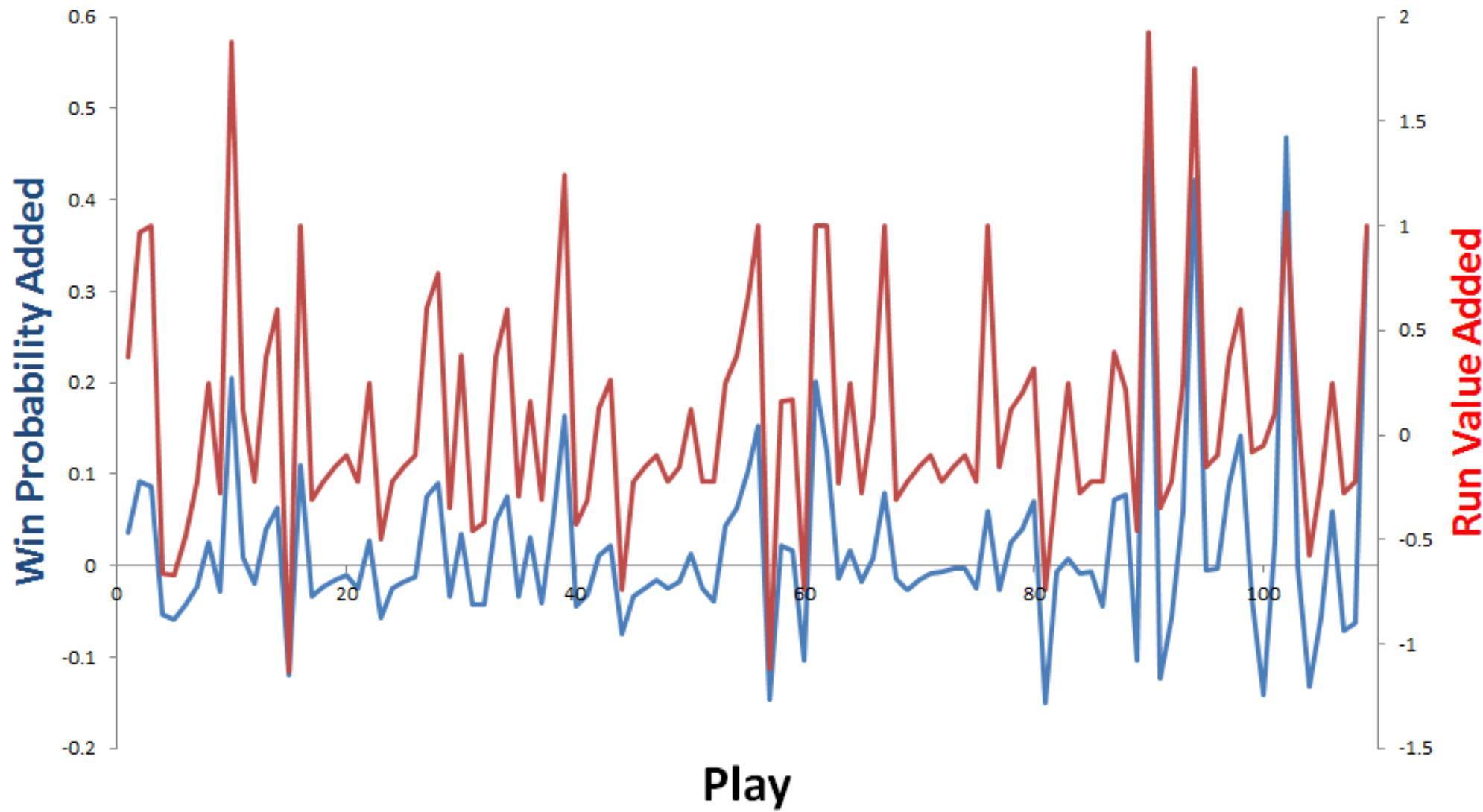

Name	BO	PA	H	HR	R	RBI	BB	SO	wOBA	pLI	WPA
Shohei Ohtani - DH	1	5	1	0	0	1	0	2	.176	0.71	-0.02
Mookie Betts - SS	2	4	1	0	0	0	0	0	.221	0.55	-0.02
Justin Dean - CF	3	0	0	0	0	0	0	0	.000		
Teoscar Hernandez - RF	3	4	2	0	1	0	1	0	.614	0.98	0.06
Freddie Freeman - 1B	4	4	1	0	1	0	0	1	.313	1.30	0.11
Tommy Edman - 2B	5	4	0	0	0	0	0	2	.000	1.08	-0.14
Enrique Hernandez - LF	6	4	0	0	1	1	0	2	.000	1.21	0.06
Max Muncy - PH-3B	7	2	1	0	1	0	1	0	.972	1.09	0.03
Miguel Rojas - 3B	7	2	0	0	0	0	0	0	.000	0.77	-0.04
Andy Pages - CF-RF	8	4	0	0	0	0	0	0	.000	0.95	-0.11
Ben Rortvedt - C	9	1	0	0	0	0	0	1	.000	0.99	-0.03
Will Smith - PH-C	9	3	1	0	0	2	1	0	.525	1.54	0.14
Total	-	37	7	0	4	4	3	8	.243	1.00	0.05

Name	IP	TBF	H	HR	ER	BB	SO	FIP	pLI	WPA
Jesus Luzardo (L)	6.0	22	3	0	2	1	5	1.97	1.02	0.14
Tanner Banks	1.0	3	1	0	0	0	0	3.14	0.11	0.01
Jhoan Duran	1.0	5	1	0	0	1	2	2.14	0.19	0.01
Orion Kerkering	0.2	5	1	0	2	1	1	4.64	2.46	-0.16
Matt Strahm	0.1	2	1	0	0	0	0	3.14	0.58	-0.04
Total	9.0	37	7	0	4	3	8	2.36	1.00	-0.05

Name	IP	TBF	H	HR	ER	BB	SO	FIP	pLI	WPA
Blake Snell (W)	6.0	22	1	0	0	4	9	2.14	1.11	0.36
Emmet Sheehan	2.0	8	2	0	1	0	1	2.14	0.68	0.05
Alex Vesia (H)	0.2	3	1	0	0	0	0	3.14	5.41	0.25
Roki Sasaki (SV)	0.1	1	0	0	0	0	0	3.14	7.29	0.20
Blake Treinen	0.0	3	3	0	2	0	0	3.14	2.10	-0.41
Total	9.0	37	7	0	3	4	10	2.25	1.59	0.45


Do Run Value Added and Win Probability Added Match Up?

Here's a plot of WPA vs Δv for 2024 using Fangraphs data (129 players)



Do Run Value Added and Win Probability Added Match Up?

Here's a plot of WPA vs Δv for 2024 using baseball-reference.com data (803 players)

2011 World Series Game 6

To Summarize:

- ◆ Baseball state space gives us unique metrics for “keeping score” – run value added and win probability added
- ◆ Can use these to analyze baseball strategy
- ◆ Can use these to follow game evolution
- ◆ Can use these to measure value-added of individual plays, and hence individual players