MGT 721 - Modeling Operational Processes
Spring 2025

Renewal Theory Problem Set: Solutions

These questions are meant to review and extend the concepts introduced in
class. You may use any computational assistant you like, including for example
Wolfram Alpha’s tools for symbolic integration or summation, or even chatGPT,
but you are responsible for any errors that might result (especially with chatGPT).
You can complete all of these questions without such computational assistants,
but nonetheless the option is there.

1. Finding F(N(t)?), the expected squared number of re-
newals

(a) Following the same approach taken to evaluate the expected number of re-
newals (i.e. the renewal function), argue that

E(N(t)?) = / E(N()|T = 2) fr()da

_ /0 El(1 + N(t — 2))2 fr(z)dz

where T is the basic interarrival time in the renewal process with probability

density fr(x).

With probability fr(z)dz the first renewal occurs between times (x,z + dx),
and given this the remaining number of renewals from z to t is the same as the
number of renewals in an interval of duration ¢ — x, which is N (¢ — z). This means



that, given a first renewal between x and x + dx, the expected squared number of
renewals in (0,) is given by F[(1 + N (¢t — x))?]. Unconditioning over all possible
times for a first renewal within (0, ¢) yields

E(N(1)?) = / E[(1+ N(t — 2))?) fr(x)da

ow expand the squared term in the integrand to create a renewal equation
b) N pand the sq dt in the integrand t t 1 equati
of the form

BOV®?) = 9(0) + | BV =2 frla)da
What is the function g()?
Note that

(14+ N(t—2))2=1+2N(t —z)+ (N(t —2))?

which implies that
/0 E[(1 + N(t — o)) fr(x)de — /0 B[l 4+ 2N(t — 2) + (N(t — 2))2] fr(a)da

_ /Ot ER21+N(t —z)) — 1+ (N(t — 2))] fr(z)dx
= 2E(N(t)) — Fr(t) + 0 E[N(t — x)] fr(x)dx
This identifies
g(t) = 2E(N( )) — Fr(t)

= 2ZFTn — Fr,(t).

(c) Solve for E(N(t)?) by applying the general solution for renewal equations,
which in this case is given by

t
BV = g + [ (t = 0)h(a)ds
0
where h(z) is the renewal density derived in class.Your final formula should be in
terms of the distribution functions Fr, (t) where T, is the time (from zero) until

the n'* renewal (and Fr, (t) = Pr{T, < t}).
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Let’s evaluate the integral after remembering that h(t) = > "7, fr,.(¢) :

/0 g(t — x)h(z)dr = /0 (QZFTn(t—CU Fr, (t—x)) Z
= 2> > P (t)- Z Fr, (1)

n=1 j—1
Adding back g(t) we get

(t)?) = 2ZFTn<t>+2ZZFTW<t> —ZFTxt)

n=1 j=1

Z n—l FTn

=1

(d) As a check, solve for E(N(t)?) using the standard formula from basic
probability, namely

= n’Pr{N(t) = n}
n=1
where from class recall that
Pr{N(t) =n} =Pr{N(t) > n} — Pr{N(t) > n+1}

and also that
Pr{N(t) > n} = Pr{T, <t}

Of course, once you have a formula for E(N(t)?), you can compute Var(N(t)) =
E(N(t)?) = [E(N(5)]*.



Plug and play! We have
E(N(t)?) = > n*Pr{N(t) =n}
n=1

= > n’[Pr{N(t) > n} — Pr{N(t) > n+1}]

= > n’[Fr,(t) = Fr,,,(t)]

= FT1(t> + (4 - l)FTz(t) + (9 - 4)FT3(t) + ..

e}

= > (2n—1)Fr,(t).

n=1

Same answer!

2. Uniform Renewal Process

Suppose that one has a renewal process with interarrival times uniformly distrib-
uted between 0 and 1. In class we found that for ¢t < 1, the expected number of
renewals is given by F(N(t)) = ¢! — 1. Using what you just learned above, for
t < 1 find E(N(t)?) for this renewal process. Whether you use the approach of
part (c) or part (d), show that your result satisfies the equation in part (b).

Let’s start with the approach of part (c), which will simplify in this case since
we already know that fr(t) =1, Fr(t) =t, E(N(t)) = €' — 1, and thus h(t) = ¢’
for 0 < ¢ < 1. First we have that

g(t) = 2BE(N(t)) — Fr(t)
= 2(e'=1)—tfor0<t<1

Plugging this into the renewal equation gives

E(N(t)?) = 2(e'—1)—t +/0 2(e"* — 1) — (t — x)]e"dx

= 2te' —e' +1.
Just for kicks let’s try the approach of part (d). Note that for 0 <t <1,
tn
Fr,(t) = —
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(this is easy to prove), so plugging into our infinite sum we get

tn

B(N@®) = Y @n—1)~
n=1 '

= 2tet — et +1

as before.

Now the defining renewal equation in part (b) is

t
BV = gt) + [ BN -2 r(o)de
0
So, plugging in our newly-discovered results for F(N(t)?) we get

¢
E(N#)?*) = 2(e"—1)—t+ / (2(t —x)e"™" — ™" + 1)dx
0
= 2te' —e' + 1.

Hey! It works!

3. The Die Is Cast!

Imagine taking a single die that, after rolling, shows (via dots) the integers 1
through 6 inclusive, each with equal probability 1/6. Now let S,, equal the sum
of the numbers obtained from rolling the die n times. So if you roll 3 followed by
1 followed by 5, you would have S; =3. So=3+1=4,and S3=3+1+5=09.
What is the probability that for some integer n, S,, = 20257 That is, what is the
probability that after some number of rolls, the running sum of of the numbers
from each roll will exactly equal 20257 Now, there are exact and nearly exact
ways to answer this question, but your job is to produce a ridiculously simple
approximation based on — what else? Renewal theory! Clearly explain your
answer. If you want to produce either the exact (or very nearly exact) answer
patiently using basic methods, you can, but if you choose to do so, do it only to
verify your approximation from renewal theory.

To see why this is such an easy problem, imagine the number shown on the
die as an interarrival time. The sum of the numbers on the die after n rolls, S,,,
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then corresponds exactly to what we have been calling T,,, which is the time of the
n'™ renewal. The question is thus just asking for the probability that a renewal
occurs at time 2025. You get an actual probability here since the interarrival
times are all discrete — 1, 2, ..., 6 each with probability 1/6. Now the expected
number of renewals that occur within time ¢ as ¢ gets large is just t/7 where 7 is
the expected interarrival time. In this problem, 7 = 3.5. Why? Well, what is
(142434+4+5+6)/67 3.5 (!). This means that the expected number of renewals
by time ¢ is growing as t/3.5, while the renewal density h(t) = 1/3.5 (and recall
from class that in general the renewal density for large ¢ in general just equals 1/7).
Now recall the interpretation of the renewal density — in continuous time, h(t)dt
is the probability of a renewal between ¢ and ¢ + dt. But in discrete time, h(t) is
the probability that a renewal occurs at time t! So, to a very close approximation,
the probability that after some number of rolls, the running sum of the numbers
from each roll will exactly equal 2025 is just equal to 1/3.5 = 0.2857.

Now for a more detailed excellent approximation. Letting n indicate the num-
ber of rolls of the dice to reach 2025, we immediately see that n < 2025 (that
would occur from getting a 1 on every roll), and also that n > 338 (if you got a 6
on 337 consecutive rolls you would have a total of 6 x 337 = 2022, so you’d need
a 338" roll (and a 3 at that) to get to 2025.

Let p(n) = Pr{S,, = 2025}, that is the probability of hitting 2025 exactly after
n rolls for n between 338 and 2025. Then the probability of hitting 2025 exactly
after some number of rolls is just

2025
Pr{Hit 2025 Exactly} = Z p(n).
n=338
From the central limit theorem, we know that .5,, is approximately normal with
mean 3.5n and variance (35/12)n (where 35/12 is the variance of a discrete random
variable taking on the values 1 though 6 each with probability 1/6). With a slight
abuse of notation, we’ll also let S, denote the approximating normal random
variable, and from that we can write

p(n) = Pr{2024.5 < S, <2025.5}

= Pr{Z < M} —Pr{Z < w}

35 35
127 127

where Z is the standard normal random variable. Do this for all n between 338
and 2025 and add them up!



Below is a plot of p(n) as computed using the normal approximation.
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Adding up the heights of all these bars, that is computing Ziojg% p(n) yields ...
0.2857 () Now what was easier — using renewal theory to get 1/3.5, or using the
normal approximation?

If you really want to torture yourself, you could compute this exactly by getting
the exact probability distribution of S,,. This would be done via recursion. The
basic recursion is

6
Pr{S, = s} = ZPT{Sn—l =s—k} x é
k=1

You of course initialize with the uniform distribution for S; taking on possible
values of 1 through 6, and then you iterate over s to get the entire exact dis-
tribution of S,, up to n = 2025. Now define p(n) = Pr{S, = 2025} using the
exact distribution, and you get your final answer from Zi[fg?)s p(n). Go ahead and
program this if you like, but guess what you’ll discover? The answer is 0.2857!



4. The A B Shuttle (not as much fun as Springsteen’s E
Street Shuffle but...)

A single shuttle goes back and forth between locations A and B. The time required
to travel from A to B is a random variable T'. As it turns out, the time required
to travel back from B to A is identically distributed with the same distribution as
the time required to travel from from A to B. Let the common random variable
for the travel time from A to B (or from B to A) have probability distribution
function

2 [V
FT(t):Pr{Tgt}:ﬁ/o e du, A >0

Some of you might recognize Fr(t) via the error function

2 S
erf(z) = ﬁ/@ e " du

Fr(t) = erf(V/\1).

which makes

But I digress.

(a) What is the probability density function fr(t) associated with the time
required for a one way trip from A to B (or from B to A)?

We need to remember our basic probability here:

frl) = S Fr()
d 2 [V vy
= %ﬁ e U
2

= \/ie’)‘t, t>0.
7t

(b) What is the expected time for the shuttle to travel one way from A to B
(or vice versa), that is what is E(T")?



This follows from the density function as
o [A 1
= t — dt =
/0 % Tt 2\

(c) What is the variance of the time for the shuttle to make a one way trip,
that is, what is Var(T)?

Let’s use our usual formula: Var(T) = E(T?) — [E(T)]* and note that

3 1\* 1
Varth) = 35 (31) =30

(d) You want to catch the shuttle at A to travel to B. Relative to the timing of
the shuttle, you arrive at A at a random time. Assume that the time the shuttle
spends at A or B is negligible relative to the travel time from A to B or B to A.

(i) What is the probability that at the time you arrive at A, the shuttle
is traveling between A and B? What is the probability the shuttle is traveling
between B and A?

from which we obtain

The probability distribution of the time from A to B is the same as the dis-
tribution from B to A, so arriving at A at a random time gives a 50% chance the
shuttle is going from A and B, and a 50% chance the shuttle is going from B to
A.

(ii) Conditional on the shuttle traveling between A and B at the time of
your arrival at A, what is your expected waiting time until the shuttle arrives at

A?

Since you arrived at random relative to the shuttle process, if you are told
that the shuttle is traveling between A and B, your expected waiting time until
the shuttle arrives at A is the sum of two things: the expected remaining time
in the trip from A to B, and the unconditional expected time from B to A. We
know already from part (b) that the unconditional expected time from B to A
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just equals 1/ (2)). The expected remaining time from your arrival at A until the
shuttle arrives at B is just the expected forward recurrence time given random
incidence on random variable T'. From class we know that the expected forward
recurrence time is equal to

o BT 3/(4N) 3
B(IT") = 2E(T)  2x1/(2))  4x

The expected total wait from your arrival at A until the shuttle arrives at A,

conditional on the shuttle traveling between A and B at the time of your arrival,
is then given by
E(W/|shuttle going from A to B wh ive at A) 3+1 >
shuttle going from o B when you arrive a = — 4 —==—
gomng Y AN 2N an
(iii) From the time of your arrival at A, what is your (unconditional)
expected waiting time until the shuttle arrives?

With probability 1/2, you arrive while the shuttle is moving from A to B which
gives a conditional expected wait of 5/(4\). But also with probability 1/2, you
arrive while the shuttle is already en route from B back to A, and in this case
your expected wait is only 3/(4\).Therefore your overall expected wait given that
you randomly arrive at A is equal to

1 5 1 3 1
B o S22
W=t o=

(e) Now, again assuming that the time the shuttle spends at A or B is negligi-
ble, the time required for the shuttle to make a round trip is just the sum of two
one way trips, that is, if R is the duration of a round trip, then

R=Tuyg+Tga

where T'4p and Tz, are independently and identically distributed as random vari-
able T above. What is the probability density fg(t) for the time required for a
round trip? What is F(R)? What is Var(R)?
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Working directly with the fact that Txp and T4 are independently and iden-
tically distributed as random variable 7" we obtain

fR(t) = / fT Xth—S dS

:/[_As\/j oy

|

A
= ZeMxor

T
= XM t>0

How cool is that? We just learned that R has an exponential distribution! Usually
we think of adding up exponentials to get stuff, but before this problem, have you
ever seen the exponential emerge as the sum of random variables?

You might have anticipated this if you recognized fr(t) as a special case of the
gamma density. A random variable X has a gamma distribution with positive
parameters o and A if

. )\Oé a—1_—A\x
fX(x)—F(a)x e x>0.

Two facts about gamma random variables with this density: (i) £(X) = a/\ and
Var(X) = a/A? and (ii) if X, is gamma distributed (a;,\) for j = 1,2,...,n
and all of the X7s are mutually independent, then S,, = Z;”:l X is also gamma
distributed with parameters (Z;":l a;, A). In the present problem, T" has a gamma
distribution with o = 1/2, while R has a gamma distribution with o = 1/241/2 =
1. Nice how this all hangs together, no?

Anyway, now that we know R is exponentially distributed with rate A, it
follows immediately that F(R) = 1/\ while Var(R) = 1/)*.

(f) What is the probability density function for the time you will have to wait
from your arrival at A until the shuttle next arrives at A7 Verify using this density
that your expected waiting time for the shuttle after you randomly arrive at A
indeed equals your result from (d) (iii) above.
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OK — now if you arrive at random relative to the shuttle, all you need to know
is that the interarrival times for the shuttle at A are exponentially distributed with
rate X\. The exponential distribution is of course memoryless, so the remaining
time until the shuttle arrives after your random arrival at A also equals 1/\.
Surprise — part (d) (iii) above gave exactly the same result, though it was more
work to get it, no?

(g) Let N(t) denote the total number of completed shuttle round trips as
of time ¢ when the shuttle begins operating from A at time zero. What is the
probability distribution of N(¢)?

This is a gift! Knowing as you now do that the interarrival time distribution
at A is exponential with rate A\, the number of completed shuttle round trips as
of time ¢ just follows a Poisson distribution with mean A¢, that is,

()"
n!

Pr{N(t) =n} = e ™M n=012,..

5. Treatment and Monitoring

A seriously ill patient has just arrived at the hospital at time 0. This patient im-
mediately enters treatment. Any treatment episode requires U time units where
U is a non-negative continuous random variable with expected value E(U). All
treatment episodes are iid . Following any treatment episode, the patient is dis-
charged from the hospital with probability 1 — a;, while with probability « the
patient is held at the hospital for a monitoring period that requires V' time units
where V' is a non-negative continuous random variable with expected value E(V).
All monitoring episodes are iid, and all treatment and monitoring episodes are mu-
tually independent. Following any monitoring episode, the patient is discharged
from the hospital with probability 1 — 3, but with probability 5 the patient is
returned for a subsequent treatment episode.

(a) Let fy(u) and fi/(v) denote the probability density functions for random
variables U (treatment duration) and V' (monitoring duration) respectively, and
let ¢(t) be the probability that a seriously ill patient who arrived at the hospital
at time 0 is in treatment at time ¢. Produce an equation that if solved will reveal
¢(t). Your equation should be in the spirit of renewal theory (or maybe in the
advanced spirit of the repetition method), and must depend upon «, 3, fr(u) and
fv(v). You don’t need to solve this equation; just formulate it.
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For a patient who arrived at time 0 to be in treatment at time ¢, either
the patient has been in treatment since arrival (which happens with probabil-
ity Pr{U > t}), or: at some time u < ¢, the patient completes treatment (with
probability fy(u)du), proceeds to monitoring (with probability «; note that if
the patient did not proceed to monitoring then the patient would have been dis-
charged and hence could not be in treatment at time ¢), completes monitoring at
time u + v < t (with probability fi (v)dv), returns to treatment (with probability
B; note that if the patient did not return to treatment then the patient would
have been discharged and hence could not be in treatment at time ¢), and is then
found in treatment ¢t —u —v time units later at time ¢ as required (with probability

ot —u—v)).

Taken together the arguments above yield
t t—u
o) =Pr(U> 1)+ [ folwa [ fe)86(t —u—v)dudu, >0,
u=0 v=0

(b) From the moment of arrival at the hospital (time 0), let 77 denote the
expected total time a seriously ill patient will spend in treatment episodes until
discharge. How would you determine 71 if you knew ¢(t)?

Let random variable X (t) = 1 if the patient is in treatment at time ¢ after
arrival to the hospital, and zero otherwise. Then the expected total time the
patient will spend in treatment episodes until discharge is given by

- E[/OOO X(t)dt] = /Ooo E[X(t)ldt = /Ooo (t)dt

since the probability that the patient is in treatment at time ¢ after arrival to the
hospital is equal to ¢(t) = Pr{X(t) = 1} = E(X(t)) since X (¢) is a Bernoulli
random variable.

(c) Let random variable N denote the total number of treatment episodes
until discharge required by a newly arriving patient at the hospital. Produce an

explicit formula for Pr{N = n} forn = 1,2, 3, ..., that is, determine the probability
distribution for random variable N.

The number of treatment episodes N can be determined as follows: suppose
that a patient has just completed n treatment episodes, n = 1,2,3,.... With
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probability a3, the patient will complete another treatment episode (having first
gone through monitoring and then back to treatment), while with probability
1 — «af the patient will have been discharged after treatment (with probability
1 — ) or sent to monitoring and discharged afterwards (with probability a/(1— 5);
note that 1 —a + a(l — ) = 1 — aff). Combining these observations, we see
that the probability a patient experiences exactly n treatment episodes equals the
probability that the patient repeats treatment n — 1 times and is discharged after
the n'* episode. Thus,

Pr{N =n} = (aB)" (1 —af),n=1,2,3...
That is, the random variable N has a geometric distribution with stopping prob-
ability (1 — af).

(d) Now produce an explicit formula for 77, the expected total time spent in
treatment, that does not require knowledge of ¢(t).

First, note that in expectation each treatment episode requires F(U) time
units. Second, from the geometric distribution in part (c), that the expected
number of treatment episodes is given by

1
E(N) = .
(N)=1— 5
The expected total time in treatment 71 is then given by
EU)
T = 1 Ozﬁ'

More formally, if random variables U; are i.i.d. with probability density fi;(u) for
1 =1,2,3, ..., the number of treatment episodes N has the geometric distribution
from part (c), and N is independent of all of the U,’s, then

- E(U)

:E pu—
TT 1—ap

— E(N)E(U)

as claimed.

As a matter of interest, here is how you could have obtained 77 directly from
the defining equation for ¢(t) in part (a). In part (b) you discovered that 7, =
Jo” o(t)dt. This means that ¢(¢)/7r is a probability density function for some
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random variable we will call W. Now multiply and divide the second part of the
equation for ¢(t) by 77 to obtain the expression

ofrr / fulu / o) 270" gy = g / fulu / Fir (o) fr(t—u—ov)dudu

where fi(w) = ¢(w)/Tr is the probability density for W. Recognize the integral
expression as the convolution of the probability densities for random variables
U,V and W, that is,

/ fulu) / ) it~ — v)dodu = fyrvsw (D), £ >0
u=0 v=0

which is the probability density function for the sum of U,V and W. The equation

for ¢(t) can thus be written as

¢(t) = Pr{U >t} + aB7r furviw(1).

Integrating both sides of this equation yields

e = /Ooo(b(t)dt

— /00 Pr{U > t}dt + /°° aBTr fusvew (t)dt
0

0
= EU)+apfrr

where E(U) follows from “integrating the tail” and a7 follows from noting that

the integral of fy, v 1w () must equal unity since it is a probability density! We
thus have the simple identity

from which we again obtain

as claimed.
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