
MGT 721 - Modeling Operational Processes

Spring 2025

Renewal Theory Problem Set: Solutions

These questions are meant to review and extend the concepts introduced in

class. You may use any computational assistant you like, including for example

Wolfram Alpha’s tools for symbolic integration or summation, or even chatGPT,

but you are responsible for any errors that might result (especially with chatGPT).

You can complete all of these questions without such computational assistants,

but nonetheless the option is there.

1. Finding (()2), the expected squared number of re-

newals

(a) Following the same approach taken to evaluate the expected number of re-

newals (i.e. the renewal function), argue that

(()2) =

Z 

0

(()2| = ) ()

=

Z 

0

[(1 +(− ))2] ()

where  is the basic interarrival time in the renewal process with probability

density  ().

With probability  () the first renewal occurs between times (  + ),

and given this the remaining number of renewals from  to  is the same as the

number of renewals in an interval of duration −, which is (−) This means



that, given a first renewal between  and + , the expected squared number of

renewals in (0 ) is given by [(1 +(− ))2]. Unconditioning over all possible

times for a first renewal within (0 ) yields

(()2) =

Z 

0

[(1 +(− ))2] ()

(b) Now expand the squared term in the integrand to create a renewal equation

of the form

(()2) = () +

Z 

0

((− )2) ()

What is the function ()?

Note that

(1 +(− ))2 = 1 + 2(− ) + ((− ))
2

which implies thatZ 

0

[(1 +(− ))2] () =

Z 

0

[1 + 2(− ) + ((− ))2] ()

=

Z 

0

[2(1 +(− ))− 1 + ((− ))2] ()

= 2(())−  () +

Z 

0

[(− )2] ()

This identifies

() = 2(())−  ()

= 2

∞X
=1

()− 1()

(c) Solve for (()2) by applying the general solution for renewal equations,

which in this case is given by

(()2) = () +

Z 

0

(− )()

where () is the renewal density derived in class.Your final formula should be in

terms of the distribution functions () where  is the time (from zero) until

the  renewal (and () = Pr{ ≤ }).
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Let’s evaluate the integral after remembering that () =
P∞

=1 () :Z 

0

(− )() =

Z 

0

(2

∞X
=1

(− )− 1(− ))(

∞X
=1

())

= 2

∞X
=1

∞X
=1

+()−
∞X
=1

1+()

Adding back () we get

(()2) = 2

∞X
=1

() + 2

∞X
=1

∞X
=1

+()−
∞X
=1

()

=

∞X
=1

(2− 1)()

(d) As a check, solve for (()2) using the standard formula from basic

probability, namely

(()2) =

∞X
=1

2 Pr{() = }

where from class recall that

Pr{() = } = Pr{() ≥ }− Pr{() ≥ + 1}

and also that

Pr{() ≥ } = Pr{ ≤ }
Of course, once you have a formula for (()2), you can compute  (()) =

(()2)− [(()]2
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Plug and play! We have

(()2) =

∞X
=1

2 Pr{() = }

=

∞X
=1

2[Pr{() ≥ }− Pr{() ≥ + 1}]

=

∞X
=1

2[()− +1()]

= 1() + (4− 1)2() + (9− 4)3() + 

=

∞X
=1

(2− 1)()

Same answer!

2. Uniform Renewal Process

Suppose that one has a renewal process with interarrival times uniformly distrib-

uted between 0 and 1. In class we found that for   1, the expected number of

renewals is given by (()) =  − 1. Using what you just learned above, for
  1 find (()2) for this renewal process. Whether you use the approach of

part (c) or part (d), show that your result satisfies the equation in part (b).

Let’s start with the approach of part (c), which will simplify in this case since

we already know that  () = 1,  () = , (()) =  − 1, and thus () = 

for 0 ≤  ≤ 1. First we have that
() = 2(())−  ()

= 2( − 1)−  for 0 ≤  ≤ 1
Plugging this into the renewal equation gives

(()2) = 2( − 1)− +

Z 

0

[2(− − 1)− (− )]

= 2 −  + 1

Just for kicks let’s try the approach of part (d). Note that for 0 ≤  ≤ 1,

() =


!
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(this is easy to prove), so plugging into our infinite sum we get

(()2) =

∞X
=1

(2− 1) 


!

= 2 −  + 1

as before.

Now the defining renewal equation in part (b) is

(()2) = () +

Z 

0

((− )2) ()

So, plugging in our newly-discovered results for (()2) we get

(()2) = 2( − 1)− +

Z 

0

(2(− )− − − + 1)

= 2 −  + 1

Hey! It works!

3. The Die Is Cast!

Imagine taking a single die that, after rolling, shows (via dots) the integers 1

through 6 inclusive, each with equal probability 1/6. Now let  equal the sum

of the numbers obtained from rolling the die  times. So if you roll 3 followed by

1 followed by 5, you would have 1 = 3. 2 = 3 + 1 = 4, and 3 = 3 + 1 + 5 = 9.

What is the probability that for some integer ,  = 2025? That is, what is the

probability that after some number of rolls, the running sum of of the numbers

from each roll will exactly equal 2025? Now, there are exact and nearly exact

ways to answer this question, but your job is to produce a ridiculously simple

approximation based on — what else? Renewal theory! Clearly explain your

answer. If you want to produce either the exact (or very nearly exact) answer

patiently using basic methods, you can, but if you choose to do so, do it only to

verify your approximation from renewal theory.

To see why this is such an easy problem, imagine the number shown on the

die as an interarrival time. The sum of the numbers on the die after  rolls, ,
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then corresponds exactly to what we have been calling , which is the time of the

th renewal. The question is thus just asking for the probability that a renewal

occurs at time 2025. You get an actual probability here since the interarrival

times are all discrete — 1, 2, ..., 6 each with probability 1/6. Now the expected

number of renewals that occur within time  as  gets large is just  where  is

the expected interarrival time. In this problem,  = 35. Why? Well, what is

(1+2+3+4+5+6)6? 3.5 (!). This means that the expected number of renewals

by time  is growing as 35, while the renewal density () = 135 (and recall

from class that in general the renewal density for large  in general just equals 1).

Now recall the interpretation of the renewal density — in continuous time, ()

is the probability of a renewal between  and + . But in discrete time, () is

the probability that a renewal occurs at time ! So, to a very close approximation,

the probability that after some number of rolls, the running sum of the numbers

from each roll will exactly equal 2025 is just equal to 135 = 0285 7.

Now for a more detailed excellent approximation. Letting  indicate the num-

ber of rolls of the dice to reach 2025, we immediately see that  ≤ 2025 (that
would occur from getting a 1 on every roll), and also that  ≥ 338 (if you got a 6
on 337 consecutive rolls you would have a total of 6× 337 = 2022, so you’d need
a 338th roll (and a 3 at that) to get to 2025.

Let () ≡ Pr{ = 2025}, that is the probability of hitting 2025 exactly after
 rolls for  between 338 and 2025. Then the probability of hitting 2025 exactly

after some number of rolls is just

Pr{ 2025 } =
2025X
=338

()

From the central limit theorem, we know that  is approximately normal with

mean 35 and variance (3512) (where 3512 is the variance of a discrete random

variable taking on the values 1 though 6 each with probability 1/6). With a slight

abuse of notation, we’ll also let  denote the approximating normal random

variable, and from that we can write

() = Pr{20245 ≤  ≤ 20255}
= Pr{ ≤ 20255− 35q

35
12


}− Pr{ ≤ 20245− 35q
35
12


}

where  is the standard normal random variable. Do this for all  between 338

and 2025 and add them up!
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Below is a plot of () as computed using the normal approximation.

Adding up the heights of all these bars, that is computing
P2025

=338 () yields ...

0.2857 (!!) Now what was easier — using renewal theory to get 1/3.5, or using the

normal approximation?

If you really want to torture yourself, you could compute this exactly by getting

the exact probability distribution of . This would be done via recursion. The

basic recursion is

Pr{ = } =
6X

=1

Pr{−1 = − } × 1
6


You of course initialize with the uniform distribution for 1 taking on possible

values of 1 through 6, and then you iterate over  to get the entire exact dis-

tribution of  up to  = 2025. Now define () = Pr{ = 2025} using the
exact distribution, and you get your final answer from

P2025

=338 () Go ahead and

program this if you like, but guess what you’ll discover? The answer is 0.2857!
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4. The A B Shuttle (not as much fun as Springsteen’s E

Street Shuffle but...)

A single shuttle goes back and forth between locations A and B. The time required

to travel from A to B is a random variable  . As it turns out, the time required

to travel back from B to A is identically distributed with the same distribution as

the time required to travel from from A to B. Let the common random variable

for the travel time from A to B (or from B to A) have probability distribution

function

 () = Pr{ ≤ } = 2√


Z √


0

−
2

,   0

Some of you might recognize  () via the error function

erf() =
2√


Z 

0

−
2



which makes

 () = erf(
√
)

But I digress.

(a) What is the probability density function  () associated with the time

required for a one way trip from A to B (or from B to A)?

We need to remember our basic probability here:

 () =



 ()

=




2√


Z √


0

−
2



=
2√

(




√
)−(

√
)

2

=

r



−,   0

(b) What is the expected time for the shuttle to travel one way from A to B

(or vice versa), that is what is ( )?
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This follows from the density function as

( ) =

Z ∞

0

×
r




− =

1

2

(c) What is the variance of the time for the shuttle to make a one way trip,

that is, what is  ( )?

Let’s use our usual formula:  ( ) = ( 2)− [( )]2 and note that

( 2) =

Z ∞

0

2 ×
r




− =

3

42

from which we obtain

 ( ) =
3

42
−
µ
1

2

¶2
=

1

22

(d) You want to catch the shuttle at A to travel to B. Relative to the timing of

the shuttle, you arrive at A at a random time. Assume that the time the shuttle

spends at A or B is negligible relative to the travel time from A to B or B to A.

(i) What is the probability that at the time you arrive at A, the shuttle

is traveling between A and B? What is the probability the shuttle is traveling

between B and A?

The probability distribution of the time from A to B is the same as the dis-

tribution from B to A, so arriving at A at a random time gives a 50% chance the

shuttle is going from A and B, and a 50% chance the shuttle is going from B to

A.

(ii) Conditional on the shuttle traveling between A and B at the time of

your arrival at A, what is your expected waiting time until the shuttle arrives at

A?

Since you arrived at random relative to the shuttle process, if you are told

that the shuttle is traveling between A and B, your expected waiting time until

the shuttle arrives at A is the sum of two things: the expected remaining time

in the trip from A to B, and the unconditional expected time from B to A. We

know already from part (b) that the unconditional expected time from B to A
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just equals 1 (2). The expected remaining time from your arrival at A until the

shuttle arrives at B is just the expected forward recurrence time given random

incidence on random variable  . From class we know that the expected forward

recurrence time is equal to

( ∗) =
( 2)

2( )
=

3
¡
42
¢

2× 1(2) =
3

4

The expected total wait from your arrival at A until the shuttle arrives at A,

conditional on the shuttle traveling between A and B at the time of your arrival,

is then given by

( |shuttle going from A to B when you arrive at A) =
3

4
+
1

2
=
5

4

(iii) From the time of your arrival at A, what is your (unconditional)

expected waiting time until the shuttle arrives?

With probability 1/2, you arrive while the shuttle is moving from A to B which

gives a conditional expected wait of 5(4) But also with probability 1/2, you

arrive while the shuttle is already en route from B back to A, and in this case

your expected wait is only 3(4)Therefore your overall expected wait given that

you randomly arrive at A is equal to

( ) =
1

2
× 5

4
+
1

2
× 3

4
=
1



(e) Now, again assuming that the time the shuttle spends at A or B is negligi-

ble, the time required for the shuttle to make a round trip is just the sum of two

one way trips, that is, if  is the duration of a round trip, then

 =  + 

where  and  are independently and identically distributed as random vari-

able  above. What is the probability density () for the time required for a

round trip? What is ()? What is  ()?
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Working directly with the fact that  and  are independently and iden-

tically distributed as random variable  we obtain

() =

Z 

0

 ()×  (− )

=

Z 

0

r



− ×

s


(− )
−(−)

=



−

Z 

0

1p
× (− )



=



− × 

= −,   0

How cool is that? We just learned that  has an exponential distribution! Usually

we think of adding up exponentials to get stuff, but before this problem, have you

ever seen the exponential emerge as the sum of random variables?

You might have anticipated this if you recognized  () as a special case of the

gamma density. A random variable  has a gamma distribution with positive

parameters  and  if

() =


Γ()
−1−,   0

Two facts about gamma random variables with this density: (i) () =  and

 () = 2, and (ii) if  is gamma distributed ( ) for  = 1 2  

and all of the  0
 are mutually independent, then  =

P

=1 is also gamma

distributed with parameters (
P

=1  ) In the present problem,  has a gamma

distribution with  = 12, while has a gamma distribution with  = 12+12 =

1. Nice how this all hangs together, no?

Anyway, now that we know  is exponentially distributed with rate , it

follows immediately that () = 1 while  () = 12

(f) What is the probability density function for the time you will have to wait

from your arrival at A until the shuttle next arrives at A? Verify using this density

that your expected waiting time for the shuttle after you randomly arrive at A

indeed equals your result from (d) (iii) above.

11



OK — now if you arrive at random relative to the shuttle, all you need to know

is that the interarrival times for the shuttle at A are exponentially distributed with

rate . The exponential distribution is of course memoryless, so the remaining

time until the shuttle arrives after your random arrival at A also equals 1.

Surprise — part (d) (iii) above gave exactly the same result, though it was more

work to get it, no?

(g) Let () denote the total number of completed shuttle round trips as

of time  when the shuttle begins operating from A at time zero. What is the

probability distribution of ()?

This is a gift! Knowing as you now do that the interarrival time distribution

at A is exponential with rate , the number of completed shuttle round trips as

of time  just follows a Poisson distribution with mean , that is,

Pr{() = } = ()


!
−,  = 0 1 2 

5. Treatment and Monitoring

A seriously ill patient has just arrived at the hospital at time 0. This patient im-

mediately enters treatment. Any treatment episode requires  time units where

 is a non-negative continuous random variable with expected value (). All

treatment episodes are iid . Following any treatment episode, the patient is dis-

charged from the hospital with probability 1 − , while with probability  the

patient is held at the hospital for a monitoring period that requires  time units

where  is a non-negative continuous random variable with expected value ( ).

All monitoring episodes are iid, and all treatment and monitoring episodes are mu-

tually independent. Following any monitoring episode, the patient is discharged

from the hospital with probability 1 − , but with probability  the patient is

returned for a subsequent treatment episode.

(a) Let () and  () denote the probability density functions for random

variables  (treatment duration) and  (monitoring duration) respectively, and

let () be the probability that a seriously ill patient who arrived at the hospital

at time 0 is in treatment at time . Produce an equation that if solved will reveal

(). Your equation should be in the spirit of renewal theory (or maybe in the

advanced spirit of the repetition method), and must depend upon , , () and

 (). You don’t need to solve this equation; just formulate it.
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For a patient who arrived at time 0 to be in treatment at time , either

the patient has been in treatment since arrival (which happens with probabil-

ity Pr{  }), or: at some time   , the patient completes treatment (with

probability ()), proceeds to monitoring (with probability ; note that if

the patient did not proceed to monitoring then the patient would have been dis-

charged and hence could not be in treatment at time ), completes monitoring at

time +    (with probability  ()), returns to treatment (with probability

; note that if the patient did not return to treatment then the patient would

have been discharged and hence could not be in treatment at time ), and is then

found in treatment −− time units later at time  as required (with probability
(− − )).

Taken together the arguments above yield

() = Pr{  }+
Z 

=0

()

Z −

=0

 ()(− − )   0

(b) From the moment of arrival at the hospital (time 0), let  denote the

expected total time a seriously ill patient will spend in treatment episodes until

discharge. How would you determine  if you knew ()?

Let random variable () = 1 if the patient is in treatment at time  after

arrival to the hospital, and zero otherwise. Then the expected total time the

patient will spend in treatment episodes until discharge is given by

 = [

Z ∞

0

()] =

Z ∞

0

[()] =

Z ∞

0

()

since the probability that the patient is in treatment at time  after arrival to the

hospital is equal to () = Pr{() = 1} = (()) since () is a Bernoulli

random variable.

(c) Let random variable  denote the total number of treatment episodes

until discharge required by a newly arriving patient at the hospital. Produce an

explicit formula for Pr{ = } for  = 1 2 3 , that is, determine the probability
distribution for random variable  .

The number of treatment episodes  can be determined as follows: suppose

that a patient has just completed  treatment episodes,  = 1 2 3 . With
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probability , the patient will complete another treatment episode (having first

gone through monitoring and then back to treatment), while with probability

1 −  the patient will have been discharged after treatment (with probability

1−) or sent to monitoring and discharged afterwards (with probability (1−);
note that 1 −  + (1 − ) = 1 − ). Combining these observations, we see

that the probability a patient experiences exactly  treatment episodes equals the

probability that the patient repeats treatment − 1 times and is discharged after
the  episode. Thus,

Pr{ = } = ()−1(1− ),  = 1 2 3

That is, the random variable  has a geometric distribution with stopping prob-

ability (1− )

(d) Now produce an explicit formula for  , the expected total time spent in

treatment, that does not require knowledge of ().

First, note that in expectation each treatment episode requires () time

units. Second, from the geometric distribution in part (c), that the expected

number of treatment episodes is given by

() =
1

1− 


The expected total time in treatment  is then given by

 =
()

1− 


More formally, if random variables  are i.i.d. with probability density () for

 = 1 2 3 , the number of treatment episodes  has the geometric distribution

from part (c), and  is independent of all of the ’s, then

 = 

"
X
=1



#
= ()() =

()

1− 

as claimed.

As a matter of interest, here is how you could have obtained  directly from

the defining equation for () in part (a). In part (b) you discovered that  =R∞
0

(). This means that () is a probability density function for some
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random variable we will call  . Now multiply and divide the second part of the

equation for () by  to obtain the expression



Z 

=0

()

Z −

=0

 ()
(− − )


 = 

Z 

=0

()

Z −

=0

 () (−−)

where  () = () is the probability density for  . Recognize the integral

expression as the convolution of the probability densities for random variables

  and  , that is,Z 

=0

()

Z −

=0

 () (− − ) = ++ (),   0

which is the probability density function for the sum of   and . The equation

for () can thus be written as

() = Pr{  }+ ++ ()

Integrating both sides of this equation yields

 =

Z ∞

0

()

=

Z ∞

0

Pr{  }+
Z ∞

0

++ ()

= () + 

where () follows from “integrating the tail” and  follows from noting that

the integral of ++ () must equal unity since it is a probability density! We

thus have the simple identity

 = () + 

from which we again obtain

 =
()

1− 

as claimed.
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