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Preface

The notes and examples to follow are material I have used in nearly 40 years

of teaching my Policy Modeling course at the Yale School of Management.

Most, but not all, of the examples were my own concoctions. This was mainly

an MBA course, but was also required of PhD students in our Operations

program to provide motivation for problem formulation in societal appli-

cations of operations research. Graduate students from many other Yale

programs including public health, international and economic development,

engineering, statistics, political science, and even physics and computer sci-

ence have taken this course over the years. Much of the action in this class

took place on the blackboard, and there is a lot of material that did not make

it into these notes. Consequently there are several gaps in explanation plus

an occasional reference to something that happened in the classroom that

is absent from the notes. Whatever, you should get the flavor of what the

class was like from the notes and examples to follow. I hope that you find

this material of interest. Ed Kaplan, New Haven, January 2026
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Chapter 1

Resource Allocation Models

Suppose that in the evaluation of some program or policy, you are faced

with choosing the value of a critical policy variable we will denote as  (for

policy). In cost benefit analysis, we assume that the costs and benefits can

be measured on the same scale, typically monetary. So, as functions of your

choice of the value for the policy variable , let () be the total benefits and
() be the total costs. You want to maximize the net benefits, that is, the
difference between () and (). So the decision problem you face is

max

{()− ()} 

Often this problem can be solved via marginal analysis: assuming diminishing

marginal benefits (that is, () is concave) and increasing marginal costs (that
is, () is convex), differentiation yields ∗, the optimal value of the policy
variable, as the solution to the equation

0(∗) = 0(∗)

where the primes denote differentiation. In words, you want to set the mar-

ginal benefit equal to the marginal cost. Note that this problem is identical

to the profit maximization problem of the firm: to make as much money as

possible, set marginal revenue equal to marginal cost.

In general, you might have several policy variables π = (1 2 )
You might also be restricted to a set of specific options, which we can denote

in general by some set Π The problem then becomes: choose the values of

the decision variables π so as to

max
∈Π

{(π)− (π)} 

1
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If you think about it, this is just a decision analysis problem: choose the best

option to maximize net benefits.

In cost effectiveness analysis, the complicating feature is a budget con-

straint: you can’t spend more than . Of course, the uncomplicating feature

is that benefits and costs no longer need to be in the same units. So, for

example, in a cost benefit analysis of an HIV prevention program, you need

to assign a dollar value to prevented infections to contrast against costs in-

curred. In a cost effectiveness analysis, you can simply focus on how many

infections you prevent given your budget.

Using the same notation as above, the cost effectiveness problem becomes:

max
∈Π

(π)

subject to

(π) ≤ 

In some special cases, simple results fall out. For example, if the benefit and

cost functions are linear in the policy variables, and the policy variables are

all non-negative but bounded, then the problem is

max
X
=1



subject to

X
=1

 ≤ 

0 ≤  ≤  for  = 1 2  

where the ’s are upper bounds. This has a simple solution: rank order

the policy variables (which in this case might be effort levels in different

programs) by the ratio of  (the bang for the buck), and assign all of

the budget by starting with the highest ranking alternative, giving as much

dough as possible (min([1] )) to the first ranked alternative (denoted by
[1]), then giving as much as possible to the second ranked alternative, and
continuing until the budget is exhausted.
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1.1 Nation of Shoplifters

The Nation of Shoplifters, as its name suggests, is beset with a minor crime

problem. On average across the population, citizens are committing ten

crimes over the course of their shoplifting careers, even after receiving dis-

ciplinary action. Now,there are two programs — I and II — that are under

consideration to reduce crime in the Nation of Shoplifters. Program I can re-

duce the expected number of crimes per career from 10 to 5, which means that
Program I prevents 5 crimes per offender. Program II reduces the expected

number of crimes per career from 10 to 6.67, which means that Program II

prevents 333 crimes per criminal.

1.2 Bang for the Buck: Cost-effectiveness ra-

tios

For Program I, on a per criminal basis, spending $6,000 prevents 5 crimes,

for a cost-effectiveness ratio of $6 0005 = $1 200

For Program II, spending $3,000 prevents 3.33 crimes, for a cost-effectiveness

ratio of $3 000333 = $900

Many analyses would simply stop here, and conclude that Program II is

more cost-effective than Program I.

1.3 “Profit Maximization”: Cost-benefit analy-

sis

Net benefits consider the difference between the benefits of crime prevention

and the costs of doing so. If crimes cost society $2,000 each on average, then

there is a $2,000 benefit from preventing each crime.

For Program I, which prevents 5 crimes per criminal but costs $6,000 per

criminal to do so, the net benefits are given by $2 000×5−$6 000 = $4 000
For Program II, which prevents 3.33 crimes per criminal at a cost of

$3,000, the net benefits equal $2 000× 333− $3 000 = $3 66666
Many analyses would simply stop here, and conclude that Program I is

more cost-beneficial than Program II.
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1.4 A Budget Constraint

What if you can only spend $2,000 per criminal? Since Program I costs $6,000

per criminal, you could only reach $2,000/$6,000 = 1/3 of all those you would

like to reach. Since you would gain no benefits (and suffer no costs) for those

you do not reach, the budget constraint of $2,000 per criminal reduces your

net benefit for Program I from $ 4,000 to (13) × $4 000 + (23) × 0 =
$1 33333.
For Program II, which costs only $3,000 per criminal, you can reach

$2,000/$3,000 = 2/3 of those you wish to reach. So the budget constraint

changes the net benefit from $3,666.66 to (23) × $3 66666 + (13) × 0 =
$2 44444
With this budget constraint, it is clear that you would pump everything

you had into Program II.

1.5 A Linear Program

Let’s pull this all together. Suppose we have 1,000 criminals in the popula-

tion. Let 1 and 2 be the number of these we send to Programs I and II

respectively. Suppose that we also have a budget constraint of $ in total

to spend. The objective is to prevent as many crimes as possible subject to

the budget constraint. Mathematically, this can be stated as:

max51 + 3332 (prevent as many crimes as possible)

subject to

1 +2 ≤ 1 000 (1,000 criminals to allocate)
$6 0001 + $3 0002 ≤  (can’t spend more than the budget)

1 ≥ 0 2 ≥ 0 (# of criminals to either program must be non-negative)

You can solve this graphically, or on the computer using Excel, or math-

ematically. The solution is:

1.5.1 For 0 ≤   $3 million:

∗
1 = 0; 

∗
2 = $3 000; avert 333×$3 000 crimes at a cost of $900 per

crime averted.
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1.5.2 For $3 million ≤   $6 million:

∗
1 = 3 000 − 1000; ∗

2 = 2 000 − 3 000; avert 1 66666 + 000055
crimes at amarginal cost of $1,800 per crime averted (i.e. crimes averted goes

from 3,333.33 to 5,000 as the budget goes from $3 million to $6 million, thus

the marginal cost per crime averted equals $3 million/(5 000− 3 33333) =
$1 800).

1.5.3 For  ≥ $6 million:
∗
1 = 1 000; ∗

2 = 0; avert 5,000 crimes, dumb to spend more than $6
million.

1.6 A Tabular View:

Program Averted Crimes/Criminal Cost/Criminal

I 5 $6,000

II 3.33 $3,000

Arrange the programs in order of increasing benefits (averted crimes) per

criminal:

Program Benefit ∆Benefit Cost ∆Cost

Do Nothing 0 - 0 -

II 3.33 3.33 $3,000 $3,000

I 5 1.67 $6,000 $3,000

Now look at the incremental cost-effectiveness ratios ∆Cost/∆Benefit:

Program ∆Cost/∆Benefit

Do Nothing -

II $3 000333 = $900

I $3 000167 = $1 800
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Note that these ratios are exactly the marginal costs per crime averted as

computed from the linear program. Note that for Program I, this ratio differs

from the $1,200 that was reported under “Bang for the Buck” earlier. That

is because Program I there was compared directly to the do nothing option,

whereas above we are learning the marginal cost-effectiveness of Program I

relative to Program II.

1.7 What Happened to the Benefit Valua-

tion?

When we face a binding budget constraint, it doesn’t matter what the benefit

valuation is! That is because when the budget constraint is binding, you

always spend everything you have. To see this, note that

Net Benefits = $2000[51 + 3332]− [$6 0001 + $3 0002]

but when the budget constraint is binding, we have $6 0001+$3 0002 =
, so for a fixed budget constraint, maximizing Net Benefits is equivalent to

max$2000[51 + 3332]−

and, since the budget  is fixed, maximizing the above is just equivalent to

maximizing 51+3332, the total number of crimes averted, which is what

we have been doing!

1.8 Suppose There Is No Budget Constraint,

and Benefit Valuation is Unknown!

In other words, suppose we have lots of money, but don’t know the benefit

of preventing a crime. Well, let’s call  the benefit of preventing a crime.

Then you will prefer Program I to Program II if it has larger net benefits per

criminal, that is, if

5− $6 000  333− $3 000
Guess what? When you solve this inequality, you find out that you prefer Pro-

gram I to Program II, in a world without a budget constraint, if   $1 800
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Is this amazing or what — after all, $1,800 is exactly the cost-effectiveness

ratio for Program I relative to Program II! So if money was no obstacle, you

would prefer I to II providing the value of preventing a crime is worth more

than $1,800.

1.9 Examples

1.9.1 No Free Riders!

The Town of No Haven is contemplating raising its bus fare. Currently, riders

pay $1.20 per trip. The town figures that on average they incur a $1.00 per

passenger expense. Since there are currently 100,000 riders per week, the

town is making $20,000 weekly as is.

Now, a consultant to the town has somehow prepared a demand curve

that relates weekly ridership to the fare charged per trip. The resulting

demand formula is given by:

() = 100000−2(−12)

where () is the weekly ridership that can be expected if a fare of $ is
charged. Note that if  = 12, the weekly ridership equals 100,000.

(a) The consultant argues that the fares can be raised. If , the cost per

trip to the town, is $1, while the income to the town per trip equals , the

consultant argues that the net benefit to the town as a function of the fare,

(), is given by

() =  × ()− × ()

= ( − 1)× 100000−2(−12)

Following this logic, what should the town charge riders to maximize their

net benefit? What would the resulting ridership, revenues, and costs equal?

(Note: you can solve this numerically on a spreadsheet by experimenting

with different fares, or for those of you who know some calculus, you can

solve this analytically; either approach is fine).

Attached is a graph showing the net benefits (i.e. profit) that result as a

function of the fare per ride . I did this using Excel; you could have done

this with any spreadsheet package, or you could have written your own little
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Net Benefits
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computer program. Either way, the curve reaches a maximum when the fare

 is set equal to $150, so this formulation supports the consultant’s view:
raise the fare from $1.20 to $1.50.

A mathematical solution can be found applying calculus. We need to

differentiate the net benefits with respect to  and equate the result to zero.

Doing so we find that

()


= [1− 2( − 1)]()

so setting this equal to zero yields

∗ = 1 +
1

2
= $150

as found numerically above.
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At a fare of $1.50, the ridership would fall from 100,000 per week to 54,881

per week. This would bring in revenues of $150 × 54 881 = $82 321, at a
cost of $54,881, for a net benefit (profit) of $27,440 per week, which is $7,440

per week better than the existing situation.

(b) The town’s new city planner says “Hold Everything!” Something

is wrong. The average costs per rider were computed given a ridership of

100,000! The planner points out that the real costs of running the system

are fixed with respect to the number of riders: the town’s expenses are the

costs of paying drivers, buying and maintaining buses, fuel, etc. Indeed,

it turns out that the value of  = $1 was computed by adding up the fixed
costs and dividing; it really costs the town $100,000 per week to run the buses

without regard to the number of passengers. If the city planner is right, how

should the town set the fare? What consequences would follow?

If the city planner is right, then the net benefit function is given by

() = ()− $100 000
This function has been plotted on the attached graph (Excel again). The

function is maximized at a fare of only 50 cents (calculus would yield the

same answer). The ridership would roughly quadruple (it would increase to

405,520 riders weekly), yielding revenues of $202,760, and a profit of $102,760,

much better than the current situation.

(c) A recent SOM grad points out that, actually, the total costs depend

on the number of buses deployed. Presumably this depends on the number

of riders, as buses are capacitated: you can’t put more than 50 people on

a bus! From this point of view, which of the solutions above makes more

sense?

According to our student, if the capacity of a bus is , then the number

of busloads per week is given by

Busloads =

»
()



¼
where the notation de refers to the smallest integer greater than or equal to
 (and for obvious reasons is referred to as the ceiling function). If the cost

per busload is given by , then the total cost to the town as a function of

the fare would equal

Total Cost() =  ×
»
()



¼
≈ 


× ()
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so the total cost is approximately proportional to the number of riders. This

would support the formulation in (a) rather than the formulation in (b).

Indeed, is it sensible to believe that the ridership could quadruple (from

100,000 to 405,520) without the costs changing (which is what you have to

believe if you accept the analysis in (b))? So the moral of the story is: choose

a consultant over a city planner!

1.9.2 Running For President

In the United States, presidents are elected in accord with a two-tiered

process. First, there is a popular election held simultaneously in all states

to see which presidential candidate gets the most votes. Then the election

proceeds to the Electoral College where each state is represented by electors

whose number in each state equals the total congressional representation of

that state across the House of Representatives and the Senate. These electors

cast votes for the president, and with few exceptions in certain states (e.g.

Maine, Nebraska), whichever candidate won the majority of the popular vote

in a given statewide election is awarded all of the electoral college votes in

that state. To be elected president of the United States requires receiving at

least 270 of the 538 votes cast in the electoral college.

Given these (approximate) rules for electing the president, consider the

following question: conditional on the number of people voting in each state,

what is the smallest total number of popular votes received with which a

candidate could still be elected president by winning the electoral college

vote? Since a candidate can win a state with (just over) half of the popular

votes, an immediate back-of-the-envelope guesstimate follows from assuming

that all states have the same number of voters, for in this case a candidate

who wins (just over) half of the votes in half of the states could win the

electoral college. Our simplest model thus suggests that a candidate could

be president with only 50% × 50% = 25% of the total popular vote (as

no votes need be won in states the candidate loses!). This result is not a

forecast or prediction of any actual presidential election; rather it expresses

a property of the electoral college system: under this approach to choosing

the president, it is theoretically possible to be elected with as little as 25%

of the popular vote. An immediate corollary is that a candidate could win

up to 75% of the popular vote and still lose the election!

Of course, in reality all states do not have the same number of popular
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voters, and consequently do not share the same number of electoral college

delegates. This follows from the simple fact that the population sizes of (and

hence the number of voters in) the different states are not equal. In the 2020

election for example, the number of voters ranged from 276,765 in Wyoming

to 17,511,515 in California, What happens if we allow both the number of

voters and electoral college delegates to vary by state? To find out, define

 to equal the number of voters in the popular election held in state , and

let  be the number of electoral college votes at stake in state . Further,

let  take on the value 1 if the candidate in question wins state  and zero

otherwise. Again presuming that winning in a state requires half of the votes

case while losing requires zero votes, the smallest number of popular votes

that in principle could elect a president is given by the solution to

min
X




2


subject to X


 ≥ 270

 = 0 or 1 for all states 

This model succinctly seeks the smallest number of possible votes for a candi-

date possible while ensuring that the total number of electoral college votes

for this same candidate is at least 270 (with 538 electoral college votes, a

literal tie resulting from receipt of 269 votes is possible, and in such an event

a bizarre set of tie-breaking rules would be called into effect, but those are

not important for our present discussion).

Before trying to solve this exactly, think of this in cost-effectiveness terms:

what is the “price” per electoral college vote in units of popular votes in each

state? The answer is given by the ratio of , the number of voters per

electoral college vote in each state. It is “cheaper” to “buy” electoral college

votes in states where this ratio is smaller compared to states where this ratio

is larger. This suggests a simple ranking solution to the problem posed: rank

all of the states in order of smallest to largest  ratio, start at the top of

the list, and assign states to the candidate while recording the total electoral

votes received, and keep going until the number of electoral college votes

received equals or passes 270. In the 2020 election, the 270 electoral vote

threshold is crossed when the state of Maryland is awarded to our candidate
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(resulting in 272 electoral votes). Under our rule of half the popular votes

in winning states and zero popular votes in losing states, this assignment of

states would deliver a presidential victory with 34,323,233 popular votes out

of 158,537,765 in total, or 21.6%. Going through all this work of ranking the

states from smallest to largest  has reduced the popular vote required

to win the presidency from 25% to 21.6%. This seems like a lot of work for

a small gain in precision!

But more precision is indeed possible. Note that the solution just sug-

gested requires 272 electoral college votes. Is it possible to find an allocation

that requires only 270 electoral college votes and uses a smaller number of

popular votes in total? The answer is yes, and it comes from exactly solving

the integer program described earlier. It turns out that the  ranking

rule, while certainly efficient, is not guaranteed to be optimal due to the

“all or nothing” allocation of winning states to the presidential candidate.

With the help of the Solver in Excel, the solution to the integer program

does not strictly follow the ranking rule — Oregon and Missouri are included

as winning states while Missouri and Maryland, ranking rule winners, are

out. Nonetheless this solution achieves exactly 270 electoral college votes,

and does so with only 34,177,592 popular votes, or 21.5% of the total popu-

lar votes cast. Compared to the ranking rule, this last result required a lot

more work just to reduce the fraction of the vote required by one tenth of a

percentage point!

Summing up — a simple back-of-the-envelope model suggesting that a

candidate could win the electoral college with half the votes in half of the

states gave an immediate approximation that the presidency could be won

with only 25% of the popular vote. An intuitively pleasing “price per electoral

vote” ranking using actual voting data from the 2020 election required more

work, but reduced the required popular vote percentage from 25% to 21.6%.

And, tossing out the ranking rule and using the direct solution of the problem-

defining integer optimization model lowered the result from 21.6% to 21.5%.

Diminishing returns is a well-known economic feature of many investment

or production problems: doubling the amount of resources devoted to some

task less than doubles the output. This example illustrates that diminish-

ing returns can also apply to model formulation: we witnessed diminishing

returns to insight in terms of effort in this presidential election example. It

is often the case in policy modeling that the simplest, “first strike” model

provides the greatest incremental insight, after which model refinements to
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improve realism are not always rewarded with more compelling or meaningful

results. This is why with policy modeling, we try to analyze problems begin-

ning with the simplest possible model with the hope of gaining great intuition

before proceeding to more complicated models that capture additional detail.

1.9.3 Job Creation Programs

You are on the research staff of the United States Department of Labor.

Your job for the past few years has been to review the evidence on different

approaches to job creation, emphasizing the expected number of jobs that

can be created by different programs at various levels of government funding.

A small sum, $10 million, has been made available annually to sponsor

“showcase” job creation programs. You have been asked to review three

programs that are of interest for various reasons. You summarize the data

in the table below, which reports the number of jobs that could be created

for investments of $0 through $5 million per year for three different non-

overlapping programs:

$ (millions) Program A Program B Program C

0 0 0 0

1 30 30 30

2 65 60 70

3 85 90 105

4 100 120 120

5 110 150 140

Suppose you are limited to allocating money in even increments of $1 million.

Eager to impress, you decide to figure out the optimal allocations for all

budgets ranging from $0 to $15 million in increments of $1 million. That is,

you decide to figure out, for each budget: how much money each program

should get; and the maximal number of jobs that can be created for each

budget. Even though your available budget is only $10 million, you want to

show how many additional jobs could be created were the budget expanded

beyond $10 million (or how many new jobs would be foregone should the

budget contract below $10 million).
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(a) Prepare a graph showing the maximum number of jobs that can be

created as a function of the budget.

Let  equal the benefits, measured in new jobs created, that result from

spending $ million dollars on program ;  = ’  = 1 2 3  10. Let
 = 1 if you allocate $ million dollars to program  and 0 otherwise, again

for  = ’  = 1 2 3  10. Let  denote the total budget. Then the

resource allocation problem can be formulated as

max
X
=

5X
=0

 (create as many jobs as possible!)

subject to

5X
=0

 = 1 for  =  (each program receives some level of funding)

X
=

5X
=0

 ≤  (cannot spend more money in total than the budget)

 = 0 or 1 for  = ;  = 1 2 3  10

The data provided are the jobs created () data. Using those values

and solving repeatedly with the Solver in Excel for budgets running from $0

to $15 million yields the following graph of the maximum number of jobs

created as a function of the budget:
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For $10 million, you can get 320 jobs by investing $2, $5 and $3 million

dollars in programs A, B and C yielding 65, 150, and 105 jobs respectively

in each program.

(b) Prepare a table reporting the optimal amount of money given to each

program at each budget level.

Repeated runs of the optimal resource allocation model above yields:
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Note how the optimal allocations jump around across the programs as the

budget is increased; why do you think this is the case?

1.9.4 Screening for Learning Disabilities

It has been estimated that as many as 1 in 5 school children have learning

disabilities or attention deficit issues. Left untreated, children with learning

disabilities can quickly fall behind in their classes with potentially devasta-

ting lifelong consequences. Among young children (grades 1 through 5), it

is often hard to distinguish a child with a learning disability from the vari-

ation in learning exhibited by young children without such disabilities. The

good news is that there are interventions that, if implemented early, can es-

sentially bring learning disabled kids back to grade level. The problem is

that identifying kids with learning disabilities is far from straightforward so

it is not obvious which students should receive such interventions. Further,

these interventions are expensive, and schools simply cannot afford to offer

interventions to all who might need them.

Given that interventions are only beneficial for truly learning disabled

students, schools use very inexpensive pencil-and-paper screening tests to try
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and identify children with learning disabilities. The tests, while inexpensive,

are also not completely accurate, though test accuracy does improve if offered

at later rather than earlier grades. Suppose that for one such screening test,

the true positive probability (that is, the test sensitivity) of identifying a truly

learning disabled child is given by () if the test is administered during grade
. Suppose also that the false positive probability (that is, one minus the test

specificity) that the screening test falsely identifies a child with no learning

issues as disabled when the test is administered in grade  is given by ().
Also, suppose that the true prevalence of learning disability among incoming

school students stays constant and equal to  (for revalence). Assume that

entering students are either learning disabled or not, and that no changes to

a child’s true learning disability status occur over time.

(a) Suppose that the school has decided to administer a screening test for

learning disabilities to all students in grade , where  runs from 1 to 5 (so the

first five grades of elementary school). What is the conditional probability

that a student who tests positive on a screening test administered in grade

 is truly learning disabled (that is, what is the positive predicted value of a

test offered in grade )?

The positive predictive value of a test administered in grade , denoted

here by  (), is the same thing as Pr{Student in grade  is learning

disabled | student tests positive on the screening test in grade }. This is
a straightforward calculation using either the “never fail method” or Bayes’

Rule, and is given by

 () =
()

() + (1− )()

Note that the numerator of this expression is just the probability that a kid

is both learning disabled and tests positive on the screening test, while the

denominator is the probability that a kid tests positive on the screening test

(accounting for all children).

(b) Looking at your formula from part (a), describe how it behaves as

a function of time  given that () is increasing with time while () is
decreasing with time. That is to say, does the conditional probability that

a child who tests positive is in fact learning disabled get larger, smaller, or

stay the same over time given the assumptions governing the accuracy of the

screening test?
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Clearly  () must be increasing with time. Intuitively, as time goes
by, the screening test becomes more accurate at identifying both children

with and without disabilities, thus the fraction of all students identified via

the screening test who are truly disabled has to go up. A formal way to

prove this is to show that the derivative of  () with respect to time
must be positive (you did not have to do this to gain full marks; the earlier

intuition suffices). In simple words, the later you test, the more likely that a

child who tests positive is truly learning disabled!

(c) Again looking at your formula from part (a), describe how it behaves

as a function of , the underlying prevalence of true learning disability in

the student population. Does the conditional probability a child who tests

positive is in fact learning disabled get larger, smaller, or stay the same as 

varies?

Similarly, at any grade, so long as ()  () (which must be true for any
reasonable screening test — it must be true that truly learning disabled stu-

dents have a higher chance of testing positive than students without learning

disabilities), the positive predictive value must increase with the prevalence

 as the  becomes more heavily weighted towards () than () as 
increases, and for any reasonable screening test ()  (). You could also
take the derivative of  with respect to  and show that it must be

positive, but you didn’t have to do that.

(d) Define () as the incremental benefit a truly learning disabled student
would receive from an intervention administered in grade  (if the interven-

tion is offered to a non-learning-disabled student, the incremental benefit is

zero). Since interventions are so expensive, only students who test positive

on the screening test can be offered an intervention, and indeed there might

not be enough interventions for all students who would screen positive. Any

intervention offered is therefore given to a randomly selected student from

among those who tested positive on the screening test. Suppose that the

screening test is offered to all students in grade . Produce a formula that

states the expected student benefit derived from a randomly selected inter-

vention offered in grade .

Let’s let () represent the expected benefit from a randomly selected

intervention offered in grade . Since the intervention is only offered to those

who test positive on the screening test, and since the benefit equals ()
for students who are truly learning disabled and 0 for students who are not
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learning disabled, and since the probability that a student who tests positive

on the screening test is truly learning disabled is given by  (), it must
be that:

() =  ()× () + (1−  ())× 0
=  ()× ()

=
()

() + (1− )()
× ()

(e) Now suppose that the school is able to administer the screening test

to all students in a single grade , but that the number of interventions that

can be offered is, unfortunately, much less than the number of students who

screen positive. Suppose that:

 = 02 (prevalence of learning disability in the student population)
() = −004(−1) for  = 1 2 3 4 5 (the incremental benefit from inter-

vening with a truly learning disabled child in grade )

() = 08− 01−01733(−1) for  = 1 2 3 4 5 (true positive rate or sensi-
tivity)

() = 015 + 01−01733(−1) for  = 1 2 3 4 5 (false positive rate or one
minus specificity)

Produce a table that shows, as a function of grade (i.e. ), the numerical

values of () ()the positive predictive value of the screening test (from
part (a)), the incremental benefits (), and the expected benefit derived
from a randomly selected intervention in grade  (from part (d)). Based

on this table, in which grade should the school administer screening tests if

the goal is to maximize the expected benefit from offering interventions for

learning disabilities?

This is effectively plug-and-play, and easy to do in Excel. Simply applying

the stated formulas for () () and (), recognizing that  = 02, and using
the result of part (a) for  () and the result of part (d) for () we obtain:
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(f) How would your recommendation change (if at all) if, everything else

remaining the same, the prevalence of learning disabilities in the population

was as low as 10%? As high as 30%? Explain.

When  = 01, it makes sense to wait until grade 5 to administer the
screening tests as that is when the highest expected benefit occurs ((5) =
02506), whereas when  = 03, the highest expected benefit occurs when
screening takes place in grade 1 ((1) = 05455). The explanation lies with
the tradeoff between increasing  () and decreasing (). Note that ()
falls from 1 to 0.852 from first through fifth grade, a decline of 14.8%. When

 = 01, the PPV increases by 24% over the same grade range so it makes

sense to delay screening given the large gain in PPV relative to (). When
 = 03, PPV only increases by 13%, which is not enough to overcome the
drop in () so it makes sense to screen children as early as possible.

1.9.5 Allocating COVID Vaccine

The Advisory Committee on Immunization Practice (ACIP) issued recom-

mendations for allocating the initial supplies of COVID-19 vaccine — see:

https://www.cdc.gov/mmwr/volumes/69/wr/mm6949e1.htm. These recom-

mendations stated that in the initial phase of the vaccination program,

COVID-19 vaccine should be offered to health care personnel and residents

of long-term care facilities (also known as nursing homes).

For each state in the United States plus Guam, the District of Columbia,

and Puerto Rico, the Excel file titled Covid_Vaccine_Allocation contains

the following data: total population, the sum of the number of health care

personnel and nursing home residents, and number of vaccine doses distrib-

uted as of January 11, 2021. Please download this file.

(a) Plot the number of vaccine doses allocated (Y-axis) versus the sum

of the number of health care personnel and nursing home residents (X-axis).

On this same graph, also plot the number of vaccine doses that would be

allocated to each jurisdiction if the vaccine was allocated in proportion to

the sum of the number of health care personnel and nursing home residents,

as suggested by the initial ACIP guidance. Let  (and b) denote the
observed vaccine doses allocated to state  (and the number of vaccine doses

if vaccine was distributed in proportion to the sum of the number of health

care workers and nursing home residents in state ). The “root mean squared
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error” (or RMSE) is defined by

RMSE =


sP53
=1( − b)2

53

where the “53” arises from the 50 states plus Guam, DC and Puerto Rico.

Calculate the RMSE for vaccine allocation in proportion to the sum of health

care workers and nursing home residents, which we take as representing the

ACIP recommendation.

The requested plot appears below (the dots show the actual allocations,

while the dotted line shows allocation proportional to the sum of health care

workers and nursing home recipients). The RMSE equals 96,930. While

the amount of vaccine distributed roughly adheres to the sum of health care

workers and nursing home residents in each jurisdiction, the pattern seems

to break up once the size of the Phase 1a group exceeds 500,000.

(b) Similarly to part (a), on a new graph plot the number of vaccine doses

allocated (Y-axis) versus the population (X-axis). On this same graph, also

plot the number of vaccine doses that would be allocated to each jurisdic-

tion if the vaccine was allocated in proportion to population, which is not
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the ACIP recommendation. Calculate the RMSE for vaccine allocation in

proportion to the population.

Here is the plot comparing actual vaccine allocations to what would be

expected if vaccine doses were distributed proportional to the population.

With the exception of the largest jurisdiction (California), population alone

does a much better job predicting the actual doses distributed as of the

date these data were collected. The RMSE equals 34,605, which makes the

“typical” error modeling allocation by the size of the Phase 1a numbers about

2.8 times larger than the error from modeling by population alone (that is,

the RMSE for Phase 1a from part (a) above, 96,930, is 2.8 times larger than

the RMSE of 34,605 calculated for allocating in proportion to population.

(c) Based on (a) and (b), what looks like a better predictor of how (at

least as of January 11, 2021) COVID-19 vaccine has been distributed to indi-

vidual states/jurisdictions: allocation based on the ACIP recommendations,

or allocation based on population?

This is interesting — it looks like just allocating vaccine in proportion to

population is a better back-of-the-envelope model for how vaccine has been

distributed to the date of the data compared to allocating in proportion to

the supposed Phase 1a numbers! This is clear from the two graphs, and also
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from the RMSE values calculated. There are many, many federal programs

that allocate funds or other resources to states in proportion to population;

that was not stated as the approach for Operation Warp Speed, but the data

suggest allocations proceeded as if allocating in proportion to population

was the real goal.

(d) Presumably vaccine is being allocated to save lives. Suppose those in

charge of Operation Warp Speed (the program in charge of federal vaccine

distribution to individual states/jurisdictions) believe that if  doses of vac-

cine are distributed to jurisdiction  with population , then the expected

number of lives saved in jurisdiction , call this , would be given by

 = 00355×  ln()

where ln() is the natural (base ) logarithm of . Note that this formu-

lation implies a marginally decreasing return in lives saved as the amount

of vaccine allocated increases (that is,  exhibits diminishing returns in )
Suppose that the total amount of vaccine available for distribution is given

by  (as of January 11, 2021,  = 20 908 375 for the 53 jurisdictions consid-
ered in this problem). Also assume that political constraints dictate that at

least 10,000 vaccine doses will be allocated to each jurisdiction. Formulate

the mathematical resource allocation problem that, in words, says: find the

non-negative vaccine allocations {  = 1 2  53 } that maximize the ex-
pected total lives saved by vaccination subject to the constraints that each

jurisdiction receives at least 10,000 vaccine doses, and the total number of

vaccine doses allocated is equal to  = 20 908 375.

This just involves translating words into math. Succinctly, the problem

is:

max
{1253}

53X
=1

00355×  ln()

subject to the constraints

53X
=1

 =  = 20 908 375

and

 ≥ 10 000 for  = 1 2  53
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(e) Either using the Solver in Excel, or using your mathematical skills,

determine the vaccine allocations that solve the problem you defined in part

(d). How do these “optimal” allocations compare to your answers to parts

(a) and (b) above?

Using the Solver is pretty easy for this problem. The “changing cells”

(or “decision variables” in operations research lingo) represent the number

of vaccine doses (the 0), so one takes a column in Excel of length 53, and
puts in initial numbers that represent your first guess at the answer (e.g. set

the allocation for every state equal to 53 = 20 908 37553 = 394 498).
The population values are given in the problem data, so you have those in a

column that also has 53 rows. Now create a column that represents expected

lives saved in each state, and each row value is the result of the Excel formula

= 00355∗∗ ln() where  is the population in state , and  is your initial
proposed vaccine allocation. The objective function to maximize is then just

the sum of the rows in this column. Using the Solver to specify the “changing

cells” and also to define the constraints (sum of the values in the number of

doses allocated column equals 20,908,375, and the number of doses in each

row is at least 10,000), you set the objective function equal to the sum of

lives saved calculated earlier using the logarithmic function shown, and find

the maximum. Here’s what a sample Solver setup looks like when the sum

of lives saved is in cell Q7, the vaccine allocations are in cells U2:U54 (note:

53 rows!); the sum of the vaccine allocations are in cell U56, and these are

set equal to the total vaccines to be allocated which in this case was stuck in

cell D56 (and equal to 20,908,375), and there is a bound stating that vaccine

allocations must be at least 10,000 in each jurisdiction.
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When you solve this problem, you should discover that vaccine allocations

from this model turn out to be proportional to the population in each state,

which as we saw in (b) above is very close to what seems to have happened.

Now the question is, why?

This next part of the solution is a bit mathy, so for those of you who have

not seen optimization problems like this, what follows is “music apprecia-

tion.” Anyway, here goes: ignoring for a moment the minimum constraints

 ≥ 10 000 for  = 1 2  53, we can reformulate the problem as

max
{1253}

53X
=1

00355×  ln()− (
53X
=1

 − )

where we have introduced a new variable, , referred to as a Lagrange mul-

tiplier. We have 54 variables in this problem: the 53 values  (one per
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jurisdiction) plus the new variable . Applying standard calculus to get

the first order condition for a maximum requires differentiating the function

above with respect to each variable and setting the result equal to zero. So,

let’s do that!





Ã
53X
=1

00355×  ln()− (
53X
=1

 − )

!
= 00355×


−→ 0 for  = 1 2  53

and





Ã
53X
=1

00355×  ln()− (
53X
=1

 − )

!
=

53X
=1

 −  → 0

From the first equation, we see that

 = 00355× 



while from the second equation we see that

53X
=1

 = 

Substituting the results from the first equation in to the second yields

53X
=1

 =
53X
=1

00355× 


= 

which means that

 =
00355



53X
=1



Now that we know what  is, we plug it back into our solution for  and get

the final result

 = 00355× 


= 00355× 

00355


P53
=1 

=
P53
=1 

×  (!!)

We have just shown that if you maximize expected lives saved under the pre-

sumption that they follow from the logarithmic model specified, ignoring the



28 CHAPTER 1 RESOURCE ALLOCATION MODELS

minimum allocations in each jurisdiction you get vaccine allocation exactly

in proportion to population! So what about the minimum allocation condi-

tion? Well, guess what — in this problem, if you allocate strictly according

to population, every jurisdiction gets at least 10,000 doses (though Guam is

close at only 10,452), so the minimum constraints turn out not to matter.

Now, you might be wondering why this is such a big deal when at no

point in this problem did we attempt to justify the logarithmic expected

lives saved formula. But that turns out to be exactly the point — the feds

appear to have allocated vaccine as if they believed that the expected lives

saved follow the logarithmic formula shown. And ladies and gentlemen, that

is a head scratcher!

1.9.6 Allocating HIV Prevention Resources

In this question, you get to replicate some of the analysis contained in the

report of the Institute of Medicine’s Committee on HIV Prevention Strategies

in the United States. To prepare, first read carefully Chapter 3 (“Allocating

Resources”) and Appendix D (“Description and Mathematical Statement of

the HIV Prevention Resource Allocation Model”), both contained in your

coursepack. Then, download the Excel file titled Holmberg_Data from the

Policy ModelingWeb site. This file contains the state-by-state data reporting

total population; and risk group population, number of current HIV infected

persons in the risk group, and annual number of new HIV infections in the

risk group for the three risk groups considered: injecting drug users (IDUs),

men who have sex with men (MSMs), and heterosexuals at high risk (HETs).

Note that all of these numbers were estimated by Dr. Scott Holmberg of the

Centers for Disease Control.

Define:
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 = dollars for programs serving group  in state 

 = cost per person in programs in group 

 = relative reduction in HIV incidence for programs in group 

 = maximum fraction of the population reachable in group 

 = total number of new HIV infections per year in state , group 

 = number of persons at risk in state , group 

 = HIV prevention budget

Then the number of persons who can be reached with programs in state 

that serve persons in group  equals  (note the units: dollars divided by

dollars per person equals persons). Also, the number of infections that can

be prevented with programs in state  that serve persons in group  is given

by ()× ()× . Focusing on group  in state , this product can

be understood as the number of persons reached with prevention programs

() times the per capita rate of new infections per person (, times

the relative reduction in the infection rate due to the prevention programs

().

A linear program for optimally allocating HIV prevention resources is

then given by:

max
{ ’s}

X


X





× 


×  (Prevent as many infections as possible!)

subject to

 ≤  ∀  (Can’t reach more than 100% of population)X


X


 ≤  (Can’t spend more than the budget)

 ≥ 0 ∀  (non-negative resource allocation)

Focus on the base case parameters as reported in Table 3-1 of Chapter 3.

Also presume a budget constraint of $412 million dollars, which is roughly

what the CDC spent on prevention programs in Fiscal Year 1999 (see p. 29,

“Allocating Resources at the National Level”). Then, using the data in the

spreadsheet and the following the formulation in Appendix D, answer the

following questions:
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(a) Under proportional allocation to new HIV infections, what is the total

amount of money that would be allocated to programs for IDUs, MSMs, and

HETs across all states? (You need to figure out the proportional allocation

of funds to programs for each risk group in each state, and then add across

states for each risk group to obtain the three numbers sought).

This is straightforward — there is a $412 million budget that is split in

proportion to the number of new infections in each risk group/location com-

bination (i.e. to the values of the ’s in Holmberg’s data). Directly from

these data, one obtains the following:

Proportional Worksheet:
Total Infections Total $

IDU 19047 206221953.6
MSM 9796 106061335.5
HET 9210 99716710.9

So IDUs get about 50% of the money, while MSM’s and HET’s each get

about 25%. Not a huge surprise when you consider that these are just the

relative proportions of new infections in each group!

(b) Under proportional allocation to new HIV infections, what is the total

annual number of infections prevented in each of the three risk groups, and

hence what is the total annual number of infections prevented overall? (Don’t

forget to incorporate the assumption that, in the base case from Table 3-1,

only 50% of risk group members in any location can be reached!)

This is a little trickier. For each risk group/location combination, you

need to look at how much money was allocated, and then how many people

could be reached in principle. However, this number cannot be larger than

50% of the risk group population (by assumption of the 50% reach parame-

ter). Once you have figured out the number of persons reached in each group,

you multiply through by the ratio of new infections to the population risk

group size, and then by the presumed efficacy estimate to obtain infections

averted. This calculuation is detailed at the top of p. 136 in Appendix D.

Finally, you just add within the different risk groups. I obtain:
Proportional Worksheet:

Total Infections Total $ Total Inf Prevented
IDU 19047 206221953.6 1647.7731
MSM 9796 106061335.5 1029.2636
HET 9210 99716710.9 324.53144

In total, proportional allocation of $412 million looks like it would avert
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about 3,000 infections.

(c) Now, determine the amount of money that would be allocated to pro-

grams for each risk group in each state in order to prevent as many infections

as possible, and then report the total amount of money allocated nationwide

to programs for IDUs, MSMs, and HETs.

There are two different ways you can proceed. One approach is just to

figure out the cost-effectiveness ratios for all risk groups in all states: how

many infections can you prevent per dollar in each case? Then, once you have

done this, allocate the money from most to least cost-effective location/risk-

group combinations, noting that for each such combination you will either run

out of people (because of the 50%maximum reach assumption) or, eventually,

run out of money (because of the $412 million budget constraint).

The other way to proceed, for those who are familiar with Excel’s Solver

tool, is to exactly formulate the linear program presented in Appendix D

inside your spreadsheet and solve using the Solver.

Using the first approach, you just compute for each risk group/location

combination the cost-effectiveness ratio (really infections averted per dollar)

given by

 =
1


× 


× 

where  and  are the cost per person, and fractional reduction in incidence

(i.e. the efficacy), and  and  are the rate of new infections (new infections

per year) and the size of the risk group. Then you sort all combinations

from highest to lowest ratios. Then you figure out the maximum number of

persons you could possibly place in programs (given by 50% of the population

size), and the cost of doing so (given by  times the reachable population).

The infections prevented will then just equal the money spent times the cost-

effectiveness ratio above. Add up the money until you run out. It turns out

that you run out of money when considering programs for HETs in New

York. Up until that group, you would have spent a total of $391,207,500

on group/location combos up to and including IDUs in Texas. To fund

programs to cover all HETs in New York would require cumulative spending

of $439,762,500. But you only have $412 million, so you can only spend $412

million - $391,207,500 million = $20,792,500 on HETs in New York. That’s

when you run out of money.
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Summing the amounts allocated over the different risk groups, I obtain

the following results:

IDUs: $135,030,000

MSMs: $214,837,500

HETs: $62,132,500

It adds to $412 million. Hooray!

(d) Having determined the amount of money that would be allocated

to programs to prevent as many infections as possible, report the annual

number of infections prevented in each of the three risk groups, and hence

the total annual number of infections prevented overall. What percentage

improvement does this offer over the policy of proportional allocation?

In figuring out the sums spent on each risk group in part (c), I noted that

for all risk group/location combinations more efficient than New York HETs,

one reaches 50% of the population at risk in the group. One then prevents

100e% of the new infections that would have occurred in that group. For New

York HETs, you can reach only $20,792,500 / $300 = 69,308 of the 323,700

at risk there. You then figure out infections prevented as before after adding

in the partial result for New York HETs. I obtain:

IDUs: 1648.1

MSMs: 1959.2

HETs: 289.0

This adds to 3896.3, or about 3,900. Recall that with proportional al-

location, the number of infections prevented per year was 3,000. So, the

improvement is given by roughly (3 900− 3 000)3 000 = 30%. Also, note
that the number of infections prevented among IDUs is virtually identical

under the proportional and cost-effective approaches, but much cheaper in

the second case. More infections are prevented among MSMs under the cost-

effective allocations (1959 versus 1029), but fewer among HETs (289 versus

325). The gain in efficiency really comes from targeting more resources to

programs for MSMs, which (by assumption) are more efficacious.

1.9.7 Optimizing Needle Exchange

In a needle exchange program, participating drug injectors are legally allowed

to exchange used needles for clean ones with the goal of preventing HIV and

other infections. Define  as the needle sharing rate per injector in the
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program,  as the number of needles exchanged per unit time per injector

in the program, and 0 as the number of new HIV infections per injector

per unit time in the absence of needle exchange (the HIV incidence rate).

A simplified model of needle exchange equates the number of HIV infections

averted per drug injector, denoted by ∆(), to

∆() = 0


+ 
·

(a) Let  = the benefit of each infection averted, and  = the cost of

each needle exchanged. Explain why the net benefit from operating a needle

exchange program, denoted by (), is given by

() = ∆()− 

The program prevents ∆() infections per participant per unit time,
each of which provides a benefit of , while it costs  per needle exchanged,

and  needles are exchanged per participant per unit time. So, the net benefit

of operating the program is given by () = ∆() −  per participating

drug injector per unit time.

(b) What value of the needle exchange rate  maximizes the net benefit

of operating the program? Provide an explicit formula

We seek to maximize (), which we will accomplish via differentiation.
We find that




() =





µ
0



+ 
− 

¶
=

1

( + )2
¡
0− ( + )2

¢


Equating this to zero and solving for  yields

∗ =

r
0


− 

where we have been careful to take the positive solution from the quadratic

above.

(c) Suppose that very conservatively, preventing an HIV infection averts

$56,000 in healthcare costs ( = $56,000), that needles cost 15 cents each
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( = $0.15), that HIV incidence equals 2% (0 = 002), and that injectors
each share needles 246 times per year on average ( = 246/yr). What is the
optimal needle exchange rate?

Plug and play! We have

∗ =

r
56 000× 246× 002

015
− 246 ≈ 1 109

(d) Suppose that the needle exchange rate  is sufficiently small relative

to the needle sharing rate  that

0


+ 
≈ 0


·

What then is the marginal benefit per needle exchanged per injector, what

is the marginal cost per needle exchanged, and consequently when does it

make sense to even establish a needle exchange program?

In this case, the net benefit of the exchange program per injector is given

by (0 − ) = (0 − ) and consequently the marginal benefit per
needle exchanged is just given by 0 − . It would only make sense to

establish a program if the marginal benefit is positive, that is, if

0


 

which can also be written as

0 




which means that if the HIV incidence rate 0 is too small (less than ),

it does not even make sense to establish the program.

Another way to see this condition is to revisit your solutions to part (b)

for the optimal needle exchange rate, and ask when that optimum exchange

rate is positive. You will discover that

∗ =

r
0


−   0

iff

0 




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(e) Now suppose that  = number of clients in the program, and conse-
quently the number of infections prevented is given by ∆(). The benefit
and cost of preventing infections are given by ∆() and  respectively.

Also, suppose that the marginal cost of recruiting new participants is linear

in the number of participants because participants are found in order of eas-

iest to hardest to reach. It then follows that  = marginal cost of  client,
and consequently the total cost of  clients is given by 22. Argue that
the net benefits of operating a program with  participants and an exchange

rate of  needles per participant, ( ) is given by

( ) = ∆()−  − 
2

2
·

The new net benefits function is now expressed in dollars per unit time

instead of dollars per injector per unit time. As before, we have that ∆()−
 represents the net benefits of exchanging needles per participant, so we

need to multiply this by the number of participants () to get the total

net benefits from exchanging needles. But, we now also need to include

the recruiting costs of getting  clients into the program, which requires

subtracting off 22. This gives us the stated formula for ( ).

(f) What is the optimal number of participants in the program, and what

is the optimal needle exchange rate?

Now we need to optimize over both the needle exchange rate  and the

number of clients . Again we proceed via differentiation. Note that




( ) = 




()

where () was defined in part (a). Setting this result equal to zero yields
the same equation 


() = 0 as in part (b) so we see immediately that the

optimal exchange rate remains

∗ =

r
0


− 

as before. Continuing, we now set




( ) = 0
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which yields

∗() =
0


+
− 




Substituting the result for the optimal needle exchange rate and simpli-

fying yields

∗ =
∗

2


=
(
√
0 −

√
)2



(g) The program also has fixed costs — e.g. the salaries for the outreach

workers and the cost of upkeep for the building (or van) where the program

is operating. Denote these fixed costs by  . Taking such fixed costs into

account, when does it make sense to establish a needle exchange?

Now we need to subtract off the fixed costs from the net benefits of

exchanging needles and recruiting clients, so we need to ask when

∗∆(∗)− ∗∗ − 
∗2

2
−   0

that is, when we still get positive net benefits from operating the program

at the optimal exchange rate and client population level (which would stay

the same given the fixed costs). Substituting in the results from part (f) you

will discover that the function above remains positive so long as

0 
( 4
√
2 +

√
)2




Note that if  = 0, this condition reduces to what we found in part (d) when
there were no fixed costs.

(h) Suppose that the health department has a budget of  dollars. Tak-

ing into account fixed costs, the cost of exchanging needles, and the cost of

recruiting participating drug injectors, how would you determine the num-

ber of program participants and needle exchange rate to prevent as many

infections as possible while satisfying the budget constraint?

You need to solve the following optimization problem:

max


0


+ 


subject to

 + 
2

2
≤  − 
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and of course  and  both non-negative. This can be solved using a Lagrange

multiplier and recognizing that since the objective function is increasing in

both  and , one would always exhaust the budget. If    one cannot

establish a program (and ∗ = ∗ = 0). Otherwise the solution follows from
(letting  be the Lagrange multiplier)

max


½
0



+ 
− ( + 

2

2
+  −)

¾


Differentiating with respect to   and  and setting to zero yields three

equations:





µ
0



+ 
− ( + 

2

2
+  −)

¶
= − 

( + )2
¡
2 + 2+ 2 − 0

¢
= 0





µ
0



+ 
− ( + 

2

2
+  −)

¶
= − 1

 + 

¡
2 − 0 +  +  + 

¢
= 0





µ
0



+ 
− ( + 

2

2
+  −)

¶
= −1

2
2 − + −  = 0

Solving each of the first two equations for the Lagrange multiplier  yields

two different expressions for , namely

 =
0

2 + 2 + 2
(from differentiating by )

and

 =
0

2 + + + 
(from differentiating by ).

Equating these two expressions for  and solving for  yields

 =
2




Substituting this expression for  into the budget constraint + 2

2
+ = 

yields the following equation for :

23


+

24

22
+  = 
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So, in any instance of this problem, you would solve the equation above for 

to find the optimal needle exchange rate, and substitute the resulting value

into the equation for  to obtain the optimal number of participants in the

program.



Chapter 2

Bernoulli Process Models

In discrete time, an “event” (or “arrival” or “success”) occurs at any point

in time with probability , and does not occur with probability 1 − . The

outcome of any trial at any point in time is independent of the outcomes of

all other trials. This scenario gives rise to the Bernoulli process. Examples

include the successive flips of coins, the reliability of components or devices

over time (does the power plant blow up each week - yes or no?), the duration

of stay in hospitals, housing projects, etc. (each week there is a chance

of leaving), and so forth. Although the assumption of a constant success

probability  may seem unrealistic in some cases, this assumption yields

the simplest modeling approach available that retains the major features of

these phenomena, often leads to key insights which do not change when more

accurate assumptions are made, and is surprisingly accurate in some cases.

2.1 The Bernoulli Distribution

We say that the random variable  has the Bernoulli distribution if

Pr{ = } = (1− )1− for  = 0 1

Thus,  = 1 with probability , and  = 0 with probability 1 − . Note

that the mean of the Bernoulli random variable is given by

() = × 1 + (1− )× 0 = 

while the mean squared Bernoulli equals

(2) = × 12 + (1− )× 02 = 

39
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as well. The variance of the Bernoulli random variable thus equals

 () = (2)−()2 = − 2 = (1− )

Note that the variance reaches a maximum at  = 12, reflecting the notion
that maximum uncertainty is “like a coin toss.”

2.2 The Binomial Distribution

Let  denote the number of successes in  Bernoulli trials.  follows the

Binomial distribution:

Pr{ = } =
µ




¶
(1− )− for  = 0 1 2  

The first term represents the number of ways to obtain  “successes” in 

“trials,” while the second term represents the chance of obtaining a particular

path (or sequence) of  successes and  −  failures. Note that 1 is the

Bernoulli random variable.

The Binomial random variable has a physical interpretation.  is the

sum of  independent, identically distributed Bernoulli variables, that is,

 = 
(1)
1 +

(2)
1 + +

()
1

where 
()
1 is a Bernoulli random variable,  = 1 2  . Thus, the mean

and variance of the Binomial are easily found from the underlying Bernoulli

variables:

() = [
(1)
1 +

(2)
1 + +

()
1 ]

= + + + | {z }
 times

= 

 () =  [
(1)
1 +

(2)
1 + +

()
1 ]

= (1− ) + (1− ) + (1− )| {z }
 times

= (1− )
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As with the Bernoulli, the variance of  is largest when  = 12. Note that
at  = 0 or 1, the variance of  equals zero, reflecting the fact that failure

or success, respectively, always occurs.

2.3 The Geometric Distribution

Random variable  has the Geometric distribution if

Pr{ = } = (1− )−1 for  = 1 2 3 

 represents the number of trials necessary to obtain the first success in a

Bernoulli process. To obtain the first success on trial , the first − 1 trials
must result in failure; this occurs with probability (1 − )−1. On trial ,
success must occur; this has probability .

To find the expected value of  , we could evaluate

( ) =
∞X
=1

× × (1− )−1

but this looks ugly. Rather, we will use the “repetition method.” Note that

p
1

E(T )

1 - p
1 + E(T )

Resolving the lottery above

leads to the equation

( ) = + (1− )× (1 +( ))

which has the solution

( ) =
1


·

We have used the principle that if a failure occurs on the first trial, the re-

maining future is probabilistically identical to the future as viewed before the

first trial takes place. We can use this method to find  ( ) as well. First,
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we need to obtain ( 2). Proceeding as above, we establish the following
lottery:

p
12

E(T 2 )

1 - p
E[(1 + T )2]

Note that

[(1 +  )2] = [12 + 2 +  2]

= 1 + 2( ) +( 2)

= 1 +
2


+( 2)

Solving for ( 2) yields

( 2) =
2

2
− 1


·

Finally, noting that  ( ) = ( 2)−( )2 we see that

 ( ) =
2

2
− 1


− 1

2
=
1− 

2
·

The smaller the value of , the larger the variance in  , the number of trials

until the first success.

2.4 Examples

2.4.1 Nation of Shoplifters Revisited

Recall the Nation of Shoplifters example where you were told how many

crimes were being committed over the course of a criminal career with and

without intervention. Now let’s model how such statistics might come about.

Suppose that shoplifters recidivate (commit another crime) after each crime

committed with probability 910, but with probability 110 they retire from
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crime forever. This creates a Bernoulli process model for the occurrence of

shoplifting crimes over time.

The Nation’s Elders are entertaining a proposal for a new intervention

that, in theory, should reduce the recidivism probability from 910 to 810.
“Why should we be excited by this,” an Elder exclaims, “when instead of

continuing to commit crimes 90% of the time, crimes would be committed

80% of the time? That’s only an 11% reduction in the recidivism rate!” And

truth be told, (90%− 80%)90% = 19 = 11%.
But wait — the repetition method introduced above suggests that the

expected number of crimes committed over an entire shoplifting career, call

this   when the recidivism rate is given by , is the solution to

 = 1−  +  × (1 + ) = 1 + 

and consequently the expected number of crimes per career is given by

 =
1

1− 
·

There is another way to explain this result. Imagine some large number of

crimes, say . Under the Bernoulli process model, with probability 1−  any

crime is a career-ending crime, that is, the offender quits shoplifting for all

time with probability 1 − . The expected number of career-ending crimes

out of the  crimes considered then equals × (1− ), and consequently the
number of crimes per career, which is the same as the number of crimes per

career-ending crime, is given by (× (1− )) = 1(1− ) =  as before.

Substituting  = 09 shows that the current situation ( = 09) results in
an expected 10 crimes per criminal career, while substituting  = 08 yields 5
crimes per career. The 11% reduction in recidivism rates equates to cutting

all future crime in half! There is a lesson here — reporting an 11% reduction in

recidivism and a 50% reduction in crime are both correct statements, but the

second is much more powerful than the first (and could convince the Elders

to adopt the new intervention when the simple reduction in recidivism rates

might fail to do so).

2.4.2 Bernoulli Hiring and the 4/5ths Rule

Consider a firm that is trying to fill  available positions. The population

of qualified applicants is much greater than the number of slots to fill, and
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for our purposes this population can be considered infinitely large. However

there are two different but equal sized groups of applicants, say group 1 and

group 2, whose true job qualifications are uncorrelated with group identity

(e.g. men and women, young and old, whites and persons of color). The

hiring process works as follows: an applicant is selected at random for an

interview (implying that the applicant so selected is a member of group 1

with probability 12). Interviewed applicants from group  are hired with

probability  ( = 1 2). If an interviewed applicant is not hired, however,
then the firm randomly picks the next applicant to interview from the pool.

This process continues until all  positions are filled.

Here are several questions regarding this Bernoulli hiring process:

1. What is the probability of hiring an applicant who has just been

interviewed?

2. Suppose that interviews have been completed. What is the probabil-

ity that exactly  persons were hired as a result of these interviews? What

is the mean and variance of the number of persons hired from  interviews?

3. The interview and hiring process has just begun! What is the probabil-

ity distribution for the number of persons interviewed until the first position

is filled? What is the mean and variance of the number of persons interviewed

to fill the first position?

4. Recall that there are a total of  positions to fill. What is the proba-

bility distribution for the number of persons interviewed until all  positions

are filled? What is the mean and variance of the total number of persons

interviewed to fill all  positions?

5. What is the conditional probability that when a person is hired, that

person is a member of group 1?

6. After all  positions have been filled, what is the probability distrib-

ution of the number of persons hired from group 1? What is the mean and

variance of the number of persons from group 1 who are hired?

7. Federal law states that “A selection rate for any race, sex, or eth-

nic group which is less than four-fights (4/5) (or eighty percent) of the rate

for the group with the highest rate will generally be regarded by the Fed-

eral enforcement agencies as evidence of adverse impact, while a greater than

four-fifths rate will generally not be regarded by Federal enforcement agencies

as evidence of adverse impact.” (REFERENCE: Section 1607.4 of Equal Em-

ployment Opportunity Commission Act). What is the probability that the

results of this firm’s interview and hiring process would trigger the “4/5ths
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rule” of adverse impact? In particular, suppose that there is equal hiring

opportunity, meaning that 1 = 2 = ; what is the probability of trigger-

ing the 4/5ths rule and generating a “false positive” result? Alternatively,

suppose that there is hiring discrimination (meaning that 1 = 2); what is

the probability of failing to trigger the 4/5ths rule and generating a “false

negative” result? What do these calculations suggest regarding the 4/5ths

rule?

Now let’s answer these questions:

1. The probability of hiring an applicant who has just been inter-

viewed

Since the two applicant groups are equally numerous, both the probability of

interviewing an applicant from group 1 and the probability of interviewing

an applicant from group 2 equal 12. Since the conditional probability of
hiring a group  applicant equals , the unconditional probability of hiring

a person who was just interviewed, call this , is given by

 =
1

2
1 +

1

2
2

which is the simple average of the conditional hiring probabilities. Suppose

that instead of being equally numerous, the fraction of all applicants from

group 1 was equal to  . In this case the unconditional probability of hiring

a person just interviewed would equal

 =  × 1 + (1− )× 2

2. The number of applicants hired in  interviews

Let denote the number of applicants hired in interviews. We just learned

that the probability any person interviewed is hired is given by  as defined

above, thus the probability distribution of the number of positions filled from

 interviews follows the Binomial distribution

Pr{ = } =
µ




¶
(1− )−,  = 0 1 

The mean and variance of the number of applicants hired just follows the

Binomial results as

() = 
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and

 () = (1− )

3. The number of interviews until the first applicant is hired

Recalling again that any interview results in a filled position with probability

, the number of interviews required to hire the first applicant, call this  ,

follows the Geometric distribution

Pr{ = } = (1− )−1,  = 1 2 3 

with mean and variance given by

( ) =
1



and

 ( ) =
1− 

2
·

4. The number of interviews until all  positions are filled

Let’s define  as the time needed to fill all  positions. To determine the

probability that  =  for  =   + 1  + 2 (as clearly there must be
at least  interviews to hire  applicants!), note that the only way the 

position is filled on the  interview is if exactly  − 1 persons have been
hired as a result of the first − 1 interviews, and a person is hired as a result
of the  interview. Consequently

Pr{ = } =
µ
− 1
− 1

¶
−1(1− )(−1−(−1))| {z }

Pr{hire −1 persons in −1 interviews}

× |{z}
Pr{hire}

=

µ
− 1
− 1

¶
(1− )(−),  =  + 1 + 2

This is known as the Pascal probability distribution. To determine the mean

of the number of interviews required to hire  people, let −1 denote the
number of interviews required to fill the  position beyond the number of

interviews required to fill the (−1) position. With this notation, note that
01 corresponds to the number of interviews to fill the first position from the
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start of the hiring process, −1 is the number of interviews required to fill
the last position counting from when the (− 1) person was hired, and the
total number of interviews  required to hire  applicants is given by

 =
X
=1

−1

Now, each of the random variables −1 corresponds to the number of in-
terviews required to fill a single position, and consequently −1 follows the
Geometric distribution discussed earlier. Since (−1) = ( ) = 1, we
have just discovered that

() = (
X
=1

−1) =
X
=1

(−1) =



·

Similarly, since the random variables −1 are mutually independent (as the
number of interviews from a given hire to fill the next position is in no way

is affected by the number of interviews needed to fill other positions), the

variance of the total number of interviews needed to fill all  positions may

be written as

 () =  (
X
=1

−1) =
X
=1

 (−1) = × 1− 

2
·

.

5. The probability a position is filled with an applicant from group

1

We have already deduced that the likelihood a position is filled is given by

 = (1+2)2 (assuming our two groups are equally numerous). Conditional
upon filling a position, the probability that the applicant came from group

1, call this , is found from

 =
Pr{Applicant interviewed is from group 1 and is hired}

Pr{Applicant interviewed is hired} =
1
2
× 1

1
2
× (1 + 2)

=
1

1 + 2
·

Before continuing, ask yourself how  would change if the fraction of all

applicants emanating from group 1 was equal to  instead of 12.
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6. The number of positions filled by applicants from group 1

Let  denote the number of applicants hired from group . Since the prob-

ability that any position is filled by an applicant from group 1 is given by ,

and since all positions are filled independently of each other in this Bernoulli

hiring process, the probability distribution of 1 is also Binomial with 

trials and “success probability” , that is

Pr{1 = } =
µ




¶
(1− )−,  = 0 1  

with mean and variance given by

(1) =  = × 1

1 + 2

and

 () = (1− ) = × 1

1 + 2
× 2

1 + 2
·

7. Triggering the 4/5ths rule

Recall that the EEOC “45 rule” states that if one group gets less than
80% (or 4/5) of the number of jobs given the other, then there is evidence

of adverse impact. Focus on the original assumption that groups 1 and 2

are equally numerous. In this case, the firm’s hiring process will trigger the

45 rule if either

1 
4

5
×2

or 2 
4

5
×1

Now since there are  positions filled, we have

1 +2 = 

Recognizing that 2 = −1, we can re-write the 45
 rule triggers as

1 
4

5
× (−1) =⇒ 1 

4

9


or −1 
4

5
×1 =⇒ 1 

5

9

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The probability that the hiring results would not trigger the 45 rule (and
thus Federal agencies would conclude there is no adverse impact) is thus

given by

Pr{Conclude no adverse impact} = Pr{4
9
 ≤ 1 ≤ 5

9
}

where 1 follows the Binomial distribution deduced above.

So, let’s get specific. Suppose that in truth there is no discrimination

( = 1
2
), and that there are 10 positions to be filled (i.e.  = 10). Then the

EEOC would conclude there is no discrimination with probability given by

Pr{4
9
× 10 ≤ 1 ≤ 5

9
× 10}

= Pr{444 ≤ 1 ≤ 555}

= Pr{1 = 5} = 02461
Thus, with “false positive” probability 1−02461 = 07539, the EEOC would
conclude that there is adverse impact when in truth there is none!

Now, let’s suppose that the number of positions  gets large. Providing

that min( (1 − )) ≥ 5, we can employ a normal distribution approx-
imation to the Binomial as found in any introductory probability text. In

particular, in the case where there is no adverse impact in truth, that is,

when  = 12, then the mean  and variance 2 of the the approximating

normal are given by  = 2 and 2 = 4, and as a consequence we would
find that

Pr{1 
4

9
} ≈ Pr{ 

4
9
− 1

2
− 1

2p

4

} ≈ Pr{  −
√


9
}

where  is the standard normal random variable (mean 0, variance 1), and

assuming that  is big enough to ignore the continuity-correction (the 12
subtracted in the numerator). By the same reasoning, note that Pr{1 
5
9
} ≈ Pr{ 

√


9
} = Pr{  −

√


9
} (with the last equality due to the

symmetry of the normal distribution). Thus, the probability of concluding

discrimination when there is none is approximately equal to 2Pr{  −
√


9
}
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To compare to our earlier calculation, when  = 10, Pr{  −
√
10
9
} =

Pr{  −035} = 03632, and doubling this gives 07264 which is very close
to the “exact” answer given earlier.

How large does the number of jobs  have to be such that the probability

of erroneously concluding discrimination when there is none is no larger than,

say, 5%? Well, since Pr{  196} = 0025, set
√


9
= 196 which makes

2Pr{  −
√


9
} = 5%, and results in  ≥ 31117 or 312. It seems that even

for reasonably large values of , the EEOC rule can yield many false positive

results! The graph below reports the (approximate) probability of triggering

the 45 rule and concluding adverse impact when there is none.
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4/5 Rule:Pr{Adverse Impact | None}
So far we have focused on the false positive probability of concluding

adverse impact when there is none. Alternatively, one can compute the

probability of concluding no adverse impact when discrimination does exist

(i.e. when  6= 12). The exact calculation would follow from the bino-

mial distribution for 1 mentioned earlier, but we will again use the normal

approximation (skipping the continuity-correction term) to arrive at the ap-

proximation

Pr{Conclude No Adverse Impact | } = Pr{ (
4
9
− )
√
p

(1− )
≤  ≤ (5

9
− )
√
p

(1− )
}

A graph of this appears below for  = 10, 100 and 1,000. What does this

figure state about the probability of concluding there is no discrimination

when there actually might be some (that is, when  6= 12)?
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Pr{Conclude No Discrim | π }
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2.4.3 Restricting the Size of University Events due to

Covid-19

Yale’s COVID-19 public health committee was asked to consider restricting

the size of university events in response to the possible spread of SARS-

CoV-2 infection. The quickly agreed-to goal of restricting attendance was

that no new transmissions of infection should occur as a result of an event.

Now, there are two ways that no new infections would be transmitted at an

event in an already sterile environment: either no infected persons attend

the event, or some infected persons enter but all fail to transmit infection to

others. If  is the random number of infected persons entering an event

with  attendees in total (each of whom has probability  of being infected),

then

Pr{No Transmission} = Pr{ = 0}+Pr{  0 ∩ all  fail to transmit}
≥ Pr{ = 0} = (1− ) (2.1)

Framing the issue this way changed the focus of discussion from infection

control principles such as spacing between event attendees to the realization

that the best way to prevent transmission of infection is to ensure no infected

persons enter the event.
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Producing a recommended crowd limit required two additional inputs:

a comfortable lower bound for the probability that no transmission would

ensue (the Chair of Yale’s Epidemiology of Microbial Diseases department,

Prof. Albert Ko, suggested 99%; this became known as the Ko Kriterion),

and an estimate of , the prevalence of infection among event attendees.

Of course, with no COVID-19 cases yet reported in Connecticut, nobody

knew the value of . Still what really mattered was the largest value of 

against which Yale wished to defend. The public health committee believed

that the underlying prevalence of infection was very small and likely no larger

than 1 in 100,000 to 1 in 50,000. Given such small prevalence estimates,

one could safely approximate (1− ) ≈ 1− , and via the Ko Kriterion of

99%, the following very easily understood formulas took shape:

Pr{No Transmission} ≥ 1−  ≥ 099 (2.2)

and thus

 ≤ 001


(2.3)

Thinking of defending against a prevalence of infection versus estimating

the actual level, the public health committee felt comfortable choosing a

value of  that was five- to ten-times higher than a priori beliefs, thus 

was set to 1 in 10,000, and the university administration accepted our rec-

ommendation to restrict events to at most  = 100 attendees. The univer-
sity community was notified of this decision in an e-mail message on March

7, 2020 that was also posted to Yale’s COVID-19 communications website

(https://tinyurl.com/v7af7bd).

Fast forward to March 14, the date a Yale community member was first

diagnosed with COVID-19. By then 126 cases had been diagnosed in Con-

necticut, 40 of whom had been admitted to the hospital, but as yet no

COVID-19 deaths had been recorded. The public health committee advised

the university that given the rapid rise in cases over the previous two weeks,

reducing event sizes further was required at a minimum, while many felt

all group meetings should be abandoned. An argument to further restrict

events to 20 or fewer participants went like this: early evidence suggested

that SARS-CoV-2, the underlying infection responsible for COVID-19 dis-

ease, grew exponentially at a rate of 10% per day (Li et al, 2020). This rate

implies a quintupling of the underlying incidence of infection over a 16 day

period. Since we defended against a prevalence as large as 1 in 10,000 two
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short weeks ago, we should now defend against a prevalence as large as 5 in

10,000; setting  to 0.0005 in equation (2.3) led to a new maximum event

size of 20.

Even with such a simple model, some misinterpreted the result as meaning

that one event of 100 participants could be replaced by five events of size 20.

While the likelihood that no infected person enters a group of 20 is greater

than the same for a group of 100, one also must account for the factor-of-five

increase in the number of events. Mathematically,

Pr{No Transmission in 5 Groups of 20} ≥ £(1− )20
¤5
= (1− )100 (2.4)

so splitting the large event into smaller events does not help if one is only

considering whether any infected persons participate.

There was some worry that the rule proposed was too conservative; sup-

pose one knew the transmission probability  from an infected to an unin-

fected person given exposure. In an event with  people,  of whom are

infected, a more complete model for the probability that no infections are

transmitted is given by

Pr{No Transmission} =  [{(1− )−} ] (2.5)

=
X

=0

µ




¶
(1− )−{(1− )−}

assuming that both already infected persons and transmission from them

to others follow Bernoulli processes. While one estimate of  ≈ 1200
based on two infections among 445 home or hospital contacts of 10 pa-

tients who were infected outside of the United States was known (Burke

et al, 2020), the public health committee did not feel comfortable rely-

ing on this number to increase  by using equation (2.5). In the end it

did not matter, because on March 16, then President Trump issued a na-

tional guideline asking Americans to avoid gatherings of more than 10 peo-

ple (https://tinyurl.com/reg85wo), and the university immediately followed

suit.

2.4.4 Notes on the Two Suspect Scenario (after a pa-

per by Brian Netter)

Two suspects have been accused of a serious crime (e.g. murder). One is

guilty and one is innocent, but the prosecutor does not know which is which
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— from her point of view, there is a 50/50 chance that either is the guilty

party. The prosecutor also knows that juries make mistakes. Of import are

the error probabilities given by

 = Pr{Convict | Innocent}
 = Pr{Acquit | Guilty}

and note also that

1−  = Pr{Convict | Guilty}
There are three possible trial regimes under consideration:

Independent Trials

Under this regime, both suspects are tried, and all possible outcomes (dual

acquits, dual convictions, the correct result of convicting the guilty while

acquitting the innocent, and the worst-case result of convicting the innocent

and releasing the guilty) are allowed.

Judicial Estoppel

This regime says pick one of the suspects at random, try him, stop if a

conviction is reached, or if the decision is to acquit, then try the second

suspect. Dual convictions are not possible here as the process stops with

any conviction, but dual acquits, the correct result, and the worst-case are

all possible.

Offsetting Convictions

Under this regime, both suspects are tried. If anything other than dual

convictions results, the process halts after two trials and whatever outcome

resulted (dual acquit, the correct result, or the worst-case) stands. However,

if both suspects are found guilty, the process repeats until there are two trials

that do not both result in convictions.

Performance Measures

For each of these three regimes, we wish to compute the following perfor-

mance measures:
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 = Pr{Convict the innocent suspect}
 = Pr{Correct result} = Pr{Acquit innocent and convict guilty}

( ) = expected number of trials until resolution

Pr{ = } = probability distribution of  , the number of trials until resolution
The idea is to see which regime has the more desirable properties. Clearly we

would like  to be as low as possible (don’t want to convict the innocent),  to

be as large as possible (want justice to be served), ( ) to be small (would
like the shortest process possible), and Pr{ = } to favor (have higher
probabilities) for smaller versus larger values of , the number of trials.

Analyzing The Trial Regimes

Our appropriate sample space for each regime, figure out the formulas for

the performance measures for each, and then ask which regime has the best

properties. More formally, we seek the conditions under which some regimes

are better than others.

Analyzing Independent Trials

The sample space for this experiment is easy — just like tossing a red coin

and a blue coin with color-specific probabilities of gaining heads. We can

nicely summarize everything in a table (we could also use a tree like I did

in class, but to keep you on your toes — I mean, versatile — let’s use a table)

— the interior cells report the joint probabilities of the events in the header

row/column, while the marginal cells report the marginal probabilities.

Joint Probabilities: Independent Trials

Acquit | Innocent Convict | Innocent
Acquit | Guilty (1− )×  ×  

Convict | Guilty (1− )× (1− ) × (1− ) 1− 

1−   1

We can simply read the values of  and  right off this table. We see that

 = Pr{Convict Innocent} = ×  + × (1− ) =  (duhhhh.... we knew that already)

 = Pr{Correct Result} = (1− )× (1− )
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We also know that there will be exactly 2 trials under this regime — one for

each suspect — so we have immediately that ( ) = 2, and in fact  = 2
with probability 1 (i.e. Pr{ = 2} = 1;Pr{ = } = 0 for all  6= 2).

Analyzing Judicial Estoppel

Judicial estoppel is more complicated as the order matters (because the con-

viction probabilities differ by suspect). So, here we will revert to the proba-

bility tree used in class. The tree is shown below:

α Convict Innocent? Correct Result? # Trials?
Convict Innocent, Stop

Yes No 1
0.5

Try Innocent
1−β
Convict Guilty, Stop

1−α No Yes 2
Acquit Innocent, Continue

β
Acquit Guilty, Stop

No No 2

1−β
Convict Guilty, Stop

No Yes 1
0.5

Try Guilty
α
Convict Innocent, Stop

β Yes No 2
Acquit Guilty, Continue

1−α
Acquit Innocent, Stop

No No 2

We can just read the values of the performance measures off of the tree.

We have:

 = Pr{Convict Innocent} = 1

2
× +

1

2
×  ×  =

1

2
(1 + )

 = Pr{Correct Result} = 1

2
× (1− )× (1− ) +

1

2
× (1− ) =

1

2
(1− )(2− )

Pr{ = 1} = 1

2
× +

1

2
× (1− )

Pr{ = 2} = 1

2
× (1− ) +

1

2
× 

Pr{ = } = 0 for  6= 1 2
( ) = 1 +

1

2
× (1− ) +

1

2
× 
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Analyzing Offsetting Convictions

Here we will work with the tree version of the independent trials scenario,

but modified to take account of the possibility of offsetting convictions which

necessitate repeating the entire process. Note how we define , , and ( )
recursively via the tree — the outcomes at the end of the branches represent

conditional expectations given the results of the first two trials. Here’s the

tree:

1−β
Convict Guilty Pr{Convict Innocent | First 2 trials} Pr{Correct Result | First 2 trials} E(# trials | First 2 trials}

q r 2 + E(T)
α
Convict Innocent

β
Acquit Guilty

1 0 2

1−β
Convict Guilty

0 1 2
1−α
Acquit Innocent

β
Acquit Guilty

0 0 2

Let’s solve for , the probability of convicting the innocent. From the

tree above we see that

 = (1− )×  +  × 1 + (1− )(1− )× 0 + (1− )×  × 0
= (1− ) + 

Solving for  we obtain

(1− (1− )) = 

and hence

 =


1− (1− )
·

Similarly, you can find  from the tree:

 = (1− )×  + (1− )(1− )
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which leads to

(1− (1− )) = (1− )(1− )

and hence

 =
(1− )(1− )

1− (1− )
·

Finally, for ( ) we get

( ) = (1− )(2 + ( )) + (1− (1− ))× 2
= 2 + (1− )( )

which leads to

( )(1− (1− )) = 2

and hence

( ) =
2

1− (1− )
·

The probability distribution of  for the offsetting convictions regime

looks like a geometric, but each repetition of the process requires two real

trials. The “success” probability of reaching a conclusion on any pair of

trials is equal to 1− (1− ), which is just the probability of not obtaining
offsetting convictions. So, the probability distribution for the total number

of trials under the offsetting convictions regime is given by

Pr{ = } = [(1− )]2−1 × (1− (1− )) for  = 2 4 6 8 

Comparing Trial Regimes

Now we wish to compare the different trial regimes. Let’s start by comparing

the probability of convicting the innocent suspect, , for the various regimes.

We have:

1. Independent trials:  = 

2. Judicial estoppel:  = 1
2
(1 + ) ≤ 1

2
(1 + 1) =  (since  ≤ 1). This

means that with respect to , judicial estoppel is better than independent

trials.

3. Offsetting convictions:  = 

1−(1−) ≤  (follows from algebra —

note that  +  −  ≤ 1). This means that with respect to , offsetting

convictions always beats independent trials. But what about comparing
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offsetting convictions with judicial estoppel. With respect to , offsetting

trials is always better if



1− (1− )
≤ 1
2
(1 + )

It is a matter of algebra to show that this condition is true if 1 −  ≥
2 − 1. Note that if juries add value to the process, then it must be that
Pr{Convict | Guilty}  Pr{Convict | Innocent}, that is, 1 −    If this

condition is true, then offsetting convictions beats judicial estoppel. In

words, for any reasonable jury, the chance of convicting the innocent is less

for offsetting convictions than for judicial estoppel (which in turn does better

than independent trials).

Similar analysis yields results with respect to , the probability of getting

the correct result. Recall that:

1. Independent trials:  = (1− )× (1− ) 

2. Judicial estoppel:  = 1
2
(1−)(2−) ≥ 1

2
(1−)(2− 2) = (1− )×

(1− ), so judicial estoppel beats independent trials in terms of getting the
correct result too.

3. Offsetting convictions:  = (1−)(1−)
1−(1−) · Algebra shows that (1−)(1−)1−(1−) ≥

1
2
(1 − )(2 − ) if 1 −  ≥ 1

2− · So sometimes offsetting convictions clearly
wins, and sometimes it doesn’t.

These results are summarized in the graph below which plots 1− versus
. There are combinations of the conviction probabilities for which offset-

ting convictions unambiguously dominates judicial estoppel, combinations

for which offsetting convictions has a lower chance of convicting the innocent

but also a lower chance of getting the correct result, and (unlikely) combina-

tions where judicial estoppel is unambiguously the best — considering only 

and .
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What about ( )? Ah — here we see that judicial estoppel wins — it

is the only approach that could end in only one trial, and requires at most

two. Independent trials require exactly two trials, while offsetting convictions

require at least two trials. If you care more about the cost of trials than the

fairness of the outcomes, judicial estoppel is your best bet. But while trials

are costly, I think we would all agree that the cost pales to that of sentencing

the innocent in a serious crime.

2.4.5 Buying a Car in Rookesville

You are a staffer at the US Embassy in Rookesville, a small city-state with

exactly one car dealership. You have been asked to purchase a new car for

the embassy. All cars at the dealership look the same (“sandy”), and each

costs $8,000 (Rookesville dollars). However, 70% of these cars are “lemons”.

Lemons each require an additional expenditure of $2,000 in maintenance fees

within a short time period after purchase. The other 30% of the cars are

“peaches.” Peaches require no further expenditures, as they offer trouble

free motoring for life. The dealership maintains an infinite supply of cars

(low inventory costs apparently).
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(a) Suppose you randomly select a car and buy it. What are your ex-

pected total costs (including purchase and maintenance fees if any)?

Well, with probability .3 you pick a peach and pay $8,000, while with

probability .7 you pick a lemon, pay the $8,000 for the car but also pay

$2,000 in maintenance costs. So, your expected costs from picking a car at

random are

(cost) = 3× $8 000 + 7× ($8 000 + $2 000) = $9 400
Now wasn’t that easy?

(b) You have the option to hire a perfect evaluator. The evaluator, for

the fee of $400 per car inspected, will declare “this car is a peach” or “this
car is a lemon” (depending, of course, on the true nature of the car - the

evaluator is perfect after all). If the evaluator says that a car is a lemon, you

cough up another $400 and choose another car for the evaluator to consider.
You continue in this fashion until the evaluator declares “this car is a peach.”

Would you hire the evaluator? Explain.

Well let’s see. The evaluator will tell you if you have picked a lemon,

so you will keep inspecting cars until the evaluator tells you that you have

picked a peach. Since 30% of the cars are peaches, the number of cars you

will inspect up to and including the one you purchase is the same as the

number of times you toss a coin until you get heads for the first time when

there is a 30% chance of getting a head! So, recognizing that the probability

distribution of the number of cars inspected until purchase is geometric with

success probability .3, the expected number of cars inspected just equals 1/.3

or 3.3333... Your total purchase price using the evaluator would then equal

$8,000 (the price of buying a peach) plus 3.3333 ×$400 (since you pay $400
each time your evaluator checks out a car). The expected total cost of doing

this is thus

33333× $400 + $8 000 = $9 33333
Now, if you don’t use the evaluator, your expected costs from (a) above equal

$9,400, which is higher than $9,333.33. So, you actually would save a little

(on average) by using the evaluator.

Here’s another way to see this. Let  be the total costs from using the

evaluator and consider the first car. Either the car is a peach (with prob-

ability .3, in which case you pay the evaluator $400 and the dealer $8,000
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and you’re done), or the car is a lemon (with probability .7, in which case

you pay the evaluator $400 and, looking into the future, you expect to pay

another, well,  dollars — since the future looks exactly the same). So you

end up with the equation

 = 3× ($8 000 + $400) + 7× ($400 + )

which solves to yield

× (1− 7) = 3× $8 400 + 7× $400 = $2 800

or

 =
$2 800

1− 7
=
$2 800

3
= $933333

as before.

Using this same logic, suppose that the evaluator charged  dollars per

evaluation instead of $400. Simply substituting  for $400 in the approach
above yields the equation (after simplifying)

 =
10

3
× $+ $8 000

Comparing this to $9,400 (your expected purchase price if you select a car

at random), you see that you can do better with the evaluator as long as

her fee of $  $420 In the problem I gave you,  = 400 so you should hire
the evaluator, but the little calculation above shows that you could go up to

$420 and still be better off with the evaluator than going it alone.

(c) You learn that there is a cheaper evaluator available who charges only

$310 per car inspected. However, this evaluator is imperfect: 90% of all cars
declared to be peaches are actually peaches, while 90% of all cars declared

to be lemons are actually lemons. You will still behave in accord with the

judgement of the evaluator (so if you hire this wire, you behave as in part

(b)). First, having examined a randomly chosen car, what is the probability

that the (imperfect) evaluator declares “This car is a lemon?” (Incidentally,

how does this compare to the probability that the perfect evaluator of part

(a) declares that a randomly inspected car is a lemon?)

Hmmmm - well, we know that the probability the evaluator inspects a

lemon equals .7 (for you choose the car, and the cars are indistinguishable).
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We also know that the probability the car is a lemon given that the evaluator

says the car is a lemon equals .9. Come to think of it, we know that the

probability the car is a lemon, given that evaluator says a  has been

inspected, equals .1 (for given that the evaluator says “peach” there is a .9

chance that the car is a peach and hence a .1 chance that the car is a lemon).

So, let  be the probability that the evaluator says lemon (and 1−  be the

probability the evaluator says peach). Consistency requires that

× 9 + (1− )× 1 = 7

(since 70% of the cars are really lemons), and thus  = 34 So, this evaluator
will state that cars are lemons 75% of the time, though we know that in

fact only 70% of all cars are lemons! And of course, the perfect evaluator

from part (b) would declare that a randomly inspected car is a lemon with

probability 0.7.

(d) Would you hire the imperfect evaluator (as compared to taking your

chances alone)? Explain.

Well, again let’s recognize that you keep looking at cars until the evaluator

says peach! Since there is a 25% chance that the evaluator will say a car

is a peach, we can expect to look at 4 cars. So our total expected costs

will be the sum of the purchase price ($8,000), the expected evaluator fees

(4×$310 = $1 240), and the expected maintenance fees (1×$2 000 = $200,
since when the evaluator tells us we have a peach, there is a 10% chance she

has made a mistake and we end up with a lemon). Adding everything up we

get

$8 000 + $1 240 + $200 = $9 440

which is greater than $9,400, so would be making a mistake to choose this

evaluator, even though her fee is less. More generally, if this evaluator charged

$, your total cost from using her would equal

$8 200 + $4

and comparing to $9,400, it would only make sense to hire her if   $300
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2.4.6 Condom Failures (circa 1998)

The Food and Drug Administration tested condoms by submitting them to

federal water-leakage standards in the lab. If  than 4 condoms out of

1000 were found defective, the batch from which the 1000 condoms were

drawn is rejected. 12% of all batches tested in this manner were rejected.

What then is the probability that a randomly selected condom would be

found defective?

If condoms fail with probability , and if  is the number of condoms

that fail from a batch of size 1000, then  has a binomial distribution with

 = 1000 and success probability  (here success means condom failure).

Now, a batch fails if more than 4 condoms fail in the 1000 tested. Thus,

Pr{Batch Fails} = Pr{  4} = 1−Pr{ ≤ 4} = 1−
4X

=0

µ
1000



¶
(1−)1000−

We also know that the probability that a batch fails is given by 12%. Thus,

one needs to find a value of  such that the expression above equals 12%;

this is equivalent to solving

4X
=0

µ
1000



¶
(1− )1000− = 88

for . Doing so (for example, in Excel) yields  = 000258.

2.4.7 To Catch A Thief

That notorious crook, The Joker, is at it again, but this time the police have

been tipped off. Rather than run around town looking for him, the police

have stationed undercover agents at 10% of the intersections downtown. If

The Joker passes through an intersection where there is an undercover agent,

he will be caught. Now, The Joker magically arrives at a random intersection

downtown. If he is not caught (that is, if he doesn’t show up at an intersection

with an undercover agent), he strolls down one of the streets. Each street

has 10 shops. The Joker will target each shop he passes with probability

1/3, and once a shop is targeted, there is no hope — The Joker is very good.

However, if The Joker reaches the end of a block without having targeted any

shops, he randomly picks a new direction to walk in. Note that there is an



2.4 EXAMPLES 65

intersection at the end of the block too! And, for purposes of this problem,

you may assume that for all practical purposes, there are an infinite number

of intersections downtown.

(a) What is the probability that The Joker is caught at the first intersec-

tion visited?

There are agents at 10% of the intersections, so there is a 10% chance

The Joker is caught at the first intersection visited.

(b) Suppose The Joker is not caught at this first intersection. What is

the probability that he targets at least one of the ten shops on the first street

he visits?

There is a 1/3 chance of targeting any shop. There are ten shops, so

the chance he targets at least one of them is just 1 minus the chance he

targets none of them. The chance he targets none of the 10 shops equals

(23)10 = 00173, so the chance he hits one of them equals 1 − 0173 =
0982 7.

(c) What is the probability that The Joker is caught before he pilfers a

shop?

Here is the easy way to do this. First, suppose The Joker is just get-

ting started. Either he is caught right away in the first intersection (with

probability 10%), or with probability 9× 9827, he is not caught at the first
intersection and he pilfers a shop on the block, or with probability 9×00173,
he is not caught at the first intersection and he does not target a shop on

the block, in which case the entire situation repeats starting with a new in-

tersection. So, the process ends on a given block if The Joker is caught at

the initial intersection (with probability .1), of if he is not caught and targets

a shop on the block (with probability 9 × 9827). Given that the process
ends on a particular block, the conditional probability that the process ends

because The Joker was caught just equals 1(1 + 9× 9827) = 0101 6

You could also use the repetition method: let  be the chance that The

Joker is caught before pilfering a store. With probability .1, The Joker is

caught at the first intersection. With probability 9× 9827, The Joker pilfers
a store on the first block visited. With probability 9 × 00173, the process
repeats. This leads to the following equation for :

 = 1× 1 + 9× 9827× 0 + 9× 0173× 
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which leads to the result

 =
1

1− 9× 0173
= 01016

as before.

Now, here is a different version of this same question: change “The Joker”

to “suicide bomber” and change “undercover agent” to “suicide bomber de-

tector” (i.e. a sensor that could detect explosives by seeing through clothes,

or an undercover intelligence agent, etc.). Same problem holds — here is a

picture to show you the geometry of what’s going on:

See the PNAS article “Operational effectiveness of suicide-bomber-detector

schemes” in your coursepack for a more elaborate analysis of the suicide

bomber detection problem.

2.4.8 Cyber SCADAddle!

The power grid in the United States is controlled through a large number of

decentralized Supervisory Control And Data Acquisition (or SCADA) sys-

tems that we will refer to as SCADAs for short. SCADAs are extremely
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vulnerable to cyberterrorism attacks. Furthermore, due to the intercon-

nected nature of the power grid, an attack on a single SCADA can have

devastating consequences for the rest of the grid.

Suppose that SCADAs are aligned in series so that each SCADA (repre-

sented as a ♦) is linked to two other SCADAs, one to the "left" and one to
the "right" as shown below:

––––—♦––––♦––––♦––––—♦–––––
For our purposes, the number of SCADAs is sufficiently large to be considered

infinite.

Initially, all SCADAs are vulnerable to a cyber attack with a computer

virus, that is, they are uninfected. If a terrorist attacks a single SCADA

using a computer virus, the attack is successful with probability . Given a

successful initial attack, the virus spreads from infected SCADAs to "next

door" neighboring uninfected SCADAs with probability  in mutually in-

dependent fashion . For example, suppose that the second SCADA in the

figure above is attacked. It is successfully infected with probability . If the

attack infects the second SCADA, then the first SCADA becomes infected

with probability , as does the third SCADA; owing to independence, both

the first and third SCADA become infected with probability 2, while the

probability that the first SCADA escapes infection and the third becomes

infected equals (1 − ). If the third SCADA becomes infected, it would

infect the fourth with probability , and so on ad infinitum.

(a) We start with a completely vulnerable system with an infinite number

of uninfected SCADAs as described above. A terrorist attacks a single

SCADA. What is the probability that at least two SCADAs are infected as

a result of this attack?

As is so often the case in probability, it is easiest to work with comple-

mentary events. So, rather than figuring out the chance that at least two

SCADAs are infected directly, we write

Pr{At least two SCADAs infected} = 1− Pr{no SCADAs infected}
−Pr{exactly 1 SCADA infected}

Now, for no SCADAs to be infected, the initial terror attack must fail, and

as the initial attack succeeds with probability , we immediately have

Pr{no SCADA infected} = 1− 
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As for exactly one SCADA getting infected, there is only one way that this

can happen: the initial attack succeeds, but the cybervirus fails to spread in

either direction. Given a successful initial attack, additional infections to

neighboring SCADAs take place independently of each other, and each such

viral infection occurs with probability , which means that the conditional

probability that the virus fails to spread given a successful initial attack

equals (1− )2. Unconditioning we see that

Pr{exactly 1 SCADA infected} = (1− )2

Thus,

Pr{At least two SCADAs infected} = 1− (1− )− (1− )2

= (1− (1− )2)

which shows how you could have derived this result directly: for at least

two SCADAs to get infected, there must be a successful terror attack (with

probability ) and at least one of the neighboring SCADAs must be infected

cybervirally (with conditional probability 1− (1− )2).

(b) We start with a completely vulnerable system with an infinite number

of uninfected SCADAs as described above. A terrorist attacks a single

SCADA. What is the expected total number of SCADAs infected?

Let’s see. Suppose the SCADA attacked gets infected. Then the virus

can spread both to the “right” and to the “left.” Define  as the conditional

expected total number of additional SCADAs infected moving to the “left,”

given that the initial SCADA attacked gets infected (and let  denote the

same but for cyberspread to the “right”). Let’s apply the repetition method

to compute . With probability 1 − , we have no additional infections,

while with probability , we get 1 +  additional infections in expectation.

Thus, we have

 = (1− )× 0 +  × (1 + )

which solves to yield

 =


1− 
·

This works because there are an infinite number of SCADAs, and the infec-

tion probability is constant at . In addition, symmetry tells that infection
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to the “right” works exactly the same as infection to the “left” so it is also

the case that

 =


1− 
·

Now, these are conditional expectations given that the SCADA attacked gets

infected. Of course, the chance that the initial SCADA is infected equals ,

and if the attack is successful, then we have an infected SCADA! Putting

all this together, we obtain

(total number of SCADAs infected) = (1 +  + )

= (1 +
2

1− 
)

= 
1 + 

1− 
·

(c) Now we will slightly modify the situation to a one-sided infinite

SCADA network: suppose there is a "head-of-the-line" SCADA (henceforth

the HOL) which then feeds into successive SCADAs in linear fashion. The

HOL only connects to a single neighbor, after which all successive SCADAs

have two neighbors as before. Suppose that a terrorist has successfully

infected the HOL (all other SCADAs are vulnerable), but that now, the

spread of the virus takes time. Specifically, suppose that starting from time

zero when the HOL is infected, in any time period  there is a probability

 that the furthest "downstream" infected SCADA (as of time ) will infect

its immediate uninfected neighbor in the next time period, and probability

1−  that the situation remains as is and repeats in the next time period.

(i) What is the probability that at the end of the first 5 time periods
following infection of the HOL, exactly 3 additional SCADAs have become
infected?

This is easier than it looks: since there is always a probability  of infect-

ing a SCADA in any time period (since if the cybervirus does not transmit

in a given time period, the situation stays as is and repeats in the next time

period, and there is an infinite number of SCADAs), this problem is exactly

the same as flipping a coin 5 times and asking for the chance of getting ex-

actly 3 heads when the chance of getting a head equals . This of course is
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found from the binomial distribution, and the answer is

Pr{infect 3 SCADAs in 5 time periods} =
µ
5

3

¶
3(1− )5−3

=
5!

3!2!
3(1− )2

= 103(1− )2

(ii) What is the probability that exactly 5 time periods following
infection of the HOL are required to infect exactly 3 additional SCADAs?

This is a bit trickier, but still requires application of Bernoulli process

reasoning. Exactly 5 time periods are required to infect exactly 3 SCADAs

if the 3 SCADA is infected in the 5 time period. If the 3 SCADA

was infected in the 4 time period, then it would not be true that exactly

5 time periods are required to infect 3 SCADAs, right? So, the problem

reduces to finding the probability that the 3 SCADA is infected in the 5

time period. For this to happen, it must be that after the 4 time period,

exactly 2 SCADAs have been infected, and then the 3 SCADA gets infected

in the 5 time period. As in part (c-i), we have

Pr{infect 2 SCADAs in 4 time periods} =
µ
4

2

¶
2(1− )4−2

= 62(1− )2

And, given that 2 SCADAs have been infected in the first 4 time periods,

the chance of infecting the 3 SCADA in the 5 time period is the same as

the chance of infecting any SCADA in any time period, namely . So, the

solution is

Pr{3 SCADA infected in the 5 time period} = 62(1− )2 × 

= 63(1− )2

Note that this is smaller than your answer in part (c-i), as it should be: part

(c-i) asked for the chance of infecting 3 SCADAs in 5 time periods, while

part (c-ii) asked for the chance that the 3 SCADA is infected in the 5

time period, which is only one way that 3 SCADAs could be infected in 5

time periods (so the event in part (c-ii) is included in the event in part (c-i)).
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2.4.9 One More River To Cross...

In a given year, 100 people try to cross the border illegally. The probability

that an individual attempting to cross is apprehended is 30%. An appre-

hended individual is returned to the original (foreign) side of the border,

where (s)he tries again to cross, again facing a 30% probability of being ap-

prehended. Individuals continue to attempt to cross the border until they

successfully make it across.

(a) On average, how many attempts must a random crosser make before

crossing the border?

This is a Bernoulli process with success probability 0.7, which means that

the number of attempts to cross will follow a geometric distribution, just like

the nation of shoplifters. If  is the probability of being apprehended, then

1−  is the probability of crossing successfully, and the expected number of

attempts required to cross successfully equals 1(1− ). Specializing to the
case of  = 03, we have

(number of attempts) =
1

(1− 03) =
1

07
= 1429

(b) What is the chance that a random crosser will need more than 3 tries

to get across?

It will take more than three tries to cross only if the random crosser is

caught on each of the first three times. If  is the apprehension proba-

bility, then the chance of being caught three times in a row is just 3, and

specializing to the case of  = 03, we have

Pr{number of attempts  3} = 033 = 0027

(c) The Border Patrol is planning to hire 10 new agents. This would

increase the probability of apprehension per crossing attempt to 40%. On

average, how many more arrests would result from hiring the new agents?

Is this an effective strategy to reduce the flow of undocumented immigrants?

It is easy to see that

(number of apprehensions) = number of crossers

×(number of attempts)
×probability of apprehension per attempt
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Since the expected number of attempts per crosser when the probability of

apprehension is  equals 1(1− ), and there are 100 crossers, this simplifies
to

(number of apprehensions) = 100× 1

1− 
× 

so substituting for the relevant apprehension probabilities and subtracting,

we get the increase in the expected number of apprehensions which is

(increase in arrests) = 100× 1

1− 04 × 04− 100×
1

1− 03 × 03 = 2381

You could equivalently note that since the expected number of attempts until

a successful crossing equals 1(1 − ) when the probability of apprehension
equals , the expected number of arrests is one less than the expected number

of attempts (since the last attempt is a successful crossing), that is,

(number of apprehensions) = 100× ( 1

1− 
− 1)

Substituting and subtracting yields

(increase in arrests) = 100×
µ

1

1− 04 − 1
¶
− 100×

µ
1

1− 03 − 1
¶

= 100×
µ
1

06
− 1

07

¶
= 2381

This is of course not a successful strategy to reduce the flow of undocumented

immigrants, because while there are more arrests, all 100 crossers still make

it through. All increasing the number of border agents does is increase the

number of attempts to cross without decreasing the number of successful

crossers. Amore successful policy would serve to deter entrants from crossing.

Of course, that agents do not deter crossers is an assumption of the model

in this problem, and it’s a pretty questionable assumption. More realistic

alternatives were discussed in class.

2.4.10 How Many Border Crossers Are There?

Fazel-Zarandi, Feinstein and Kaplan (2018) estimated the annual number of

undocumented immigrants crossing the southern border using a Bernoulli
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model that relied on only three pieces of data: the observed number of at-

tempted border crossings that were apprehended (call this , a statistic re-

ported by the Department of Homeland Security), of these  apprehensions

the number that involved the same person at least two times (call this +

and note that −+ accounts for the number of different individual border

crossers who were apprehended; this is also reported by the Department of

Homeland Security), and the fraction of apprehended border crossers who

were deterred from further border crossing attempts (call this ; this was

estimated based on Mexican border guard interviews of undocumented im-

migrants apprehended at the border and returned to Mexico). How did they

do this?

First, define  as the number of undocumented persons trying to cross the

border in a given year, and  as the probability that any person attempting

to cross the border is ultimately successful. Then the expected number of

successful border crossers just equals × . So, if one knows  and , one can

estimate the number of border crossers.

To model , define  as the probability that any given border crossing

attempt results in the apprehension of that border crosser. There are then

three possible outcomes to any single border crossing attempt:

*the person is not apprehended and successfully crosses the border,

which occurs with probability 1− 

*the person is apprehended and deterred from future border crossing

attempts, which occurs with probability × 

*the person is apprehended but not deterred and thus attempts an-

other border crossing in the future; this occurs with probability × (1− )
Note that the deterrence probability  is conditional upon a border crosser

being apprehended.

Now ask for the conditional probability that a given individual eventually

crosses the border given each of the three outcomes above. In the first case

where there is no apprehension, the conditional probability of eventually

crossing the border is 100%! In the second case where the individual is

apprehended and deterred, the conditional probability of eventually crossing

the border is equal to 0. In the third case where the person is apprehended

but not deterred, the probability of ultimately succeeding in crossing the

border is equal to  by definition. We conclude that

 = (1− )× 1 + × × 0 + × (1− )× 
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and solving for  gives

 =
1− 

1− × (1− )

as a model for the probability that any border crosser ultimately succeeds.

Unfortunately we don’t know what  is, we only know , + and . We

seem to have only replaced one unknown parameter () with another ().

But we’re not done yet! Suppose we knew , the number of persons trying to

cross the border (we don’t...yet). Then it must be that the average number

of apprehensions across all individual border crossers, call this , is defined

by

 =



·

Is there a way to estimate  from the Bernoulli border crossing process?

Consider the same three outcomes of a single border crossing attempt we

utilized earlier in modeling , and ask for the conditional expected number

of apprehensions over all time for a single individual given each of these three

outcomes. In the first case where there is no apprehension, the conditional

expected number of apprehensions is zero! In the second case where the

individual is apprehended and deterred, there is exactly one apprehension

due to deterrence. In the third case where the person is apprehended but

not deterred, there is one apprehension corresponding to this first crossing

attempt, plus by definition an additional  apprehensions resulting from all

future border crossing attempts! Applying the repetition method then yields

the equation

 = (1− )× 0 + × × 1 + × (1− )× (1 + )

which solves to yield

 =


1− × (1− )
·

This is a very helpful result as it pins down a model for the population of

border crossers , namely

 =



=




1−×(1−)
·

Combining with our model for the probability that any individual border

crosser eventually makes it across the border (), the expected number of
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successful border crossers is given by

 =



1−×(1−)
× 1− 

1− × (1− )
= × 1− 


·

It looks like we are getting somewhere since we do know the reported

value of . We still don’t know the apprehension probability . But we

do know the number of “recidivist” apprehensions +, which means we also

know the number of first-time apprehensions  − +. And, since there

are a total of  persons trying to cross the border, the expected number of

first-time apprehensions must equal ×  since by the Bernoulli model, any

border crossing attempt is apprehended with probability . This leads to an

identifying equation for the apprehension probability  by solving

 =
−+



=
−+




1−×(1−)

which leads to

 =
+

1− 
·

This closes the loop: , + and  determine ; ,  and  determine ;

and  and  determine . The estimated number of undocumented border

crossers in a year is thus given by

(Number of Border Crossers) = × 

= × 1− 



= × 1−
+

1−
+

1−

=


+
× ¡−−+

¢


2.4.11 MPOX: Major or Minor?

Starting in the late spring of 2022, the United States experienced an outbreak

of MPOX (formerly monkeypox) virus. The graph below shows the daily
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reported cases of monkeypox from May 17 through September 28 of 2022.

The weekly cyclicity in these data is clearly a reporting artifact; the 7 day

moving average is thus more suggestive of the true shape of the outbreak.

(a) The reproductive number  for monkeypox was estimated in

https://www.medrxiv.org/content/10.1101/2022.07.26.22278042v1 as equal

to 1.29 (with a 95% confidence interval running from 1.26 to 1.33). Assume

that  = 129, and that the number of infections transmitted per newly
infected man in the monkeypox outbreak, , followed the shifted geometric

distribution given by

Pr{ = } = (1− ) for  = 0 1 2 

where  = 1( + 1). According to this model, what is the probability 

that the resulting pattern of infections would constitute a minor outbreak?

As discussed in class, the probability of a minor outbreak  is given by

the solution to the equation

 = () =
∞X
=0

Pr{ = } × 

When  follows the shifted geometric, the parameters  and  are related

as  = 1(+1), and consequently () simplifies to 1(1+−), which
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admits two solutions to  = ():

 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if  ≤ 1

1 if   1

Since we are told that  = 129, we see that  = 1129 = 078.

2.4.12 Time to Detect a Bioterror Attack

This problem provides a model of the time required to detect a bioterror

attack from symptomatic victims. Suppose that at time 0, a covert (i.e. un-

detected) attack occurs that infects  people with a noncontagious agent such

as anthrax. Suppose also that the incubation time from infection through

symptoms associated with this agent can be well-approximated by a geo-

metric distribution with mean 1 days. So, if  is the incubation time,

then

Pr{ = } = (1− )−1 for  = 1 2 3 

All persons infected in the attack progress to symptoms independently of

each other in accord with the incubation distribution above. Finally, as-

sume (optimistically) that the attack is detected when the first symptomatic

patient(s) are observed.

To make the problemmore concrete, suppose that  = 110 (so on average
it takes 10 days to progress from infection to symptoms), and also that  =
10 persons are infected in the initial attack. So, for each of the 10 persons

infected in the attack, the probability that a person develops symptoms after

1 day equals 1/10, the probability that it takes 2 days to develop symptoms

equals 910 × 110 = 9100, and in general the probability that it takes 
days to develop symptoms equals (910)−1×110. Remember, the attack is
with a noncontagious agent, so the 10 persons initially infected in the attack

will not transmit infection to anyone else.

(a) What is the probability that an individual infected at time 0 requires

more than  days to progress to symptoms?

I’ll provide answers in general terms using  and  instead of  = 110 and
 = 10; the specific results can then be found by just plugging in for  and .
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For an individual to require more than  days to progress to symptoms, the

individual must fail to progress on each of the first  days after the attack,

and given that such failure occurs with probability 1 −  on each day (

follows a geometric distribution, so right away we know we are dealing with

a Bernoulli process model), independently of whatever happened on prior

days, the answer is simply given by (1− ) = (910).

(b)What is the probability that all of the 10 persons infected in the attack
require more that  days to progress to symptoms? What is the probability

that the time required to detect the attack exceeds  days? Assume that the

time required for any one person to progress to symptoms is independent of

the time required for any other person to progress to symptoms.

Assuming that the time required for any one person to progress to symp-

toms is independent of the time required for any other person to progress to

symptoms, the chance that all  people infected in the attack require more

than  days to progress to symptoms equals [(1− )]

= (1−) = (910)10

And, since the attack will be detected when the first person(s) progress to

symptoms, the probability that the time to detect the attack exceeds  days is

equal to the time that everyone infected requires more than  days to progress

to symptoms — which we just showed is equal to (1− ) = (910)10

(c) What is the probability that the first person(s) to progress to symp-

toms do so on day  after the attack? What is the probability that the attack

is detected  days following the attack?

Again, note that both questions are the same question! Now, for the

attack to be detected on day , it must be that the time to detect the attack

exceeds − 1 days, and given this that the attack is detected on day . From
part (b) we know that the probability that the time to detect the attack

exceeds −1 days is equal to (1−)(−1) = (910)10(−1) Now, given that the
attack has not yet been detected, the probability that the attack is detected

on the next day is equal to the probability that at least one person infected in

the attack develops symptoms on that day. But since we are dealing with a

Bernoulli process, this probability simply equals 1−(1−) = 1−(910)10 =
06513 Why? Because if  is the probability that any one person progresses
to symptoms on a given day, then (1−) is the probability such a person does
not progress; (1− ) is the probability that none of the  infected persons
progress; and hence 1 − (1 − ) is the probability that at least one person
progresses, resulting in the detection of the attack. Combining results, we
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have that the probability that the attack is detected on day  after the attack

is given by

Pr{Detect attack on day } = (1− )(−1)[1− (1− )]

= (910)10(−1)[1− (910)10] for  = 1 2 3 

(d) What is the expected time from the attack until the first person(s)

are observed to progress to symptoms; that is, what is the expected time

required to detect that an attack has occurred?

Look carefully at the formula for the probability distribution of the time

required to detect the attack from part (c). Define  as the daily probability

of detecting the attack, conditional on it not having yet been detected, and

note that

 = 1− (1− ) = 1− (910)10 = 06513
Note also that 1−  = (1− ) = (910)10 = 03487, and thus

(1− )(−1) = [(1− )]−1 = (1− )−1 = (03487)−1

In terms of , the probability distribution of the time to detect the attack is

given by

Pr{Detect attack on day } = (1− )−1 × 

= (03487)−1 × 06513 for  = 1 2 3 

This is also a geometric distribution, but with success probability  = 06513
instead of  = 110. So, the expected time to detect the attack immediately
follows from the geometric as

[Time to detect attack] =
1


=

1

1− (1− )
=

1

06513
= 154 days.





Chapter 3

Hazard Function Models

The Bernoulli process provides a simple model for duration problems where

the random variable  describes the time (or number of Bernoulli trials) re-

quired until an event-of-interest occurs. The resulting Geometric distribution

for  is particularly easy to work with, but it does rely on the fundamental

Bernoulli assumption that the event-of-interest has a constant probability of

occurring on any given trial. In this section we relax that assumption by

allowing the conditional probability of a process-ending event occurring to

depend upon the age (or number of elapsed trials) of the process.

3.1 Discrete Hazard Functions

Recall the Bernoulli Nation of Shoplifters. As before, offenders will continue

to recidivate and commit crimes until they quit. However, instead of pre-

suming that an offender retires from crime with probability 1−  after any

offense, we now assume that the offender quits with conditional probability

() following the  offense (given that the offender has already commit-
ted − 1 crimes). For reasons to be explained later, we refer to () as the
hazard function. Letting  denote the number of crimes in (equivalently the

duration of) a criminal career, we see that

Pr{ = 1} = (1)

since (1) by definition is the probability of quitting after the first offense.
Continuing, the probability that exactly two crimes are committed in a career

equals

Pr{ = 2} = (2)× (1− (1))

81
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since in order to quit after the second crime, the offender first has to commit

a first crime and not quit (this happens with probability 1−(1)), and given
this the offender quits after the second crime (with conditional probability

(2)). Generalizing, we see that the probability a criminal career consists of
exactly  crimes, Pr{ = }, is given by

Pr{ = } = ()×
−1Y
=1

(1− ()),  = 1 2 3 

This expression can be easily understood as

Pr{ = } = ()× Pr{ ≥ },  = 1 2 3 
where

Pr{ ≥ } =
−1Y
=1

(1− ()),  = 1 2 3 

is the probability that the offender commits at least  crimes, for given that

 ≥ , by definition the probability an offender retires following the  offense

equals ().
The discussion above has shown how to determine the probability dis-

tribution of  , the duration of the process, given the hazard function (),
 = 1 2 3 . However, equation () shows how to go in the other direction
and determine the hazard function from the probability distribution of  :

() =
Pr{ = }
Pr{ ≥ } ,  = 1 2 3 

Suppose that () = , a constant that does not depend upon . Substituting

into equation () recovers the Geometric distribution

Pr{ = } = ×
−1Y
=1

(1− ) = × (1− )−1,  = 1 2 3 

Alternatively, computing () from the Geometric distribution yields

() =
Pr{ = }
Pr{ ≥ } =

× (1− )−1

(1− )−1
= ,  = 1 2 3 

which shows that the Geometric distribution has a constant hazard function.
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The hazard function () gets its name from reliability theory where the

random variable  is the time until some system fails. As failures are typically

due to some hazard — temperature, pressure, mechanical wear and tear for

examples — the conditional failure probability became known as the hazard

function. The term failure rate is also used to describe hazard functions,

while in actuarial science, demography and epidemiology, the term force of

mortality is used to define the conditional probability of dying given survival

to a given age, which of course is also a hazard function.

Finding the expected value or variance of a random duration with an ar-

bitrary hazard function does not admit simpler formulas than those generally

used to define the expected value and variance of a random variable, that is:

( ) =
∞X
=1

× Pr{ = }

=
∞X
=1

× ()×
−1Y
=1

(1− ())

and

 ( ) =
∞X
=1

(−( ))2 × Pr{ = }

=
∞X
=1

(−( ))2 × ()×
−1Y
=1

(1− ())

though of course one can always use the identity

 ( ) = ( 2)− [( )]2

where

( 2) =
∞X
=1

2 × Pr{ = } =
∞X
=1

2 × ()×
−1Y
=1

(1− ())

Here are some examples.
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3.2 Example

3.2.1 A Drinking Game

Friends at a party decide to play a drinking game, in which a contestant

consumes one alcoholic beverage after another until they can drink no more.

Suppose that  denotes the number of drinks a randomly selected friend

will consume before stopping. Suppose further that the hazard function ()
for this game, which describes the conditional probability of stopping after

consuming  drinks, is given by the formula

() =
1

11− 
,  = 1 2 3  10

What is the probability distribution of  , and what is the expected number

of drinks per (randomly selected) friend playing this game?

First, note that

Pr{ = 1} = (1) =
1

11− 1 =
1

10

so there is a 10% chance that a given player quits following one drink. How

about quitting after two drinks? Well,

Pr{ = 2} = (2)× (1− (1)) =
1

11− 2 × (1−
1

10
)

=
1

9
× 9

10
=
1

10
(!)

This is interesting — the chance a player quits after a second drink also equals

10%. And after a third,

Pr{ = 3} = (3)× (1− (1))× (1− (2)) =
1

11− 3 × (1−
1

10
)× (1− 1

9
)

=
1

8
× 9

10
× 8
9
=
1

10
(!!)

Let’s skip ahead to stopping after a tenth drink — here we see that (10) =
1(11−10) = 1 so the conditional probability of stopping after a tenth drink
is 100%. But unconditionally, the probability a a player has 10 drinks before
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stopping is given by

Pr{ = 10} = (10)×
10−1Y
=1

(1− ()) = 1× (1− 1

10
)× (1− 1

9
)× (1− 1

9
)× (1− 1

2
)

= 1× 9

10
× 8
9
× × 1

2
=
1

10
(!!!)

Indeed, what we have just discovered is that Pr{ = } = 110 for  =
1 2 3  10 (and Pr{ = } = 0 for all other values of ). The hazard
function 1(11− ) thus induces a uniform distribution over the duration of

the drinking game. A randomly chosen friend is equally likely to stop after

any number of drinks between 1 and 10 inclusive. This being the case, the

expected number of drinks consumed for a randomly selected player equals

the average of the two endpoints of the uniform distribution or (10+ 1)2 =
55. With ten friends that’s an expected 55 drinks in total; better have a
good liquor supply!

3.3 Different Hazard Functions

The drinking game hazard function, () = 1(11 − ), was an example
of an increasing (really non-decreasing) hazard in that ( + 1) ≥ () for
 = 1 2  9 (the process must end at time 10 since (10) = 1 so there
is no point defining () for   10). Increasing hazard functions typify
processes which are more likely to end as they age. While a machine or

mechanical/electrical part thereof is a typical example (think of the lifetime

of a car or computer), one also encounters increasing hazard functions in

epidemiology. For example, the duration of infectiousness (the “infectious

period”) or the time from infection until symptoms develop (the “incubation

time”) for viruses like influenza or SARS-CoV-2 (the coronavirus responsible

for COVID-19) both have increasing hazard functions, as do the infectious

periods and incubation times for many other viral infections.

The next example features a decreasing hazard function.

3.3.1 To Be Or Not To Be: IVF

Women who have been unable to become pregnant absent reproductive as-

sistance might seek to enroll in an in vitro fertilization (or IVF) program.
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Unfortunately, IVF does not work for all women. Suppose that a fraction

 of those women attempting to become pregnant via IVF at a clinic can

conceivably conceive (that is, in principle could become pregnant via IVF),

and that among that subset of women who could conceive, the probability

of achieving a viable pregnancy on any IVF attempt is equal to . For those

women who cannot conceive of course, the probability of achieving a viable

pregnancy on any trial equals zero. Unfortunately, it is not possible to know

ahead of time whether a new IVF patient is a member of the group that

could conceive or not.

Let random variable  denote the number of IVF trials required for a new

IVF patient to achieve a viable pregnancy. For women who can conceive, the

number of trials to success just follows the Geometric distribution, and such

women account for the fraction  of the population of patients, thus

Pr{ = } = × × (1− )−1,  = 1 2 3 

The probability that a patient would spend at least  trials in this program

requires some thought. For women who can conceive, the chance of requiring

at least  trials is the same as the chance of failing to conceive − 1 times in
a row or (1− )−1. However, for women who cannot conceive, ignoring drop
out due to financial or other reasons unrelated to getting pregnant for the

moment, the chance of spending at least  trials equals 100% as such women

never achieve pregnancy. We thus see that

Pr{ ≥ } = × (1− )−1 + (1− )× 1,  = 1 2 3
The conditional probability of achieving a viable pregnancy on the  trial

given failure on the first −1 attempts, which of course is the hazard function,
is then given by

() =
Pr{ = }
Pr{ ≥ } =

× × (1− )−1

1− + × (1− )−1
  = 1 2 3 

The probability of achieving pregnancy on the first trial, (1), is just given
by  ×  — first the woman must be able to conceive (this has probability

), and second the first trial must succeed given that success is possible (this

has conditional probability ). As the number of trials increases beyond the

first, however, the hazard function declines because (1−)−1 is a decreasing
function of the number of trials . Indeed, as  becomes large, the conditional

probability of success approaches zero.
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Why does this model imply a declining hazard function? The answer is

simply that those women who are capable of achieving pregnancy do so, albeit

probabilistically with success probability  on each trial. As these women

become pregnant, the fraction of the remaining women in the program who

cannot ever conceive grows, which in turn lessens the chance at each trial

that a randomly chosen IVF participant can achieve a viable pregnancy.

This provides an example of how population heterogeneity (in this case in

the likelihood of achieving a viable pregnancy) leads to a declining hazard

function.

Another consequence of this “split-population” model is that the proba-

bility of never achieving pregnancy approaches 100% over time. To see this,

let () be the conditional probability that a woman who has failed on  suc-
cessive attempts will never achieve a viable pregnancy. This probability can

be written as

() =
Pr{Woman cannot conceive}

Pr{Woman cannot conceive}+Pr{Woman can conceive but has failed  times in a row}
=

1− 

1− + × (1− )
  = 1 2 3

Suppose a woman has just entered the program and has yet to attempt IVF.

This corresponds to zero failures, and

(0) =
1− 

1− + × (1− )0
= 1− 

which simply says that the probability a new IVF program participant will

never get pregnant is equal the fraction of women the program population

who can never conceive. However, as the number of trials  grows, (1 − )

approaches zero and () approaches 100%. This is another reflection of the
fact that women who conceive leave the program, leaving those who can never

conceive to form a greater and greater fraction of the women who remain.

The models above are quite simple, yet they also have an empirical basis.

Consider the data shown in the table below which reflect the experience of

571 women who attempted IVF at Yale between 1983-87.
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The fraction of women who achieved a viable pregnancy on a given trial out of

the number of women who attempted to conceive on that trial falls from just

over 13% on the first trial, to about 11% on the second trial, and continues

to decline to zero by the sixth trial. While the overall likelihood of success

on a randomly chosen trial from all IVF attempts equals 1291257 = 0102 6,
these data demonstrate clearly that the conception probability declines as

the number of trials increases, which would make the pure Bernoulli model

of constant success probability per trial quite inaccurate.

However, the “split-population” model derived above provides an excel-

lent fit to these data as seen from the excellent 2 goodness-of-fit statistics

in the table below:
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The estimated parameters suggest that a little over one third of all women

entering this Yale IVF program could conceivably conceive ( = 03706),
while among those women who are able to conceive, the chance of achieving

a viable pregnancy is also just over one third ( = 03641). Indeed, the
probability that a woman who failed to conceive after four attempts will

never be able to conceive via IVF is equal to

(4) =
1− 03706

1− 03706 + 03706× (1− 03641)4 = 09122

Having failed four times in a row thus signals a greater than 90% chance of

never being able to conceive via IVF. Indeed, a total of 41 women made at

least five attempts each for a total of 82 attempts beyond four failures in a

row. Only two of these attempts succeeded. One can only wonder what

advice would have been given to these 41 women if it was known that the

chance of ever conceiving following four consecutive failed attempts was so

low.

3.3.2 Looking For A Job

You are looking for a job, and have decided to target your search to the

policy modeling market. This is a tight market of course; others are looking

too. You estimate that the chance you will get hired on your first interview,

without regard to where that interview takes place, is equal to 1/4. However,
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since all those hiring policy modelers talk to each other all the time (who

else would talk to them?), if you are not instantly hired by the first place you

look, everyone else hiring will immediately know this, in turn lowering your

chance of getting hired elsewhere. Indeed, suppose that you have interviewed

and been turned down − 1 times. The conditional probability that you will
be hired immediately following the  interview given failure on the first −1
attempts is given by 1(+ 1)2 Note that, consistent with this formula, the
chance that you will be hired on your first interview equals 1(1 + 1)2 = 14
as stated earlier.

Now, you figure that you’ll net $98,000 if you get a policy modeling job.

However, the cost for you to prepare for each interview is $2,000.

(a) What is the unconditional probability that you will be hired immedi-

ately following  interviews for  = 1 2 3 4? (You have to give me 4 numbers
here!)

The probability of being hired after interview  is equal to the probability

of being rejected on the first −1 interviews times the conditional probability
of being hired after interview  given rejection on the first  − 1. Let ()
be the conditional probability of getting hired after interview  given failure

until then. From the problem statement, we have () = 1( + 1)2. Let 
be the number of the interviews until hiring (if it occurs!). Then

Pr{ = } = ()
−1Y
=1

(1− ())

=
1

(+ 1)2

−1Y
=1

(1− 1

( + 1)2
)

Rolling through for  = 1 2 3 4 we see that the unconditional probability of
getting hired equals 0.25, 0.0833, 0.0417, and 0.025 respectively.

(b) What is the unconditional probability that the number of interviews

required to get hired exceeds  (that is, is more than ) for  = 1 2 3 4? (4
numbers again please!)

For the number of interviews to exceed , it must be that all  interviews
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failed! We thus have

Pr{  } =
Y

=1

(1− ())

=
Y

=1

(1− 1

( + 1)2
)

Rolling through for  = 1 2 3 4 we get 0.75, 0.6667, 0.625, and 0.6 respec-
tively.

For the curious among you, you might note that even if you were to

interview forever, you would not be guaranteed to land a job! In fact, the

limit of the probability that the number of interviews required for a job

exceeds  as  becomes very large is given by

lim
→∞

Y
=1

(1− 1

( + 1)2
) =

1

2
·

So even if you interviewed forever, there is only a 50% chance of landing

a job in policy modeling! (This is an example of what is called a defective

distribution; the sum of the unconditional probabilities of landing a job after

 interviews over all  does not equal 1; it only equals 0.5!)

(c) What is the largest number of interviews you should attempt in the

policy modeling job market?

Well, the results above should convince you that it doesn’t make sense to

stick around too long in any event. At the margin, you stand to gain $98,000

if you get hired on the next interview, but it costs you $2,000 at the margin

to take another interview, whether you are hired or not! Since () is the
marginal probability of success, it makes sense to keep interviewing as long

as

$98 000× () ≥ $2 000
which is equivalent to

() ≥ 1

49
or

1

(+ 1)2
≥ 1

49
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or

(+ 1)2 ≤ 49
which means that + 1 ≤ 7, so  ≤ 6. This means that you should attempt
no more than 6 interviews!

3.3.3 Another Undocumented Immigration Problem

Imagine a scenario in which an average of 100 new undocumented immigrants

arrive to the United States each year from the fictional country of Eyfo (so

we are only considering a small portion of the total inflow of undocumented

immigrants). 80% of these new arrivals are “movers” (short-term residents),

while the remaining 20% of new arrivals are “stayers” (longer-term settlers).

Suppose further that at the end of each year in the United States, a mover

returns to Eyfo with probability 25%, while a stayer returns to Eyfo after

each year with probability 2%.

(a) What is the average length of time spent in the United States per

visit by a mover? What is the average for a stayer?

We are told that once in the United States, a mover departs with prob-

ability 0.25 each year, while a stayer departs with probability 2%. Both of

these situations imply that the duration of time spent in the United States

follows a geometric distribution, just like in the Nation of Shoplifters from

the very first day of class! If  is the probability of returning to Eyfo each

year, then the average time spent in the United States is just equal to 1.
Consequently, the average length of time spent in the US for a newly entering

mover equals 1025 = 4 years, while for stayers the average duration of stay
is given by 1002 = 50 years.

(b) A new undocumented immigrant from Eyfo has just arrived in the

United States. What is the probability that this immigrant returns to Eyfo

after one year?

Well, we know that if the newly arriving immigrant is a mover, there is

25% chance (s)he will return to Eyfo at the end of the year, while if the

arrival is a stayer, there is only a 2% chance of leaving after a year. As 80%

of new arrivals are movers and 20% are stayers, the probability that a newly

arriving immigrant returns to Eyfo after one year is given by

08× 025 + 02× 002 = 0204
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or just over 20%.

(c) Now suppose that a new undocumented immigrant from Eyfo arrives

to the United States at time 0. What is the probability that this new

immigrant returns to Eyfo after spending exactly  years in the United States?

It seems that we answered this question in part (b) for the special case of

 = 1. But what about for an arbitrary duration of time ? Again, the key
is recognizing that, conditional on knowing whether the new immigrant is a

mover or a stayer, the time spent in the United States follows a geometric

distribution. For movers, the probability that an immigrant leaves after ex-

actly  years is given by 025× (1−025)−1 = 025×075−1. For stayers, the
probability of leaving after exactly  years is given by 002× (1− 002)−1 =
002 × 98−1. Let  denote the time spent in the US by a newly arriving

immigrant from Eyfo. Again recognizing that 80% of new arrivals from Eyfo

are movers while the remaining 20% are stayers, we conclude that the prob-

ability a newly arriving immigrant returns to Eyfo after spending exactly 

years in the United States is given by

Pr{ = } = 08× 025× 075−1 + 02× 002× 98−1

Note that if  = 1, we just get 08× 025 + 02× 002 = 0204 as in part (b).
(d) What is the conditional probability that a new undocumented im-

migrant from Eyfo who arrived to the US at time 0 returns to Eyfo after

spending exactly  years in the United States, given that this immigrant

spends at least  years in the United States?

Hmmmm — the probability we are being asked to find is

() = Pr{ = | ≥ } = Pr{ = }
Pr{ ≥ }·

In other words, we are being asked to find the hazard function (which is

equivalent to the emigration rate) for newly arriving undocumented immi-

grants from Eyfo. We already have the numerator for this hazard function

from part (c) above. For the denominator, note again that from the geomet-

ric distribution, the likelihood that a newly arriving immigrant stays at least

 years in the United States is the same as the probability that this immi-

grant does not leave after each of the − 1 years after arrival. Again, if  is
the probability of leaving at the end of any year in a Bernoulli process, then
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the probability of remaining in the US for at least  years equals (1− )−1.
We have two such processes happening, one for movers and one for stayers.

So, taking into account the 80/20 mover/stayer split among new arrivals, we

conclude that

Pr{ ≥ } = 08× 075−1 + 02× 098−1

which in turn implies that the hazard function we seek is given by

() =
08× 025× 075−1 + 02× 002× 98−1

08× 075−1 + 02× 098−1
A plot of this hazard function is shown below; note that the hazard declines,

and asymptotes at 0.02, which is the migration rate for stayers.
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(e) Suppose that this process has continued long enough to reach an

equilibrium (steady state). Recall that 80% of new arrivals from Eyfo are

movers. In equilibrium, what is the total number of undocumented immi-

grants in the United States who originated from Eyfo? And, of all of the

undocumented immigrants from Eyfo residing in the United States, what

fraction are movers?

A gift I tell you, a gift! From the problem statement, we know that an

average of 80 movers and 20 stayers arrive each year. From our answers to

part (a), we know that the average duration of stay in the US equals 4 years
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for movers and 50 years for stayers. Thus, the steady state total number of

undocumented Eyfo immigrants in the US is given by

80× 4 + 20× 50 = 1 320
Of these 1,320 immigrants, we expect that 80 × 4 = 320 are movers, thus
the fraction of all undocumented Eyfo immigrants in the US that are movers

is given by 3201 320 = 0242 or just under a quarter; this in spite of the
fact that 80% of newly arriving immigrants are movers! Also, note that the

average duration of stay in the United States follows from  =  setting

 = 1 320 and  = 100, which means that  = 132 years. Of course, we
could also have obtained this result directly from part (a) by noting that the

average stay for a newly arriving immigrant, taking into account the 80/20

split between movers and stayers, is given by 08× 4 + 02× 50 = 132 years
as claimed.

(f) Consider the first 20 years of the immigration from Eyfo. At the end

of this 20 year period, researchers conduct a survey in Eyfo of undocumented

immigrants who have returned to Eyfo. Note that only people who both left

Eyfo for the United States and returned within these 20 years can possibly

be included in the survey. Assuming that the researchers are able to obtain

a random sample from the population of returnees to Eyfo over these first

20 years, what fraction of the survey respondents are movers? (BIG HINT:

after the first year of immigration, only those who had arrived in the United

States from Eyfo at the start of the first year could return to Eyfo at the end

of the first year of immigration; after the second year of immigration, only

those who had arrived in the United States at the start of the first year from

Eyfo and spent two years in the US, plus those who arrived in the US at

the start of the second year from Eyfo and spent one year in the US, could

return to Eyfo at the end of the second year of immigration; ...)

This is a bit trickier, but the hint helps. Let’s first think about the

movers. There were 20 waves of immigration, each on average seeing 80

movers arrive in the US each year. Consider those in the most recent wave.

25% of those will return to Eyfo at the end of the year, and thus be back in

Eyfo in time for the survey. Now consider those in the second most recent

wave. Of those, 025 + 075 × 25 = 0437 5 would have been expected to
return. Note that if  is the duration of stay in the US for movers, this is

exactly the same as Pr{ ≤ 2} = 1− 0752 In general, the probability that
a mover in the  most recent wave of immigration to the US returned to
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Eyfo in time for the survey equals Pr{ ≤ } = 1−075 Thus, the expected
total number of movers who went the US and returned to Eyfo within the

first 20 years of immigration is equal to

80×
20X
=1

Pr{ ≤ } = 80×
20X
=1

(1− 075) = 1 3608

We can do the same thing for stayers, and discover that the expected total

number of stayers who went to the US and returned to Eyfo within the first

20 years of immigration is equal to

20×
20X
=1

(1− 098) = 74256

Consequently, fraction of those in the survey who are movers is given by

1 3608

1 3608 + 74256
= 09483

So, while movers make up 80% of the immigrants departing Eyfo, they would

comprise almost 95% of the sample of migrants who returned to Eyfo within

the first 20 years of immigration.

(g) Once again consider the survey described in (f) above. What should

the average duration of stay in the United States equal over all respondents

to the survey?

This is even trickier. Consider a mover who went from Eyfo to the US in

the  most recent wave of immigration. Such a mover would have stayed

exactly  ≤  years with probability Pr{ = } = 025 × 075−1, and
would report having spent  years in the US in the survey (assuming truthful

reporting). This means that the total person years spent in the US reported

by movers in the survey in Eyfo accounting for all 20 years of migration is

given by

80×
20X
=1

X
=1

 × 25× 75−1 = 4 5013 years

Similarly, the total person years spent in the US reported by stayers in the

survey in Eyfo accounting for all 20 years of migration is given by

20×
20X
=1

X
=1

 × 02× 98−1 = 5107 years.
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The average time spent in the US as computed from the survey would thus

equal the total person years spent in the US divided by the total number of

returning immigrants from Eyfo, and we know the latter from part (f) above.

We therefore conclude that

Average Time Spent in US per Immigrant Reported in Survey =
4 5013 + 5107

1 3608 + 74256
= 349 years.

What has happened? From the basic problem statement, we know that in

truth, the average time spent in the US per immigrant from Eyfo equals 13.2

years (see part (e) above). But, by studying only those who had returned,

even over a 20 year time span, the average time spent in the US as computed

from survey respondents equals just under 3.5 years!

3.3.4 Covid Vaccine Effectiveness

In class we reviewed the data from the Pfizer Covid vaccine trial, and showed

how to compute the hazard function for infection for both the placebo and

vaccinated groups. We saw that as widely reported in the press, there was

about a 95% reduction in the probability that a person who received both

Pfizer doses was infected symptomatically compared to placebo.

(a) Let  denote the time from vaccination until infection for someone in

the placebo group, and let

 () = Pr{ ≤ }
be the cumulative probability distribution of the time to infection. Now

define  () as the probability that someone in the vaccinated group gets
infected by time . Suppose that with probability , the vaccine prevents a

person vaccinated at time 0 from ever becoming infected with SARS-CoV-2,

but with probability 1 − , a vaccinated person has the same likelihood of

getting infected by time  after vaccination as a person who received the

placebo shot at time 0. Under this assumption, produce an equation for

 () in terms of  ().

With probability , a vaccinated person is protected and will never be

infected by time , while with probability 1 − , a vaccinated person would

be infected with the same chance as someone in the placebo group, namely

 (). Consequently,

 () = × 0 + (1− )×  () = (1− ) ()
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(b) Now think about the clinical trial conducted by Pfizer. From class

you know how to use the data to estimate the hazard function for infection

in both groups, and using those hazard functions, you know how to compute

 () and  () directly (that is, without relying on the model for  () in
part (a)). Let “time 0” correspond to “week 5” in the Pfizer trial, which

is the 1st week at risk one week following the second vaccine dose. Using

the hazard functions for infection for both groups that we computed in class

(and are contained in the Excel file Pfizer_Covid_Vaccine_Data), compute

 (10) and  (10), that is, the probability that someone uninfected enter-
ing week 5 (time 0) has gotten infected by the end of week 15 (time 10)

for the placebo and vaccinated groups respectively. What is the percent-

age reduction in the probability that a vaccinated person became infected

compared to an unvaccinated person, that is, what is the numerical value of

( (10)−  (10)) (10)?

Let () be the time  hazard function estimate for the placebo group.
Remember that week 5 is the same as time 0. We know that the probability

an unvaccinated person would not be infected in any of weeks 5 through 15,

which corresponds to time 0 through time 10, is given by

10Y
=0

(1− ()) and

thus the probability that a member of the placebo group would have been

infected at some point during trial, which is the same as  (10), is given by

 (10) = 1−
10Y
=0

(1− ())

From the placebo hazard function estimates in the spreadsheet, we obtain an

estimate of  (10) = 00219 The same analysis applied to the vaccine group
leads to an estimate of  (10) = 00013The percentage reduction in the
probability of getting infected when comparing the vaccine to the placebo

group is then

 (10)−  (10)

 (10)
=
00219− 00013

00219
= 094

or 94%, pretty much what was reported in the press.

(c) Returning to the model of part (a), what is the percentage reduction

in infection for vaccinated persons compared to unvaccinated persons at any
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time , that is, what is ( ()−()) () for any value of ? With this insight
and the numerical result of part (b), how do you feel about the performance

of the Pfizer vaccine?

The model of part (a) suggests that since  () = (1− ) (), the per-
centage reduction in the chance of being infected from time 0 to time  for

any value of  is given by

 ()−  ()

 ()
=

 ()− (1− ) ()

 ()
= 

What this says is that if the vaccine is perfectly protective with probability

 while with probability 1− the likelihood of a vaccinated person becoming
infected follows the experience in the placebo group, then the percentage

reduction in the probability of being infected within any fixed time interval

from 0 to  is exactly equal to the vaccine success probability . Wow! We

should hope this model is true, because if so, our result from part (b) suggests

that if you get vaccinated, with 94% probability you are forever protected

from being infected with SARS-CoV-2!! Of course, this clinical trial took

place before the Delta variant emerged, and also before it became clear that

vaccine effectiveness wanes over time, so unfortunately what looked promising

early on did not come to pass.

(d) Consider the following “split population” model: for those who are

vaccinated, let  be the time until infection (again starting at time 0, which

is week 5 in the Pfizer trial). The probability a vaccinated person gets infected

during week  is presumed to follow

Pr{ = } = (1− )× Pr{ = }

where Pr{ = } is the estimated probability that an unvaccinated per-
son is infected during week  as calculated from the hazard function for the

placebo group in the Pfizer_Covid_Vaccine_Data file. The survivor func-

tion Pr{ ≥ } for vaccinated individuals in this model is given by

Pr{ ≥ } = + (1− )× Pr{ ≥ }

since  ≥  for sure if the vaccine works (with probability ), or if the

vaccine fails but a placebo subject takes at least  weeks to get infected

(with probability (1 − ) × Pr{ ≥ }). Note the similarity to the split
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population model in the IVF example discussed in class. The hazard function

for infection for those who receive the vaccine is then given by

 () =
Pr{ = }
Pr{ ≥ }

=
(1− )× Pr{ = }

+ (1− )× Pr{ ≥ }

where Pr{ = } and Pr{ ≥ } are computed based on the hazard functions
estimated for the placebo group (and again those hazard functions have been

provided for you in Pfizer_Covid_Vaccine_Data). This makes the hazard

for infection for vaccinated persons,  (), a function of just one variable —
the vaccine success probability  — given the results for the placebo group.

Suppose that  = 095, that is, the vaccine protects completely against in-
fection 95% of the time. On one graph, plot the infection hazard  () from
the model above, and the direct empirically estimated hazard for infection

among those vaccinated that we derived in class (and, once again, is avail-

able to you already in Pfizer_Covid_Vaccine_Data). What do the results

suggest?

The first thing we need to do is figure out the probability distribution and

survivor function for random variable  that describes the placebo group.

This is easy, since we already have the hazard functions at our disposal. As

argued in class, the survivor function Pr{ ≥ } is given by

Pr{ ≥ } =
−1Y
=0

(1− ())

while the probability distribution Pr{ = } is given by

Pr{ = } = ()
−1Y
=0

(1− ())

= () Pr{ ≥ }

Note that these products run from  = 0 instead of  = 1 due to the timing
convention in the data — one could become infected during week 5 = time 0.

Note also that Pr{ ≥ 0} = 1.
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Armed with these definitions, it is a simple matter to compute the corre-

sponding numerical values using the hazard functions in the problem spread-

sheet. Here are the results:

Week Time (t) h(t) Pr{T >= t} Pr{T=t}
5 0 0.001427 1 0.001427
6 1 0.001138 0.99857284 0.001136
7 2 0.001351 0.997436678 0.001347
8 3 0.0017 0.996089186 0.001694
9 4 0.001441 0.994395379 0.001433

10 5 0.001918 0.992962119 0.001904
11 6 0.001478 0.99105799 0.001465
12 7 0.001271 0.989593011 0.001258
13 8 0.003029 0.988335187 0.002994
14 9 0.004831 0.98534114 0.00476
15 10 0.002513 0.980581037 0.002464

From these numbers and the definition of  () above, and using  = 095,
we easily obtain  () in the spreadsheet. Here are the results:

Week Time (t) h(t) Pr{T >= t} Pr{T=t} hV(t)
5 0 0.001427 1 0.001427 7.1358E-05
6 1 0.001138 0.99857284 0.001136 5.68852E-05
7 2 0.001351 0.997436678 0.001347 6.7539E-05
8 3 0.0017 0.996089186 0.001694 8.50062E-05
9 4 0.001441 0.994395379 0.001433 7.20466E-05

10 5 0.001918 0.992962119 0.001904 9.58473E-05
11 6 0.001478 0.99105799 0.001465 7.38765E-05
12 7 0.001271 0.989593011 0.001258 6.35192E-05
13 8 0.003029 0.988335187 0.002994 0.00015138
14 9 0.004831 0.98534114 0.00476 0.000241366
15 10 0.002513 0.980581037 0.002464 0.000125504

Finally, plotting the split population hazard on the same graph as the

empirically estimated hazard function for the vaccinated group in the clinical

trial (and those hazards were already provided to you in the problem file)

yields:
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This is pretty interesting — it suggests that the modeled hazard function

you would get for the vaccinated group based on the observed hazard for

the placebo group combined with the assumption of 95% vaccine success is

very close to the actual hazard function observed for the vaccinated group.

Very encouraging! Note — this does not prove that the Pfizer vaccine is 95%

protective against infection over all time. What it does show is that if the

vaccine offers true 95% protection, then the data seen in the trial in the

vaccinated group based on the infection rates observed in the placebo group

are just what we would expect! Of course, we need to temper our enthusiasm

with facts — as we now know, vaccine effectiveness wanes with time and is

also lower against the Delta and Omicron variants of SARS-CoV-2 compared

to the virus that was circulating during the vaccine trials. On the bright

side, the vaccine has proven to be very effective against severe illness and

hospitalization, especially with a 3 (now ) booster shot. How well the

newest bivalent vaccines perform remains to be seen.



Chapter 4

Poisson Process Models

4.1 When the Bernoulli grows up...

Suppose we observe a Bernoulli process with the following characteristics:

(i) A new Bernoulli trial occurs once every ∆ time units (∆ is really

pretty small!)

(ii) The success probability  is proportional to the length of the time

period ∆. Let the proportionality constant equal . Thus,  = ∆ is the

probability of an “arrival” on any Bernoulli trial (or in any time period of

length ∆).

What happens?

4.2 When the Binomial grows up...

If we watch this process for  trials, this is equivalent to watching the process

for a total length of time  , where  = ∆ (and thus  = ∆). Let ()
be the random variable representing the number of arrivals (or successes)

over a time period of length  (i.e. over the  trials). In this time period

of length  (or over these  trials), what is the expected number of arrivals

(successes)? From the Bernoulli process, we know that:

[()] =  (from the Binomial!)

=


∆
× ∆

= 

103
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The parameter  thus has a physical interpretation:  is the average arrival

rate per unit time. In a period of length  ,  arrivals are expected (as shown

above), so the number of arrivals expected divided by the length of the time

period (i.e. the average arrival rate per unit time) equals

Avg Arrival Rate/Unit Time =
[()]


=




= 

What about the variance of (), the number of arrivals in a time period
of length ? Again, the Bernoulli process yields:

 [()] = × × (1− ) (Binomial again!)

=


∆
× ∆× (1− ∆)

=  × (1− ∆)

Now we apply the squeeze! Let ∆→ 0. This implies that

 [()]
∆→0→ 

Finally, what is the probability distribution of ()? Well, working with
the Binomial again we have

Pr{() = } =
µ




¶
(1− )−

=

µ
∆



¶
(∆)(1− ∆)∆−

Once again, apply the squeeze! As ∆→ 0, the laws of calculus require that

Pr{() = } = ()−

!
for  = 0 1 2 

where  = 2718 is the base of the natural logarithms. This probability
distribution is known as the Poisson distribution, and the underlying random

process is called the Poisson process.

To summarize thus far: if “arrivals” occur at a constant average rate; the

likelihood of an arrival in any very short time period (i.e. ∆) is proportional

to the length of that time period; at most one arrival can occur in any very
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short time period; and whether an arrival occurs in any very short time

period is independent of whether an arrival occurs in any other (i.e. “non-

overlapping”) very short time period; then we have a Poisson process. Letting

() be the number of arrivals in a time period of length  , () follows the
Poisson distribution, with mean (and variance) equal to  as shown above.

 is the average arrival rate of the Poisson process.

4.3 When the Geometric distribution grows

up...

Suppose that we seek the probability that  , the time until the first arrival

in a Poisson process, exceeds some time . This is equivalent to stating that

the first success exceeds the  trial if we set ∆ = , or  = ∆. From

the Geometric distribution, we have

Pr{  } = (1− ) = (1− ∆)∆

Again, apply the squeeze: as ∆→ 0, the laws of calculus assure us that

Pr{  } = − for  ≥ 0
Here is another way to get the same result. For the time until the first

arrival to exceed , it must be true that no arrivals occur in the time period

of length  preceding the first arrival. From the Poisson distribution noted

earlier, we see the equivalence

Pr{  } = Pr{() = 0} = − !!!!

So, the probability that the first arrival occurs at or before time  equals

Pr{ ≤ } = 1− −

This distribution is known as the Exponential distribution. It describes the

behavior of random variable  , the time until the first arrival in a Poisson

process. Without going into details (though you can derive what follows by

first working with the Geometric distribution), we have:

( ) =
1


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and

 ( ) =
1

2
·

Note that the mean equals the standard deviation for the Exponential distri-

bution. Think about what this means for random incidence if “gap lengths”

in a renewal process follow the Exponential distribution. By the way, note

the reverse: if the gap lengths in a renewal process follow the Exponential

distribution, then the renewal process is in fact the Poisson process!!

4.4 Is it Live, or is it Memoryless?

Suppose that the time in between buses follows an Exponential distribution

(or equivalently, that the buses arrive in accord with a Poisson process).

Having just missed the bus, you have been waiting for 5 minutes. You muse

to yourself that the chance of waiting at least this long equals −5 where 
is the mean arrival rate of buses (in arrivals per minute). You ask yourself:

what is the chance I have to wait at least another 5 minutes? You compute:

Pr{Wait additional 5 | Waited 5 already}
= Pr{  10 |   5}
=

−10

−5
= −5 (!!).

Slightly confused, you slowly realize that the chance of waiting at least an-

other 5 minutes, having already waited 5 minutes, is unchanged from the

likelihood of having to wait at least 5 minutes in the first place! In general:

Pr{  1 + 2 |   1} = Pr{  2}
if  follows the Exponential distribution. The chance of waiting at least

another 2 minutes is independent of 1, the time spent already waiting!

Similarly, the expected value of  given that you have already waited  time

units is given by

( |   ) = +
1


·
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How unfair — your remaining expected waiting time exactly equals your orig-

inal expected waiting time of 1! This is known as the memoryless property
of the Exponential distribution. The random variable “forgets” how long you

have been waiting for!

4.5 Examples

4.5.1 MPOX Revisited

(b) Suppose instead that the number of infections transmitted per newly

infected man in the monkeypox outbreak followed a Poisson distribution

with mean  = 129, that is,

Pr{ = } = −

!
for  = 0 1 2 

Now what is your estimate of the minor outbreak probability ?

There are different ways to arrive at the single correct answer. You could

do this numerically — in Excel, just evaluate

() =
∞X
=0

−

!
× 

for different values of  and see when the value of  you enter into the right

hand side of this formula equals (), the result of the computation. Note
that the formula is easily evaluated using the =sumproduct command. You

simply fix a single cell to contain your trial value of , then in one column

enter the integers 0, 1, 2, ... (going only as far as 10 works fine for this

problem), in the next column enter =poisson(,1.29,0) and drag down (where

 is the cell address for the integers 0, 1, 2... that you entered previously), and

then in the next column enter =ˆ where  is your trial value on the right
hand side (contained in a single cell and fixed in this computation using the

absolute $ reference in Excel). Then just take the sumproduct of the second

two columns — that evaluates () for the particular trial value. You can

quickly get a match of the input and output at  = 059 (to two decimals).
Or, you can use the Solver if you don’t like trial and error — find the smallest

value of  such that  = (). You’ll also get  = 059. Or, for those of you
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who like solving things mathematically, note that

() =
∞X
=0

−

!
×  =

−

−

∞X
=0

() −

!
= −(1−)

where we recognize the second summand above as a Poisson distribution

with mean , and thus the sum itself equals 1 leaving () = −− =
−(1−). So now you don’t need the sumproduct command, but you still
need to either use trial-and-error or perhaps the solver to find the smallest

value of  that solves  = −(1−) (note that  = 1 is always a solution
since the right hand side becomes −0 = 1). With  = 129 you will once
again discover that  = 059.

4.5.2 Condom Failures Revisited

Recall that if more than 4 condoms out of 1000 are found defective, the

batch from which the 1000 condoms were drawn is rejected. Also, 12% of

all batches tested in this manner were rejected. A different way to estimate

the probability that a randomly selected condom would be found defective

is to simply reason that since condom failures are rare events, the number of

condom failures in a batch should approximately follow a Poisson distribution

with some mean  that in turn must be equal to 1000×  where  is the per

condom failure probability. Again defining  is the number of condoms that

fail in a batch of size 1000, let’s presume that  has a Poisson distribution

mean , and find the value of  that sets the batch failure probability equal

to 12%. That is, find that value of  that solves

Pr{Batch Fails} = Pr{  4} = 1− Pr{ ≤ 4} = 1−
4X

=0

−

!
= 012

This is equivalent to solving

4X
=0

−

!
= 088

and doing so (for example, in Excel) yields  = 2 58. Setting  = 1000× =
258 results in a per condom failure probability of 2581000 = 00258 in
agreement with the Binomial model considered earlier.
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4.5.3 Bloodbanking for a Rare Disease

A rare disease has appeared. New cases occur in your health district in

accordance with a Poisson process with rate  = 50 per month. It turns out
that 80% of these cases can be treated inexpensively, but 20% of the cases

require an immediate transfusion with a special blood product that itself is

rare and costly to keep. You can only obtain monthly replenishments of this

blood product from the one national collection center. Also, once delivered

the “shelf life” of the blood product is only one month, so any product not

used in the month of delivery must be discarded.

Denote the quantity of blood product used in any transfusion as a “trans-

fusion unit” and assume that all transfusions require the same amount. The

cost of the blood product per transfusion unit equals $1,000, while in addi-

tion the cost of actually performing the transfusion (which is high because

of the need for associated drugs in such cases) equals $5,000 per procedure.

If a case requiring a transfusion arrives at your hospital but you are out of

blood product, the person is sent as an emergency to the national center at

a cost of $15,000.

The problem you face is to determine the amount of blood product to

store in your local blood bank.

(a) Suppose that you store exactly 5 transfusion units of blood, and this
month only 3 cases arrive that require transfusions. What is your cost of
treating the rare disease this month?

The costs are as follows: blood product acquisition and storages costs=5×
$1 000; procedure costs=3 × $5 000; and emergency transfer costs=0 ×
$15 000; so the total is $20,000.

(b) Suppose that you store exactly 5 transfusion units, but instead 7
cases arrive this month. What is your cost of treating the rare disease in this

instance?

Well, we have: acquisition and storage costs=5×$1 000; procedure costs=5×
$5 000 (for you can only perform 5 procedures as you only have 5 transfu-

sion units!); and emergency transfer costs=2 × $15 000 (as two cases must
be treated as emergencies); so the total is $60,000.

(c) Back to the original problem. What is the probability distribution for

the number of cases that require transfusion in any given month?
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Let’s see — new cases arrive in accordance with a Poisson process with

 = 50 per month, but only 20% of these cases require transfusion. Therefore,
the rate with which cases that require transfusion arrive is given 50× 2 = 10
cases per month. And, since we are splitting a Poisson process according to

a Bernoulli trial (with probability .2, a case requires transfusion independent

of all other cases), the resulting probability distribution for the number of

cases that require transfusion in any month is itself Poisson with  = 10 per
month. So, if  is the number of cases that require transfusion in a month,

the probability distribution is given by

Pr{ = } = 10−10

!
for  = 0 1 2 

(d) Let  denote the number of cases that require a transfusion in any

given month, and now suppose you store exactly  (for lood) transfusion

units. What is the cost of treating the disease as a function of  and ?

Well, it depends of course on whether  is greater than . We need to

consider the sum of three things: acquisition and storage costs; procedure

costs; and emergency costs. If we stock  transfusion units, the acquisition

and storage costs are given by $1,000. Now, the procedure costs will equal

$5,000 if  ≤ ; otherwise the procedure costs will equal $5,000 (as you

can’t perform more procedures than transfusion units!). So, the procedure

costs are given by $5 000min(). As for the emergency costs, you will
only experience them if   , in which case you need to transfer  − 

persons to the national center at a cost of $15,000 each. So, emergency costs

are given by $15,000 max(0  − ). So the cost of treating the disease is
given by

 = $1 000 + $5 000min( ) + $15 000max(0  − )

(e) What value of  leads to the smallest expected cost of treating the

disease? What is this expected cost? Using this choice of , on average

how many patients will you refer as emergencies to the national center each

month?

What you need to find is that value of  that minimizes the expected
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total costs, that is

min


∞X
=0

{1 000 + 5 000min( ) + 15 000max(0 − )}10
−10

!


To solve this problem, you need to evaluate the above summation for different

values of  and find that value that costs the least! This is easily done in a

spreadsheet. The optimal stocking level ∗ = 14. When 14 transfusion units
are stocked each month, the expected total cost each month is $65,869. The

expected number of emergencies is given by (max(0  − 14)) = 0187. In
only 8.3% of all months will more than 14 cases requiring transfusion arrive.

The attached figure shows how expected total costs vary with stocking

level. Note that when  = 0, all cases requiring transfusion are treated as
emergencies. As on average 10 such cases arrive each month, the expected

total cost when  = 0 is given by 10 × $15 000 = $150 000 (as seen in the
figure). Now suppose  gets large. In this case, (min( )) ≈ () = 10,
while (max(0  − )) ≈ 0. Thus, for large values of  the expected total
costs grow linearly as

$50 000 + $1 000

Note, for example, that at  = 25 the expected total costs on the graph equal
$75,000, in accord with the simple formula above.
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Chapter 5

Renewal Process Models

5.1 The Bus Stop

Consider a bus line with a stop near you place of work (or study or home

or...). Bus lines might be scheduled so that they arrive once every five or

ten minutes, but as anyone who rides a bus knows, the actual time between

consecutive buses, which we will refer to as the headway and denote by , is

a random variable. Now, imagine a bus line where the headway probability

distribution is given by

Pr{ = } =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
89  = 1

19  = 10

and Pr{ = } = 0 for values of  not equal to 1 or 10. We will call the 1
minute headways “short gaps” and the 10 minute headways “long gaps.” You

need to take the bus somewhere, and you have arrived at the bus stop just

in time to see the door close as the bus drives off. What is your expected

waiting time until the next bus? Clearly, you need to wait for an entire

headway to expire, and thus your expected waiting time is the same as the

expected headway () which is given by

() =
8

9
× 1 + 1

9
× 10 = 18

9
= 2 minutes.

Consider now a different situation — you need to catch the bus, you arrive at

the bus stop, and...you don’t see the bus! You look to the left, no bus. Look

113
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to the right, no bus. You realize that you’ve arrived somewhere inside a bus

headway. At first you think “yay — I did not just miss the bus!” You surmise

that your waiting time for the bus must be less than 2 minutes, because that

is the average time to the next bus when you just missed the last one, so

having not missed the last bus, your wait will be shorter.

But...you’d be wrong to think this way. Why? First, you surmise that

you are randomly located within whatever headway you are in as the only

information that you have is that you are not at the beginning (or end) of a

headway (if you were you’d see a buss opening or closing the door!). Based

on this reasoning, your expected waiting time just equals half the length of

whatever headway you are in. So far so good.

But, there are two headway types, short and long. A short headway lasts

one minute, so if you knew that you were in a short headway, your expected

wait for the bus would equal 30 seconds. A long headway lasts 10 minutes,

so if you knew that you were in a long headway, your expected wait would

equal 5 minutes. But which headway are you in?

You might think that since only 1/9 of all headways are long, you only

have a 1/9 chance of falling into a long headway (and an 8/9 chance of

falling into a short headway), and from this reasoning you would anticipate

an expected wait until the next bus of 19× 5 + 89× 12 = 50 + 49 = 1
minute, which of course is exactly half of the expected headway () = 2
minutes. But you would be wrong! After all, long headways are 10 times

as long as short headways! This means that if the number of long and

short headways were equal, arriving at random would make landing in a long

headway 10 times higher than the chance of landing in a short headway!

Now the number of long and short headways are not equal; there are 8 times

as many short headways as long headways. Still, since a single long headway

is 10 times longer than a short headway, we see that the chance of landing

in a headway of a given length must be proportional to both the duration of

the headway and its relative frequency of occurrence! For the bus stop, this

means that

Pr{Enter long headway} ∝ 10× 1
9
 and

Pr{Enter short headway} ∝ 1× 8
9



5.2 RANDOM INCIDENCE 115

from which we conclude that

Pr{Enter long headway} = 10× 1
9

10× 1
9
+ 1× 8

9

=
5

9

and

Pr{Enter short headway} = 1× 8
9

10× 1
9
+ 1× 8

9

=
4

9

which makes the expected wait until the next bus given a random arrival

equal to 59 × 5 + 49 × 12 = 3  2 = () (!!!). To have a shorter
expected waiting time for the bus, it turns out that you are better off just

missing the bus than you are arriving at a random time!

The bus stop problem is an example of a general class of problems know

as...

5.2 Random Incidence

Consider any random process that can be construed as a sequence of “arrivals

and gaps” occurring over time; such a process is known as a "point process."

In particular, suppose that the probability distribution for the lengths of the

gaps is unchanging over time, and that the length of any particular gap is

independent of the length of any other gap. These are known as "renewal

processes," for the process "renews itself’ whenever an arrival occurs. The

situation is illustrated in the figure below.

The downward arrows denote “arrivals” while the times between succes-

sive arrivals comprise the “gaps.” Let  be the random variable denoting

the length of a gap; in the picture above,  assumes the values 3, 1, and

4 respectively for gaps 1, 2 and 3. The gap lengths follow some probability

distribution denoted by Pr{ = }; for example, the gap lengths could follow
a Geometric distribution (though they don’t have to!!).
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Suppose that we observe this process over a long period of time. Clearly,

the mean and variance of the gap lengths, () and  (), are given by
the usual formulas:

() =
∞X
=1

 × Pr{ = }

and

 () =

P∞
=1( −())2 × Pr{ = }

= (2)−()2

So, for example, if gap lengths do follow the Geometric distribution, then

() = 1 and  () = (1− )2
Now, suppose that the process in question has been operating for a long

period of time. You show up at a random point in time, independent of the

process in question. What is the probability that the length of the gap you

will enter by virtue of random incidence, , has length 1, 2, 3, or in general,

? To answer this question, we will use the “vanishing ” trick: consider 

gaps. Of these, roughly  × Pr{ = } will be of length , thus gaps of

length  occupy roughly  × Pr{ = } ×  units of time. The total time

occupied by all  gaps must then equal (roughly)

Total Time =
∞X
=1

×  × Pr{ = } = ×()

Thus, the likelihood of encountering a gap of length  by random incidence,

Pr{ = }, must equal the total time occupied by gaps of length , divided
by the total time occupied by all  gaps. In symbols:

Pr{ = } = ×  × Pr{ = }P∞
=1 ×  × Pr{ = }

=
×  × Pr{ = }

×()

=
 × Pr{ = }

()
for  = 1 2 3

So, if we know the probability distribution of gap lengths, we can find the

corresponding probability distribution for gap lengths entered by random

incidence.
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Let’s use this distribution to find (), the expected length of a gap
entered by random incidence. We obtain by direct summation:

() =
∞X
=1

 × Pr{ = }

=

P∞
=1 

2 × Pr{ = }
()

=
(2)

()
·

Noting that (2) = ()2 + (), we can write () as

() =
()2 +  ()

()

= () +
 ()

()
·

As  () is always non-negative, we see that () ≥ (), always!
Finally, suppose we seek the average time from random incidence to the

process until the next arrival occurs. As random incidence places you, on

average, in the middle of the gap in which you arrive, we see that the waiting

time to the next arrival from random incidence, , has a mean given by

() =
()

2
·

Returning to the bus stop problem, note that the headway between suc-

cessive buses, , correspond to gaps between arrivals in a renewal process,

. Substituting the results from the bus stop headway distribution into the

general formulation above, we see that

() = 2
 () = 8
Pr{ = 1} = 49; Pr{ = 10} = 59
() = 6
() = 3  2 = () (and thus the conclusion that you are better off

just missing the bus!)

Is it always true that you are better off just missing the bus? No - it is

only true when ()  (). When does this happen? You can verify
that this condition occurs if (and only if) () 

p
 (), that is, if the

average gap length is less than the standard deviation of the gap length.



118 CHAPTER 5 RENEWAL PROCESS MODELS

5.3 Examples

5.3.1 A Museum Problem

In a small college town (and unknown to the new director of the town mu-

seum), 50% of the museum-going public visit the museum once per year, 30%

visit twice per year, 15% visit three times per year, and 5% visit four times

per year. Some of these museum-goers are willing to donate money to help

support the museum. Again unknown to the new museum director, 20% of

those who visit once per year are willing to donate, 40% of those visiting

twice per year, 60% of those visiting three times per year, and 80% of those

visiting four times per year.

(a) Among all museum-goers, what is the average number of visits to the

museum per year?

If  is the number of visits per year among museum-goers, you are just

being asked to find the expected value (). That’s easy:

() = 1× 05 + 2× 03 + 3× 015 + 4× 005 = 175
(b) Among all museum-goers, what is the variance of the number of visits

to the museum per year?

Now you are asked to find  (). Since we already have () let’s
use the formula  () = (2)−()2 and first compute

(2) = 12×05+22×03+32×015+42×005 = 385 and consequently
 () = 385− 1752 = 07875
(c) What fraction of all museum-goers are willing to donate money to

support the museum?

Let  be the event that a museum-goer is willing to donate; from the

problem statement we are given the conditional probabilities Pr{|} for
 = 1 2 3 and 4 visits per year. So, we just uncondition to discover that

Pr{} = 02× 05 + 04× 03 + 06× 015 + 08× 005 = 035. So 35%
of museum-goers are willing to donate money to help support the museum.

One day, the new director decides to administer a survey to those who

happen to be visiting the museum on that day. When people enter the

museum, they are asked two questions:

(i) How many times per year do you come to the museum?
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(ii) Would you be willing to donate money to help support the mu-

seum?

Given your knowledge of the visitation and donation probabilities from

the problem statement:

(d) What is the average number of visits per year that would be reported

among survey respondents?

This is random incidence! Someone who visits the museum  times per

year is  times more likely to be in the survey compared to someone who

only visits once per year. So let  denote the number of visits per year

we would observe among persons sampled on a random day at the museum.

The probability distribution of  is given by

Pr{ = } = Pr{ = }
()

for  = 1 2 3 4

Rolling this through with the underlying museum-going public visitation

probabilities (and recalling from part (a) that () = 175) we get:

Pr{ = 1} = 1 × 05175 = 50175; Pr{ = 2} = 2 × 03175 =
60175; Pr{ = 3} = 3 × 015175 = 45175; and Pr{ = 4} = 4 ×
005175 = 20175Getting the average visits per year reported in the survey
can now just be found from

() = 1× 50175+ 2× 60175+ 3× 45175+ 4× 20175 = 22 visits
per year. You could also have just answered this directly from the formula

() =
(2)

()
=
385

175
= 22

(e) What fraction of survey respondents would report that they are

willing to donate money to help support the museum?

We already know the fraction of people willing to donate as a function

of the number of visits they make to the museum each year. However, we

now need to adjust for the visitation probabilities we would see in the survey.

Happily, we computed those probabilities in part (d) above. Thus, letting

 be the event that a museum-goer sampled at the museum is willing to

donate, we obtain:
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Pr{} = 02×50175+04×60175+06×45175+08×20175 = 044.
Note that this is higher than the true fraction of the museum-going popu-

lation that is willing to donate, which from part (c) is given by 0.35. So we see

how random incidence could lead our new museum director astray: on aver-

age people visit less often (1.75 visits per year) than the survey would suggest

(2.2 visits per year), while the fraction willing to donate is lower (0.35) than

the survey would suggest (0.44). Does this mean that taking surveys in

the museum is a bad idea? Well, no actually. Suppose the museum di-

rector understood how random incidence works. With that knowledge, one

could work backwards from the (observable) survey visitation frequencies to

estimate the (unknown) population visitation frequencies, and use those to

estimate the population donation base (as the survey would still reveal the

relationship between willingness to donate and visitation frequency).

5.3.2 Checks and Balances

Many commercial banks in the United States offer overdraft protection to

their customers. Overdraft protection allows customers to write checks, make

ATM withdrawals, or make debit card purchases even if the customer does

not have sufficient funds in their account to cover the expense (the alternative

is for the check, debit card purchase, etc. to simply be declined).

The practice of enrolling customers automatically into overdraft protec-

tion programs is widespread: the Federal Deposit Insurance Corporation

(FDIC) estimates that nearly 80% of large U.S. banks engage in this prac-

tice. In 2008, the FDIC conducted a study of roughly 40 large banks to learn

more about the prevalence of overdrafts within the banking system. They

divided the population of banking customers into five distinct groups based

on the number of overdrafts each customer made within a given year. The

FDIC reported the following results: roughly 74% of the population incurred

no overdrafts during a given year; 12% of the population incurred 1-4 over-

drafts; 5% incurred 5-9 overdrafts; 4% incurred 10-19 overdrafts; and 5%

incurred 20 or more overdrafts.

(a) Based only on the data above, estimate the average annual number

of overdrafts per customer per year. To simplify matters, assume that each

person within a given group incurred the lowest number of overdrafts listed

within that group. For example, assume that a person in the “1-4 overdrafts”
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group incurred exactly one overdraft during the year, a person in the “5-9

overdrafts” group incurred exactly five overdrafts, and so on.

Well, this is pretty easy — given the simplification, we have that a ran-

domly selected customer incurred 0, 1, 5, 10 or 20 overdrafts with probabili-

ties 0.74, 0.12, 0.05, 0.04 and 0.05 respectively. Letting  denote the annual

number of overdrafts per customer, we have

() = 0× 74 + 1× 12 + 5× 05 + 10× 04 + 20× 05 = 177 overdrafts.

(b) Based only on the data above and using the same simplification as

in part (a), estimate the variance of the annual number of overdrafts per

customer per year (treating the percentages given as true probabilities as

opposed to statistical estimates).

The easiest way to do this is to use the formula  () = (2)−()2
(this is the soundbite “variance = mean square minus squared mean”). So,

let’s find the mean square (2):

(2) = 02 × 74 + 12 × 12 + 52 × 05 + 102 × 04 + 202 × 05 = 2537

and thus the variance of the annual number of overdrafts per customer equals

 () = 2537− 1772 = 22237

(c) What is the probability that a randomly selected overdraft transaction

originated from a customer with five or more overdrafts per year?

Ah — here we must be careful, as the question has switched from customers

to overdrafts. The likelihood that a randomly selected overdraft stems from

a customer with  overdrafts, call this (), is related the fraction of all
customers with  overdrafts (call this ()) by the random incidence formula

() =
()

()
·

Now, the question asks for the likelihood that a randomly selected overdraft

originated from a customer with five or more overdrafts. The easy way to
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do this is to look at the probability that a sampled overdraft originated from

a customer with fewer than five overdrafts. And the only way a sampled

overdraft could originate from a customer with fewer than five overdrafts

is if the customer in question had 1 overdraft (if the customer had zero

overdrafts, they could not have an overdraft sampled, could they?). So, the

likelihood that a sampled overdraft corresponds to a customer with fewer

than five overdrafts just equals (1) which is given by

(1) =
1× (1)

()
=
1× 012
177

= 00678

From this, the probability that a randomly selected overdraft originated from

a customer with five or more overdrafts is given by 1− (1) = 1− 00678 =
0932 2 or about 93%.

(d) What is the expected number of overdraft transactions per year for a

customer who originated a randomly selected overdraft transaction?

Well, we can do this the Fresca way or the Champagne way. Let 

denote the number of overdrafts corresponding to a customer who originated

a randomly selected overdraft. The Fresca approach says use the probability

distribution () to find the mean, that is, compute

() =
X


()

You’d first have to compute all the probabilities () and then toss them into
the expected value formula above. You would discover that the probabilities

corresponding to the number of overdrafts from the customer who originated

a randomly selected overdraft equal 0.0678, 0.1412, 0.226, and 0.565 for 1,

5, 10 or 20 overdrafts respectively, and thus () = 1433, which is a lot
bigger than the average number of overdrafts per customer.

Or, we could take the Champagne approach and recall from our discussion

of random incidence in class (and in the notes) that

() = () +
 ()

()

= 177 +
22237

177
= 1433

as before (recall we previously computed  () = 22237 in part (b)!).
Clearly sampling from overdrafts gives a rather different picture than sam-

pling from customers!
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5.3.3 SIDS

Of the roughly 3.9 million babies born in the United States each year, about

3,000 die of sudden infant death syndrome (SIDS), for a death-by-SIDS prob-

ability of 0.000769 per birth. A recent study notes that the fraction of SIDS

casualties who had siblings also victimized by SIDS is higher than the figure

computed above. Some feel that the parents of multiple SIDS victims should

be investigated for murder as a result.

Now, suppose that among parents who have children, the mean number of

births per family equals 1.86 with a standard deviation of 2.13. Suppose that

in fact, all babies really do have the same probability of being victimized by

SIDS independently of other events (and that there are no parental murderers

using SIDS as a masquerade). Given this assumption, and using no other

data, what is the probability that a randomly chosen baby would have at

least one older sibling who also died of SIDS?

Some hints:

• If we are told that a baby is born into a family that ultimately ex-
periences  births (including the baby!), then the probability that the

baby is the 1, 2, 3, ...,  kid born equals 1 for each possibil-
ity. Worded differently, any baby born is equally likely to be the 1,
2, ...,  baby born in the family, conditional on the information
that ultimately the family in question has  births.

• If  is the probability of SIDS (which we have estimated as 0.000769),
and a newborn baby follows  older sibling births in the same fam-

ily, then the probability that at least one of these siblings succumbed

to SIDS equals (via our assumptions) 1 − (1 − ) (THINK THIS

THROUGH!). In addition, since  is so small, it turns out that for

any reasonable value of , 1− (1− ) ≈  an approximation you can

use here without apology!

• Let  equal the ultimate number of births experienced by a randomly

chosen family, and  equal the ultimate number of births experienced

by the family belonging to a randomly chosen newborn baby (note: you

know the mean (1.86) and standard deviation (2.13) of ). How are

these random variables related?
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First, some intuition. Suppose that a baby is the first birth in a family.

That baby might die of SIDS, but that baby could not possibly have an older

sibling who died of SIDS (for the baby in question is the first born!). Now

suppose the baby was the second born. Then that baby has exactly one older

sibling. Second born children have exactly the same probability of having an

older sibling who died of SIDS as a randomly chosen baby has of dying of

SIDS!! As stated in the second hint above, since  = 0000769 is such a
small number, the probability of having an older sibling who dies of SIDS for

babies with  prior births (i.e.  older siblings) is just equal to  (and this

approximation is excellent). So in general, let  equal the number of older

siblings for a randomly chosen new born. Then the probability  that this

baby has at least one older sibling who died of SIDS is just given by

 = ()

(and no, you did not need ESP to figure this out!).

OK — so now the whole problem reduces to figuring out what () is
equal to. Suppose we consider a baby from a family with (ultimately) 

births. If the baby was born first, then there are no older siblings. If the

baby was born second, then there is one older sibling. If the baby is the

 birth, there are −1 older siblings. Now, given a baby from a family with
(ultimately)  births, the baby is equally likely to be the first, second, ...,

 birth (conditional on the ultimate number of births; this was your first

hint). So, the expected number of older siblings for babies born to families

with (ultimately)  births, (|), is given by

(|) =
X

=1

1


× ( − 1) = 1


× ( − 1)

2
=

 − 1
2
·

So we see that the average number of older siblings from a family with (ul-

timately)  births just equals ( − 1)2.
Here is another way to understand this result. In a family with (ulti-

mately)  births, there are
¡


2

¢
= (− 1)2 sibling pairs (this is the number

of different ways to chose two objects from  objects!). Now for each sibling

pair, there is of course exactly one older sibling! There is also one younger

sibling, but we don’t care about that. So, the total number of older siblings

(counted as older siblings in any sibling pair) also equals (−1)2, and hence
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the average number of older siblings per birth in a family of (ultimately) 

births is given by

(|) = Total older siblings

Total births
=

( − 1)2


=
 − 1
2
·

Pretty cool.

Now, we need to figure out the unconditional expectation (). Clearly,
we want to do this with reference to the probability distribution of the (ul-

timate) number of births in the family corresponding to a randomly chosen

newborn baby. This, of course, is where the third hint comes in. What we

want to compute is

() =
∞X
=1

(|)× Pr{ = }

where  is the (ultimate) number of births experienced by the family corre-

sponding to a randomly chosen newborn. We don’t have any data regarding

, but we do know the mean (1.86) and the standard deviation (2.13) of

 , the (ultimate) number of births in a family as sampled from families

(i.e. the census data). How are these related? Suppose we have a fam-

ily that (ultimately) has 10 births, versus a family with only one. If there

were equal numbers of these two types of families, and we pick a newborn

baby at random, then the chance that newborn comes from the family of 10

must be ten times higher than the chance the baby came from the family of

one! Why? The former families contribute 10 times as many babies to the

baby pool! Random incidence, plain and simple. The random variable  is

thus obtained by a length biased sample of the random variable  (where

the “length” in this case corresponds to the number of babies per family).

This being the case, what do we know about the relationship between these

variables? Well, all we need to know is this:

() =
(2

)

()
=

 () +()
2

()
= () +

 ()

()
·

The formulas above all appear in your handout on random incidence.

How does this relate to the above? Well,

() =
∞X
=1

(|)× Pr{ = } =
∞X
=1

 − 1
2

× Pr{ = } = ()− 1
2

·
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Combining the expressions we have

() =
1

2
× (()− 1) = 1

2
×
µ
() +

 ()

()
− 1
¶

and thus the probability that a randomly chosen newborn has at least one

older sibling who died of SIDS equals

 = () =


2
×
µ
() +

 ()

()
− 1
¶
·

Plugging in the data ( = 0000769 () = 186  () = 2132) we
obtain

 =
0000769

2
×
µ
186 +

2132

186
− 1
¶
= 0000769× 165 = 0001269

Now suppose we sampled SIDS babies (instead of any baby), and asked

what fraction of SIDS babies should have older siblings with SIDS. Well, if

it is really the case that all babies have the same probability of death from

SIDS, independent of other events, then the likelihood a SIDS baby has older

siblings who died of SIDS also equals  as computed above. This number is

65% larger than the fraction of all babies who die of SIDS.

So, should parents of multiple SIDS victims be investigated for murder?

It depends upon whether the observed fraction of SIDS babies with siblings

who have died of SIDS is comparable to 0.001269!! According to an article

titled “Killers may fake infant death syndrome” on p. D1 of the October

28, 1997 issue of USA Today, about 3% had siblings who also died of SIDS!

Hmmmmmm.......



Chapter 6

Markov Models

6.1 Examples

6.1.1 Prison Planning

As the aide to the newly elected governor of your state, you have assumed re-

sponsibility for implementing the campaign promise to define a set of changes

in the operation of the penal system. You have given some thought to the

matter and have decided that you have essentially one instrument that you

can control and one resource that you must provide. In the first instance, you

could persuade the courts and probation boards to raise or lower the average

length of incarceration. The average time in prison after each conviction is

now four years, but you believe that you could move that average up or down

by one year. The resource you must provide is the staff of probation officers.

Each probation officer can handle an average of 25 cases at a time.

Conditions in your state result in the annual conviction of about 1% of

the population not in jail or on probation. All prisoners who are released

from jail must enter probationary status. In any given year, 30% of the ex-

convicts on probation are convicted of a new crime and returned to prison,

but 10% are fully rehabilitated and return to the “general population” (that

is, those not in jail or on probation); the rest remain on probation. Assume

that the current policies have been in operation for a long time, and thus the

distribution of the population has reached an equilibrium. It costs $50,000

per year to maintain a prisoner in jail, but only $10,000 per year (including

the salary costs of probation officers) to keep a prisoner on probation. There

127
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are one million people in your state, including those in prison or on probation.

(a) Draw a diagram to indicate the probabilistic flows through this sys-

tem. Make sure to indicate clearly the states and annual transition proba-

bilities.

0.01 0.75
0.99         STREET             JAIL

0.3

0.1
0.25

     PROBATION

0.6

(b) What is the expected number of people who are neither in jail nor on

probation?

Well, first we need to find the steady state of the system. Denote , 
and  as the steady state probabilities of finding a citizen on the treet (i.e.

not in jail or on probation), on  robation, or in ail. We have from (a):

 = 99 + 1 + 0

 = 0 + 6 + 25

 +  +  = 1

These solve to yield  = 0794,  = 0079, and  = 0127 Now, the ques-
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tion asks for the expected number of people on the street which is simply

1 000 000×  = 794 000

(c) What is the expected number of persons in jail?

1 000 000×  = 127 000

(d) How many probation officers are needed to maintain the average case-

load?

Well, there are on average 1 000 000× = 79 000 persons on probation,
and if each probation officer can handle 25 cases, then we need 79 00025 =
3160 officers. Actually, roundoff error shows up here —  = 0079365 to
more decimal places, and hence we need 3175 officers (but what are 15 pa-

role officers between friends?).

(e) What is the annual cost of operating the state penal system?

Well, we pay $50,000 for each prisoner and $10,000 for each person on pro-

bation annually. So, in total we pay $50 000×127 000+$10 000×79 000 =
$714  (!)

(f) What is the annual conviction rate in the state?

Convictions occur with probability .3 each year for parolees and with

probability .01 for those on the street. So, the conviction rate is 3+01 =
0032 (i.e. 3.2% of the population gets convicted each year on average).

(g) Given what you know about the system, what changes might you

recommend to the governor? Remember, you can control (within limits)

the average prison sentence, and you also have flexibility with respect to

the number of probation officers. In discussing your recommended changes,

make sure to provide estimates of the annual conviction rate and the cost of

operating the penal system.

Basically what you control is the average sentence length; call this .

Now if you resolve the model for the steady states as a function of  you will

discover that:



130 CHAPTER 6 MARKOV MODELS

 = 10(11 + 4)
 = 1(11 + 4)
 = 4(11 + 4)
(Try substituting  = 4 in the above expressions to see how you reproduce

your results in (a)).

The total operating cost of the prison system per capita with an average

sentence length of  is just Prison Cost = $50 000 + $10 000 while the
conviction rate is given by 01 + 3  Now, it is clear that as a function of
, prison costs are going up with  while convictions are going down with .

How should the tradeoff be managed? Well, suppose that the average cost

society suffers from crime   is just denoted by . Then the sum

of crime plus prison costs per capita would be given by

  = 50 000 + 10 000 + (01 + 3 )

which is equal to

  =
10 000 + 50 000× 4× + (01× 10 + 3)

11 + 4
=
10 000 + 4+ 20 000

11 + 4


Now this expression is of the form (+ )(+ ) where  = 10 000+ 4,
 = 20 000,  = 11 and  = 4. Convince yourself that the following is
true:   is increasing in  if   , otherwise   is

decreasing in . If the total costs are increasing in  then we want to shorten

prison sentences, while the reverse is true if total costs are decreasing in  (in

which case we wish to lengthen prison sentences).

The condition for   to be increasing in  is thus equivalent to

  $1 350 000 while for   $1 350 000   is decreasing in .

What this says is that if the cost per conviction is relatively cheap (  $135
million) then we should allow more convictions and save on prison time, and

thus set prison sentences as short as we can. On the other hand, if the cost

per conviction is relatively expensive (  $135 million) then we should cut
down on the number of convictions by increasing prison time. Note that

what is really going on is that if you increase prison time by increasing , you

reduce the number of  that are occurring (as there are fewer potential

criminals to commit such crimes). In other words, it is not the convictions

per se that cost money - we have simply looked at the cost of crime per

conviction.

So, in a nutshell, under the assumptions of this model, I would advise

the governor to decrease the length of prison sentences if crimes are costing
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society less than $1.35 million on average per conviction, and to increase

the length of prison sentences if crimes cost more than $1.35 million per

conviction on average. Of course, there are several features of this model

which are not realistic. The most unrealistic feature is that the Markov

transition probabilities are independent of , the length of a prison sentence.

If we have longer sentences, for example, then the reality that the population

really consists of would be criminals and those who would never commit

crimes would cause the transition rate from the street to prison to decline

as  increases (as those not in jail or on probation would be less likely to

commit crimes). Also, we are using a single average sentence length over all

crimes, something which convicted murderers might enjoy but tax evaders

might protest. Nonetheless, the model does capture some realistic features,

including the tradeoff between paying for the penal system and paying for

crime. Indeed, it seems reasonable that if crimes are not that expensive to

society, then society should be willing to suffer more of them (and hence we

have shorter prison sentences) relative to the case where crimes cost more to

society so that lowering the crime rate (via increasing the length of stay in

prison and associated prison costs) is an appropriate policy.

Markov Migration Model

Imagine a scenario in which in expectation, one million new (i.e. first time

or rookie) undocumented immigrants cross the border into the US for the

first time each year (all immigrants in this problem are undocumented). In

addition to these first time border crossers, repeat (or circular) migrants re-

cross the border having previously visited the US and departed in a manner

to be described shortly. Assume that irrespective of whether an arriving

migrant is a rookie or a repeat visitor, the average duration of stay in the

United States equals six years (equivalently, within the Markov model you

are to construct, in expectation one sixth of all undocumented immigrants

in the US leave each year). After any visit to the US (whether rookie or

repeat), migrants retire from all further migration (that is, quit the migration

process) with probability 1/3 and never return to the US. With probability

2/3, migrants who just left the US remain “active” in their home country.

In any year, active migrants return to the US from wherever they are with

probability 1/2. Equivalently within the Markov model you are to construct,

migrants who leave the US but have not yet retired return to their home

country, and in any year, in expectation 50% of such active migrants return
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to the US. Note that all migrants retire outside of the US, so none remain in

the US indefinitely.

(a) Draw a state transition diagram for this discrete time, three state

Markov process letting the states  (),(), and () denote the (expected)
number of migrants who are in the US, outside the US but active, and outside

the US and retired respectively as of the end of year . Note that your

diagram must account for the expected arrival of a million rookie migrants

to the US each year, in addition to repeat (circular) migrants.

Here’s my picture:

(1/6) * P (t ) * (1 − 1/3)
        1 Million/yr

               P (t )                M (t )

        (1/2) * M (t )
(1/6) * P (t ) * (1/3)

               Q (t )

There is an external arrival rate of 1 million new migrants per year directly

to the undocumented population in the US, in addition to repeat migrants

who arrive at rate()2 (as the problem states that active migrants return
in any year with probability 1/2, and there are() such active migrants in
expectation).

(b) Suppose that at time  = 0, the process has not yet begun and thus
 (0) = (0) = (0) = 0. Starting at time  = 1 (time is measured in
years), the first wave of rookie migrants arrives, and the process evolves as

described from that point. Produce a graph showing  (), (), and ()
over the first 30 years of this process. As of time  = 30 years, how many
undocumented immigrants are there in the US? How many active migrants

are there outside of the US? How many migrants have quit the migration

process?

Producing the graph requires executing the model from (a), which means

the state transition diagram must be translated into equations. You need
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three equations, one for each of  (), () and (). Here they are:

 (+ 1) =  () + 1 000 000 +()2−  ()6

(+ 1) = () + (16)× (23)×  ()−()2

(+ 1) = () + (16)× (13)×  ()

Iterating these equations from  = 0 for 30 years yields the graph shown
below:
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As of year 30, the (expected) numbers of undocumented immigrants in

the US, active migrants outside the US, and retired migrants are given by

 (30) = 13 515 0214, (30) = 2 905 5893, and (30) = 13 579 3893
Note that summing these equations reveals that

 (+ 1) +(+ 1) +(+ 1) =  () +() +() + 1 000 000

which says that the total population of people who have ever visited the US

increases by a million persons a year on average. And,  (30) +(30) +
(30) = 30 million.

(c) Now imagine that this process continues unabated for a very long

time. What are the limiting values  and  of  () and () as  → ∞?
Provide an answer using each of the following two approaches, and show that

your answers are the same: (i) apply the Markov model to achieve steady
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state solutions for  and  , and (ii) deduce the values of  and  directly

via Little’s Theorem from queueing theory.

(i) Using the Markov model, the steady state equations for  and can

be found by substituting  and  into the state transition equations and

solving. So, you need to solve:

 =  + 1 000 000 +2− 6

and

 = + (16)× (23)×  −2

The second equation implies that = 2×(16)×(23)× = 29 Plugging
this result into the first equation yields

1 000 000 + (29)2− 6 = 0

which implies that  = 1 000 000(16−19) = 1 000 000(318−218) =
18 million. Substituting back into  = 29 implies that  = 4 million.
Thus, if this process continued indefinitely, there would be on average 18

million undocumented immigrants in the US, plus another 4 million active

migrants outside the country.

(ii) We can also get these results directly using queueing theory. The

arrival rate of first time undocumented immigrants to the US is one million

per year; think of this as . Over time, each of these will average 3 visits to

the US (since the probability of quitting is 1/3 after each visit), and on each

visit, the average duration of stay is 6 years, for a total of 18 years spent in

the US; think of this as . So, using Little’s Theorem,  =  implies that

there are 1 million/year × 18 years = 18 million undocumented immigrants
in the US, in agreement with the Markov result from (i). Similarly, over time,

each of the 1,000,000 first time migrants each year will spend an average of

two episodes as an active migrant outside the US (because if there are three

visits until quitting on average, then there must be an average of two active

migrant spells), and each such active migrant episode averages 2 years (since

for active migrants there is a 1/2 probability of returning to the US each

year). Thus, the total time active migrants spend active outside of the US

averages 2 episodes × 2 years = 4 years in total. Thus, Little’s Formula

now yields 1,000,000 × 4 = 4 million active migrants in steady state, again
in agreement with the Markov result from (i).
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(d) After  years have passed, what is the expected total number of mi-

grants who visited the United States at least once (i.e. the expected number

of distinct migrants who have ever crossed the border, including retired mi-

grants; your answer must be a very simple formula involving )?

A gift, I tell you, a gift! The number who visit the United States at least

once is exactly the same as the number of first time migrants, and with a

million rookies each year, the expected total number of migrants who visit

the US at least once just equals 1 000 000× .

(e) Let () denote the mean number of times a migrant has crossed
the border to the United States up to the end of year , where this average

is taken over all migrants who have ever crossed the border (that is, all

migrants considered in the solution to part (d) above, which again includes

retired migrants). After  years have passed, produce a simple formula for

the expected total number of times migrants have crossed the border into

the United States in terms of (). Based on this result, produce a simple
formula for the expected total number of migrants who have retired by the

end of year  (that is, a simple formula for ()) in terms of () and  ().

We just learned from (d) that the expected total number of migrants who

visited the US at least once after  years is equal to 1,000,000 × . Now we

are told that over all migrants who have ever crossed the border, which is the

same thing as over all migrants who visited the US at least once, the average

number of trips per migrant equals (). This means that the expected
total number of border crossings (whether first time or repeat) must equal

1 000 000 ×  × (). Now, all of these border crossings into the US will
eventually have an associated exit from the US. But, as of time , of the

1 000 000 ×  ×() border crossings into the US,  () have yet to exit —
these are the undocumented immigrants still in the US at the end of year !

We thus have a simple formula for the total number of exits from the US at

the end of year , namely 1 000 000× ×()−  (). Since we know that
one third of all migrants retire after any trip to the US, we conclude that

() =
1 000 000× ×()−  ()

3
·

(f) Invert your result from (e) to produce a simple formula for () in
terms of  () and  (), and plot () for the first 30 years of this process.
What is (30)?
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Simply solving the result from part (e) for () yields

() =
3() +  ()

1 000 000× 
·

Plotting over 30 years yields the graph below, while (30) = 181.
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(g) As →∞, what happens to ()? Answer this based on the problem
formulation, not by continuing your numerical calculation from part (f) ad

infinitum.

As  → ∞, we see that the retired population will keep growing by just
under a million persons per year while the number of migrants who are in

the US or active outside the country approach the constant values deduced

in part (c) above. As virtually all those who have ever visited the US will

have retired as  → ∞, we expect that the average number of trips to the
US over all those who ever visited will converge to 3 (as that is the average

number of visits until quitting). This is indeed the case, but it takes a very

long time until it happens, as illustrated in the optional problem below.

(h) Define (), (), and() as the average number of trips to the
US by the end of year  among migrants in the US ( ()), active migrants
not in the US (()), and retired migrants (()) respectively at the end of
year . In part (f) you deduced (), the overall average number of trips to
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the US among all those who ever visited the US by the end of year . Clearly

the following “conservation of trips” equation must hold:

() =
 () () +()() +()()

 () +() +()


Using your Markov migration model, deduce a recursive scheme to compute

 (), (), and (), apply your scheme to plot  (), (), and
() for the first 30 years of the process, and show that the conservation
equation above holds numerically. (HINT: think first about computing the

expected total number of trips to the US to the end of year  for migrants in

 (), (), and () respectively.)

We like hints! Let’s define  () () and () as the expected total
number of trips (i.e. departures) to the US to the end of year  for migrants in

 (),(), and () respectively, just as the hint says. If we knew the values
of these three quantities, then we could easily compute  (), (), and
() via the ratios  () (), ()(), and ()() respectively.
Note that with these ratios, the conservation of trips law expressed above

clearly holds, as we would have

() =
 () ()×  () + ()()×() + ()()×()

 () +() +()

=
 () + () + ()

 () +() +()

=
Total Trips to the US by the end of year 

Total Migrants as of the end of year 
·

So, we need to figure out  () () and ()
These actually follow quite directly from the Markov process! Let’s start

with (), the total trips to the US up to the end of year  taken by retired
migrants as of the end of year . I claim that

(+ 1) = () +
1

6
× 1
3
×  ()

Why? Because if  () is the expected total number of trips taken to the
US by those in the US as of the end of year , in the next year, one-sixth of

migrants in the US are expected to leave, and one third of those leaving are

expected to retire, and all of these new retirees will bring their total trips
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to date with them! This means that the expected total trips to date to the

US among those retired at the end of year +1 gets increased over the total
number of such trips among those retired at the end of year  by 1

6
× 1
3
× ()

This is great, if we can figure out  ()

Similarly, considering total expected trips to the US among active mi-

grants outside the US, I claim that

(+ 1) = () +
1

6
× 2
3
×  ()− 1

2
()

Here we track the expected number of people leaving the US who do not

retire by the end of year ; these people bring their trips-to-date with them,
which by definition equals  () in total. But, half of the active migrants
return to the US in the following year, so we need to subtract out half of the

expected trips-to-date in that population. The result is the equation shown

above.

Almost done! What about migrants in the US? I claim that (and this is

a bit trickier)

 (+ 1) =  () + 1 000 000 +
1

2
(() +()× 1)− 1

6
 ()

What is different in this equation is that whenever a migrant enters the US,

they increase the number of trips to the US by one per migrant. SO, since on

average there are one million rookie (i.e. first-time) visits to the US per year,

we need to add in one million new trips! Plus, since on average (12)×()
active migrants return to the US over year , they bring an expected ()2
total trips to date with them, plus an additional ()2 trips, one for each
active migrant crossing back into the US. Finally, since on average one sixth

of the migrants in the US leaves in any year, the total trips to date among

migrants in the US must be reduced by  ()6. The result is the equation
shown above.

Iterating these three equations for 30 years starting with  (0) (0)
and (0) all equal to zero yields the expected total trips in each population
subgroup over time, and dividing by the subpopulation sizes to obtain our

ratios yields the sought after estimates of mean trips to date in each sub-

population. Plotting over time gives the graph below, while numerically it is

clear that applying the conservation of trips equation

() =
 () () +()() +()()

 () +() +()



6.1 EXAMPLES 139

yields exactly the same results for mean trips to date overall as found previ-

ously in part (f). Eventually, all of these average trips per migrant in different

subpopulations converge to 3, but it takes a very, very long time, as shown

in the second figure below.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 5 10 15 20 25 30

Mean Trips

mP(t) mM(t) mQ(t) m(t)

0

0.5

1

1.5

2

2.5

3

3.5

0 200 400 600 800 1000

Mean Trips

mP(t) mM(t) mQ(t) m(t)



140 CHAPTER 6 MARKOV MODELS

6.1.2 HIV Infection and Paid Plasma Donation

Unlike voluntary blood donation, the bulk of plasma donations stem from

paid plasma donors. It is perhaps not surprising, then, that the rate of new

HIV infections among paid plasma donors is about 20 times greater than

the corresponding rate for voluntary blood donors. In this problem you will

develop a simple Markov model that describes the HIV risk from paid plasma

donors; models to evaluate policies for mitigating such risks (e.g. holding

policies) follow from the basics you will develop below, but are a bit beyond

the methods of this class.

Let us discretize time to a weekly scale, and focus on a new paid plasma

donor just beginning her plasma donation “career.” We will assume that

such new donors are HIV− as determined by “qualifying” HIV antibody

tests. Each week, there is a probability  that this new donor will become

infected with HIV (via whatever risk), a probability  that this donor will

quit donating plasma, and a probability 1 −  −  that the donor will not

have become infected and continue donating plasma. The actual number of

plasma donations in a given week, , follows a Poisson distribution with

mean  donations per week.

If a donor becomes infected, the infection is not detectable for a certain

period of time (the “window period”) until the HIV antibody level rises

above the detection level of the antibody test employed. While a donor is

infected but not detectable, we assume that paid plasma donations continue

at following the same Poisson distribution with a mean of  donations per

week. We continue to assume that there also remains the same probability

 of quitting each week, but now assume that the window period expires

with probability  each week (and thus with probability 1−−  the donor

continues in the next week to donate while infected but not detectable as

infected).

If the donor does leave the window period (a probability  event) while

still an active donor, we assume that donations continue in accord with a

Poisson process, but that the infection will be detected if any infectious

donations are made in a week. We will assume that all test results are

determined at the end of the week, so for an infected donor who is out of

the window period and thus able to be detected as infected, in a given week,

either the donor quits donating (with probability  again), donates and is

detected as infected (with a probability  that you will determine below), or
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continues to the next week without having quit (or having been detected)

with probability 1− − .

(a) Carefully formulate this problem as a five-state Markov chain, where

the states correspond to donors being uninfected and donating, infected but

not detectable and donating, infected and detectable and donating, having

voluntarily quit donating plasma, or detected as having made an infected

plasma donation. Draw the state-transition diagram, and label the transition

probabilities between states using the notation described above.

The state-transition diagram (ignoring self-loops) is shown below:

     Uninfected

          q

       Donation
           p     Career Ends

          q

      Infected but 
     Undetected

          q

        Positive
           w        Donation

       Detected

d = Pr{X > 0 }

    Infected and 
     Detectable

(b) An infected donor who is out of the window and hence able to be

detected will get detected if any donations are made in a given week. Given

that the weekly number of donations  is a Poisson random variable with
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mean  donations, what is , the probability that an detectable infected

donor is actually detected?

This is simply given by  = Pr{  0} = 1− Pr{ = 0} = 1− −
(c) What is the probability that a new paid plasma donor will quit do-

nating plasma before becoming infected with HIV?

Directly from the state-transition diagram, this is just given by (+).

(d) What is the expected number of undetectable, infected plasma dona-

tions made over the course of a paid plasma donation career?

First, the probability a new donor becomes infected before quitting is

(by subtracting the answer to (c) from 1) ( + ). Second, the expected
time a donor spends in the infected but not detectable state is just equal to

1( + ) — why? Because the probability of leaving the infected but not
detected state each week equals  + , so we have a geometric distribution

for the time during which undetectable infected donations can be made, with

mean 1( + ) as claimed. Third, while donating, the expected number of
donations per week is just . So, the expected number of undetectable,

infected plasma donations over the course of a career equals



+ 
× 1

 + 
× ·

(e) What is the probability that a new plasma donor will eventually end

up infected and be detected via at least one HIV-infected plasma donation?

For this to happen, the donor must be infected, pass through the window,

and then be detected. Directly from the transition diagram, this occurs with

probability


+ 
× 

 + 
× 

+ 

where  = 1− − from part (b).

(f) Consider the following parameter values that are representative of

paid plasma donors in the US (as well as the HIV antibody test):  =
12 × 10−5;  = 001;  = 03; and  = 13 donations per week. There
are about 13 million paid plasma donations each year. If there were no

additional safety measures in place beyond basic antibody screening, how
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many infected plasma donations would enter the plasma supply? (HINT:

what is the probability that a randomly selected plasma donation is infected

and not detected? HINT for the HINT: on average, how many donations are

there in a donation career, and of these, on average how many are infected

but unable to be detected?)

First, what is the average number of donations per career? The answer

is just given by

× ( 1

+ 
+



+ 
× 1

 + 
+



+ 
× 

 + 
× 1

+ 
)

But for the data in this problem, note that  = 12 × 10−5 is so small that
the expression above essentially collapses to  = 1301 = 130 Now, how
about the expected number of infected but undetected donations per career?

This is just given by

× ( 

+ 
× 1

 + 
) = 0005

Make sure you understand why these two expressions are correct!

So if there are on average 0.005 infected but undetected donations out

of every 130 in a career, then a randomly selected donation will be infected

but undetected with probability 0005130. So why worry? Because there
are about 13 million paid plasma donations each year, so on average, the

number of undetected but infected donations that would enter the plasma

supply absent further safety measures would equal

13 000 000× 0005
130

= 500

And infected plasma is bad news, since plasma products are pooled (e.g.

Factor VIII for treating hemophilia, which is why there was a devastating

HIV epidemic among hemophiliacs before blood and plasma donor screening

was initiated).

6.1.3 Working For The Government

Suppose you are a well-educated modeler who earns $20,000 per month work-

ing for the Bureau of Labor Statistics. Given the recent government shut-

down you want to plan how much to set aside for a rainy day. Luckily you
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have accurate data for this. You know that your chance of being furloughed

(that is, losing employment) after any month in which you were working is

3% (and your chance of staying employed in the next month is 97%). When

unemployed, the probability that you remain unemployed in the next month

is 70% (and with probability 30% the furlough ends and you get your job

back). Thus, in any month you are either employed or unemployed, and

this month you are employed. Your minimum necessary expenditures when

unemployed (rent + chicken noodle soup, no movies, cappuccinos or fancy

cocktails) are $12,500 per month.

(a) Clearly if you are employed this month, the chance you are unem-

ployed next month is 3%, so you have a low expected cost from unemploy-

ment next month. But you are planning for the long-term! What is your

equilibrium unemployment rate (probability of being unemployed in any sin-

gle month over the long-run)?

First things first — this a Markov chain where the states correspond to

being employed or unemployed, and the big picture is:

0.03

0.97 0.7

0.30

Employed Unemployed

Now that we understand what is going on, we can answer the question. Let

 = Pr{Unemployed} in the long run. That means that the probability of
being employed must equal 1 − . To find , we note that to be unem-

ployed in some month far in the future (which happens with probability 

by definition), it could be that you were employed in the prior month (that

happens with probability 1− ) and given that you lose your job in the next

month with probability 0.03, or you could have been unemployed in the prior

month (with probability ) and given that you don’t regain your job in the

next month with probability 0.7. Thus,

 = (1− )× 003 + × 07
Solving for  yields

× (1 + 03− 07) = 003 or
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 =
003

033
=
1

11
·

(b) If you become unemployed next month, how much money should you

have saved to cover your expected costs until you get your job back?

Well, once unemployed, you stay unemployed in the next month with

probability 0.7 and get your job back with probability 0.3. This is like

tossing a coin where the probability of heads equals 0.3, and you want to

know how many times you have to toss the coin until you get heads for the

first time. And we know the answer to that, since this is a garden variety

geometric distribution (just like the Nation of Shoplifters). So, the expected

duration of unemployment just equals the expected time until regaining em-

ployment, and that is given by 103 ≈ 333 months. Now, you have already
determined that your minimum monthly expenditure is $12,500, so your ex-

pected total expenditures over your duration of unemployment equals $12,500

×(duration of unemployment) = $12 50003 = $41 66667
(c) Good news: you have saved the amount of money indicated by your

answer to (b)! Bad news: you have just been furloughed. What is the

probability you will run out of money before you get back to work at the

Bureau of Labor Statistics?

From part (b), you saved enough money to get by for about 3.33 months.

If you are unemployed for 1, 2 or 3 months, you will have saved enough to

get by. However, if your unemployment spell lasts four or more months, you

will run out of money. So, the probability that you will run out of money is

just the probability that you will be unemployed for more than three months,

and that is given by 073 = 0343 Note that since hiring/firing occurs only
at the end of each month, it is not possible to be unemployed for exactly

3.33 months in this model. This little example shows why it is not always

a great idea to make decisions in accord with averages. Maybe instead of

saving enough to meet expected expenses over an unemployment spell, you

should instead save enough so that there is only a 5% (or maybe only a 1%)

chance of running out of money.

(d) Now you are offered the opportunity to take a different position doing

web-design. The chance you get re-employed in the next month following one

you start as unemployed would go up to 40%, while your chance of being laid

off in a month following one where you are working would equal 5%. What
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is the minimum monthly salary from the web-design job that would justify

switching jobs and taking the offer? Please answer purely on the basis of

whichever career would offer the highest expected monthly salary over the

long run.

Let’s start by first computing your expected monthly salary over the long

run for your job at the Bureau of Labor Statistics. From (a) we learned

that the chance you are unemployed in any month equals 111, which means
that you are earning money in any month with probability 1011, and conse-
quently your expected monthly salary from the BLS equals (1011)×$20 =
$18 182. Now let’s consider the web-design job. This can also be represented
as a Markov process, just like the BLS job, but now your probabilities of get-

ting re-employed or laid off differ. Just changing the figure from part (a) to

the new option yields:

0.05

0.95 0.6

0.40

Employed Unemployed

So with the web-design job, your chance of getting rehired after being laid off

are higher than with the BLS, but on the other hand there is also a higher

chance of getting laid off in a month you are working. Following exactly

the same logic as in part (a), the steady state probability of being employed

is equal to 040(040 + 005) = 89. Suppose your monthly salary from
web-design while working is equal to . Then your expected monthly salary

from web-design would just equal (89) × . In order for you to prefer the

web-design job on the basis of having the highest expected monthly salary,

it must be that

8

9
×  

10

11
× $20 000 ≈ $18 182

This means that you would prefer the web-design job if it offers a monthly

salary   9
8
× 10

11
× $20 000 ≈ $20 455, or about a 2.3% raise over your BLS

salary.
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6.1.4 More Cyberscadaddle

(d) Recall the HOL model, and suppose that upon infection of the HOL, the

government discovers the cyber attack but cannot destroy it immediately.

Specifically, suppose that starting from time 0 when the HOL is infected, the

government is able to destroy the virus and halt all further SCADA infections

with probability  per period. However, there remains a probability  per pe-

riod that the virus spreads to the next vulnerable SCADA, and consequently

a 1 −  −  probability that the situation remains unchanged to the next

time period (so in any period, either the virus is destroyed, a new SCADA is

infected, or nothing changes). Under these assumptions, determine the ex-

pected total number of additional SCADAs that are infected beyond the HOL

until the government destroys the computer virus. Do this using a Markov

chain model with states corresponding to the incremental number of infected

SCADAs beyond the HOL plus a trapping state depicting destruction of the

virus.

OK — myMarkov chain is diagrammed below, minus the self-loops on each

of the numbered states with probabilities 1−−. The numbers correspond
to how many SCADAs have been infected beyond the HOL. Note that there

is a probability  that the chain advances from  to +1 infected SCADAs per
period (for  = 0 1 2 ), and a probability  that the government destroys

the cybervirus and all subsequent infection ends.
q q q q q

d
d d d d

0 1 3 4

Destroy

2

Now define  as the expected number of SCADAs infected beyond the

HOL. Starting with only an infected HOL, there are three things that can

happen: the government destroys the virus with probability  in which case

no SCADAs beyond the HOL are infected, the virus spreads to the next

SCADA with probability  in which case one more SCADA gets infected,
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or nothing happens with probability 1 −  −  and the number of infected

SCADAs remains the same. Using the repetition method, this leads to

 = × 0 +  × ( + 1) + (1− − )× 

which simplifies to

 =  +  − 

or

 =



·

(e) Look carefully at your answer to (d) above — it should be a very simple

formula. Explain how you could have deduced this little result without

resorting to a Markov model!

There is indeed a simple way to see this result. Ask yourself how much

time passes before the government detects and destroys the cybervirus. Since

the government will detect the virus in each period with probability , the

expected time until the virus is detected just equals 1 time periods. Of

course, the time until the government destroys the virus is the same as the

time during which the virus can spread, and since the chance that the virus

spreads equals  per time period, we have

(SCADAs infected beyond HOL) = Pr{SCADA infected per period}
×(# periods virus circulates)

=  × 1

=




·



Chapter 7

Queueing Models

7.1 Motivation

Queueing theory is used to model any situation that can broadly be construed

as an interaction between “customers” and “servers.” Canonical examples

include waiting in line at a bank, post office, or a grocery store. More

modern applications include call centers, hospital emergency departments,

airport security, or the department of motor vehicles. But there are numer-

ous other situations which, at first blush, look nothing like service systems

but nonetheless have all the characteristics of customer/server interactions,

which means that skill in identifying or recognizing different situations as

queueing processes can lead to rapid understanding/prediction via applica-

tion of queueing theory. Some examples of this include estimating the annual

number of new HIV infections, or estimating the number of undetected terror

plots-in-progress.

7.2 Questions and Answers in Queueing Processes

Typical questions queueing models try to answer include: on average how

many servers are busy? how many customers are waiting in queue? on

average, how long must a newly arriving customer wait to receive service?

how many servers are necessary to ensure that the probability a customer

waits longer than some pre-specified delay (e.g. 5 minutes) is less than some

threshold (e.g. 5%)? if customers drop out before receiving service due

to impatience (e.g. waiting for bagels) or worse (e.g. waiting for a public

149
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housing unit, waiting for a kidney), what fraction of customers actually do

receive service versus the fraction that drop out? how many servers are

needed to ensure that the fraction receiving service exceeds some threshold?

Queueing theory answers these questions via the construction of appropri-

ate probability models. Naturally one makes certain assumptions, in which

case the answers provided are specific to those assumptions. However some

questions can be answered in great generality as we will see, while others

do indeed need more assumptions. Typical assumptions made govern the

arrival process (e.g. customers arrive in accord with a Poisson process, mean-

ing that the probability a customer arrives in the next ∆ time units is just

proportional to ∆), the service process (e.g. servers are identical with ser-

vice times that are independently and identically distributed according to

some probability law, often taken as exponential), the queueing discipline

(when a server becomes free, which customer gets served next — is service

provided First-Come First-Served, Last-Come First-Served, in Random Or-

der, by some Priority, etc.), and if reneging (dropout) is allowed, the reneging

process (e.g. aggregate dropout occurs in proportion to the number of persons

waiting in queue). Such assumptions enable direct mathematically-derived

answers to questions like those posed above.

Finally, the most common queueing models focus on equilibrium (or

steady-state) behavior, where steady-state here has the same meaning that

it has in Markov Processes — enough time has passed for the process to settle

into a form of probabilistic stability where the different system state prob-

abilities (e.g. distribution of number of busy servers, or number of waiting

customers) no longer change over time. There are also important time-

dependent problems when arrival and/or service and/or dropout rates change

over time, but we won’t get into such problems in this class.

7.3 The Basics: Canonical System Descrip-

tion

Consider the figure below:
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λ B μ

…

m servers

In this figure,  represents the customer arrival rate (in customers per unit

time) to the service facility (the big box). No customers renege (drop out)

in this process. Inside the service facility, there are  identical servers (the

blue boxes) that work independently, and each server has service capacity

, meaning that a busy server is capable of processing  customers per unit

time (idle servers of course process nobody). Another way to interpret  is

as the reciprocal of the mean service time: on average, once a server begins

working on a customer, on average that server requires 1 time units to
process the server.

Again, a single busy server processes  customers per unit time. Suppose

two servers are busy; together they process 2 customers per unit time.
There are a total of m servers, thus the maximum processing rate for the

facility equals  customers per unit time. Clearly, this facility can only

process all arriving customers per unit time if    (why??).

Now, define  as the expected number of busy servers. Can we figure

out what  equals? Sure we can. Recall that each busy server processes

customers at rate  per unit time. This being the case, if on average there

are  busy servers, then the average processing rate of the facility must equal

. However, this same processing rate must match the arrival rate . If

  , the queue would explode, while if   , well, how could the rate

customers leave the facility exceed the rate with which customers arrive on

average? We thus conclude that:

 =  (7.1)

which of course tells us what the expected number of busy servers, , must

equal:

 =



· (7.2)
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A technical aside: this result is correct providing   . If instead  ≥ ,

then  = , that is, all servers are always busy (why??).

7.4 Little’s Theorem

In our canonical queueing model, we are given three pieces of information:

the customer arrival rate (), the service rate () (or equivalently the mean

service time 1), and the number of servers (). We have already shown
you how to find the average number of busy servers (). Usually one is

next interested in the four fundamental quantities: the average number of

customers in queue (denoted by ), the average number of customers in the

service system (denoted by ), the average time spent per customer waiting

in queue (denoted by ), and the average time spent per customer in the

service system (denoted by  ). Here is an amazing result: if in addition to

 , and, you are given any single one of these four fundamental quantities,

you can instantly deduce the values of the other three. This is due a bit of

magic known as Little’s Theorem, which states that:

 =  (7.3)

First, let’s see why this equation is true. Then, let’s use it to find the other

three fundamental quantities. Finally, let’s discuss why this is so intriguing.

Imagine for now that in our canonical system, customers are processed

First-Come First-Served (they need not be for Little’s Theorem to be true,

but this is the easiest way to explain why it works). Suppose a new customer

arrives to the system, and goes to the back of the queue. Just before joining,

she looks ahead and counts the number of customers waiting. On average,

how many are there? Answer: , since by definition that’s the average

number of customers waiting in queue. Now, on average, how long must

this new customer wait to begin service? Answer: , since by definition

that’s the average waiting time per customer in queue. Now, our hero has

finally arrived at the front of the queue. Just before entering service, she

casts a furtive glance back towards the line she has just exited. How many

customers does she see on average? Answer: , again by definition. Now

for the fun part: all of these  customers arrived after she did, and we know

she waited , so given that the customer arrival rate equals  customers

per hour, how many customers arrived while she was waiting? Answer: 

(!!). So, we have just seen that  = 
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Now, what about the other fundamental quantities? Let’s start with

, the average number of customers in the system, which simply equals

the average number of customers in queue () plus the average number of

customers in service. But, for each customer in service, there is a busy

server! This means that the average number of customers in service just

equals , from which we deduce:

 =  + (7.4)

How about  , the average time a customer spends in the system? Well,

 must be the sum of average time in queue () and average time in

service. But, the average time in service is the same as the average service

time, which equals 1. We thus see that

 = +
1


· (7.5)

Finally, let’s see what happens if we multiply equation (7.5) above by . We

get:

 = ( +
1


)

=  +




=  + =  (!!) (7.6)

The result is that  =  , which is actually the formula most often used

when referring to “Little’s Theorem.”

Now, note that if you are given any one of , ,  or , along with

  and , you can immediately deduce the other fundamental quantities.

For example, suppose you know That means that you immediately know

 (via equation 7.5),  (via equation 7.3), and  (via equation 7.6).

The power of Little’s Theorem stems from the endless number of situ-

ations that can be construed as customers waiting for service. Suppose 

is the rate a new product enters a certain production stage, and  is the

mean time spent per unit product in that production stage; then  =  is

the average work-in-process inventory for that production stage. If  is the

average rate with which airplanes take off, and  is the average time spent

airborne per flight, then  =  is the average number of airplanes in the
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sky. If  is the annual mean number of illicit guns that enter circulation,

and  is the mean time an illicit gun remains in use, then  =  is the

average number of illicit guns in circulation that are available for use. And

so on.

7.5 A Little Pollution

Water flows through Lake Mephitic at the rate of 80,000 cubic meters of

water per day. The volume of water in Lake Mephitic remains stable at ap-

proximately 40 million cubic meters. Also along the shore of Lake Mephitic

is an industrial processing plant that dumps 0.16 tonnes per day of the com-

pletely soluble and foul-smelling pollutant from which Lake Mephitic derives

its name; the pollutant is thus evenly mixed throughout the water in the lake

(that is, you can assume that the concentration of the pollutant is the same

throughout the lake). Ignoring evaporation of both water and pollutant,

what is the average amount (in tonnes) of pollutant in the lake? (HINT:

the name of this problem!)

Answering this question largely involves writing down the information in

the problem. Focus first on the water. We are told that water flows through

the lake at a rate of 80,000 cubic meters per day, and that the volume of water

remains stable at 40 million cubic meters. Ignoring evaporation, what goes

in equals what goes out, so equate the water inflow = outflow rate  to 80,000

cubic meters/day. Also, identify the volume of water in the lake  = 40
million cubic meters. Relying on the hint, we recognize the water flow and

lake volume relation as Little’s Theorem and write

 = 

or

40× 106 = 80× 103 ×

which means that  , the average residence time for water in the lake, is

equal to

 =
40× 106
80× 103 = 500 days.

Now, we are told that the industrial plant dumps 0.16 tonnes per day

of pollutant into the lake, and that the pollutant is evenly mixed with the
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water in the lake. That means that on average, a unit of pollutant will spend

the same amount of time in the lake as a unit of water (since the pollutant

concentration is constant throughout the lake, and the pollutant is completely

soluble — that is, it dissolves in the water, as opposed to forming something

like an oil slick on top of the water and traveling at perhaps a different rate).

So, we can now turn our focus from the water to the pollutant, recognize

that the appropriate arrival rate for the pollutant is  = 0.16 tonnes per day,
and recognize  = 500 days as the mean residence time for the pollutant
(from our earlier calculation plus the assumption of perfect solubility and

even mixing). The average amount of pollutant in the lake, therefore, is

equal to

 =  = 016× 500 = 80 tonnes.
And apparently 80 tonnes of that stuff really stinks! (NOTE: problem bor-

rowed from Harte, J. Consider a Spherical Cow, Sausalito, CA: University

Science Books, 1988)

7.6 ∞ Queueing Models

Most of the time, sadly, you won’t know one of the four fundamental quan-

tities even if those are really what you are interested in. A reason for that

is you are often interested in changing the number of servers in search of the

optimal service level. So, it would be nice to be able to produce a probability

model that yields the four quantities, and only depends upon the arrival rate

, service rate , and number of servers .

To do this, we need to make a few more assumptions. Here’s what we’ll

assume for now: the customer arrival process will be assumed to be Poisson,

as we discussed a few classes ago. So, in a time period of duration  , the

number of arriving customers will have a Poisson distribution with mean

(and variance) equal to  . We will also assume that all service times follow

the exponential distribution. This means that for any server, the probability

that a service time  exceeds some duration  is given by Pr{  } = −.
It is still the case that the mean service time ( ) = 1. Finally, we will
continue to assume that there are servers, each working independently and

with identical exponential service time distributions.

These assumptions give rise to the ∞ family of queueing mod-

els. The first “M” refers to “memoryless” (or “Markov”), and means that
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the arrival process is Poisson. The second “M” refers to the exponential

service time distribution assumption (see “Is it live or is it memoryless?” in

the Poisson process handout). The “m” refers to the number of servers,

while the “∞” refers to the waiting capacity in the system (so there is no

limit on the number of people in queue).

The simplest instance of such a model is the single server queue (1∞).
For this model there are well-known results: assuming Poisson arrivals, and

a single server who processes customers with exponential service times aver-

aging 1, define  =  =  as the server’s utilization, that is, the fraction

of time the server is busy (which is the same as the expected number of busy

servers when there is only one server to begin with — why???). One can

prove that:

 =


1− 
providing   1 (7.7)

So, given  and , you can find . From  and , equation (7.7) tells you

. And, once you have  you can find the other fundamental quantities

from equations (7.4)−(7.6).

7.6.1 Example: Small Town in Iowa with One Ambu-

lance

Suppose in a small town in Iowa with exactly one ambulance, on average

there is one call-for-service per hour (so  = 1), while the mean service time
equals a half hour (so 1 = 12, which means  = 2). The utilization

 =  = 12, thus by equation (7.7) we see that the average time spent
waiting for an ambulance equals

(12)2

1− 12 =
1

2
(7.8)

or 30 minutes. So even though the ambulance is only busy half of the time,

on average a new “customer” (accident victim? heart attack victim?) must

wait 30 minutes until the ambulance arrives!

7.6.2 ∞ and Queueing Toolpak

Now we will keep the same assumptions as the ambulance example, except we

will allow an arbitrary number of servers, denoted by . There are also for-

mulas for this model, and they are displayed in “Queueing Theory’s Greatest
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Hits” in the coursepack, but they are admittedly ugly formulas. However, it

is easy to employ the ∞ model via the Queueing Toolpak (which

can be downloaded from http://queueingtoolpak.org/download.shtml). The

toolpak functions all begin with QTP and are very easy to use. For exam-

ple, to find  for the ∞ model, one uses the Queueing Toolpak

function QTPMMS_Lq. You can access it in Excel as:

Once you click “OK” you’ll see:
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Just enter the required inputs and click “OK.” Note: just leave the QueueCa-

pacity blank, and it will understand that you have unlimited queue capacity.

7.7 Examples

7.7.1 Winnie the Queue

At the local library, requests arrive for a copy of Winnie the Pooh at an

average rate of 3 requests per week. The average circulation time equals 2

weeks per check-out, circulation times are exponentially distributed, and the

library presently has 7 copies of the book. What is the average number of

requests waiting for a copy of Winnie the Pooh?

Answer: well, this is an ∞ model with  = 3/wk,  = 05/wk
(since the mean circulation time is 2 weeks), and  = 7 books. So, entering
these quantities into the Queueing Toolpak function QTPMMS_Lq yields:

So on average there are 3.68 people waiting for a copy of Winnie the Pooh.

How long does someone have to wait on average to get a copy? The answer

is given by

 =



=
368

3
= 123 weeks.

Bummer.

Now suppose that you are told that the library imagines an average cost of
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waiting equal to $5/per waiting customer (most likely a kid)/month, while it

costs $20 per year to maintain a single copy of the book. How many copies

should the library stock? To solve this, note that if you have  books,

then it costs $20× to maintain them annually. Also, the average number

of waiting “customers” would now equal (), that is, the average queue
length depends on the number of servers! And, if you have an average of

() waiting customers, the waiting cost imagined by the library equals
$5 × () per month, or $60 × () per year. So, the goal is to choose
, the number of copies, to minimize

$20×+ $60× ()

You can do this by just using the Queueing Toolpak and plugging in different

numbers of . At the present number of copies (7), total costs are given by

20 × 7 + 60 × 368 = $3608 per year. Increasing the number of books to 8
you discover that

and total costs drop to 20× 8 + 60× 107 = $2242. Increasing to 9 copies,
proceeding in the same fashion you will discover that total costs drop fur-

ther to $203.52 (the average number waiting only equals 0.392). Ten copies,

however would raise costs to $209.12 (though only 0.15 would be waiting on

average). So, the optimal number of copies is equal to 9.
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7.7.2 Gun Control

Violence due to guns is prevalent in our society. One policy proposed to curb

such violence is gun control. One method of gun control would be to severely

limit the sales of new guns, decreasing the rate with which new guns are

introduced to the population of guns in circulation. Suppose that at present,

the rate with which new guns enter circulation is given by  guns per year.

Also, assume that once in circulation, a gun remains in use for an average 

years.

(a) On average, how many guns are circulating in society?

This is simple: if the arrival rate is  guns per year, and the mean circu-

lation time is  years, then the average number of guns in circulation simply

equals  Pretty easy!

(b) Suppose that the passage of a gun control act reduces the rate with

which new guns enter circulation by 80%. However, in response to gun

control, those using guns find ways to increase the length of time guns remain

functional, effectively increasing the average gun circulation time. By how

much would the average gun circulation time have to increase in order to

exactly offset the benefits of gun control (in terms of the number of guns in

circulation)?

Let’s let  equal the current average number of guns in circulation. If

 is reduced by 80% due to gun control, how much does  have to increase

to offset the benefits? Clearly we wish to keep  constant, so the average

circulation time has to increase by a factor of  where

 =  = (1− 8)× 

So we see that  = 1(1 − 8) = 12 = 5. Guns would have to remain in
circulation 5 times as long to offset the benefits.

7.7.3 Election Queues

The Town of Hamden is expecting 30,000 in-person voters on election day.

Polls will be open from 6 AM through 8 PM, and based on past voter be-

havior the town expects that the fraction of all voters who will arrive in each
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hour to vote is as shown in the table below. The time necessary to vote aver-

ages 5 minutes. The town wants to staff a sufficient number of booths each

hour such that on average, voters do not have to wait more than 1 minute

in queue before voting. Presuming that steady state conditions govern sys-

tem performance during each hour, determine the smallest number of voting

booths that must be operational in each hour. You may assume that voters

arrive in accord with a Poisson process, and that the actual time required to

vote follows an exponential distribution.

Hour Fraction of Voters

6 - 7 AM 0.050

7 - 8 AM 0.106

8 - 9 AM 0.087

9 - 10 AM 0.095

10 - 11 AM 0.112

11 AM - Noon 0.087

Noon - 1 PM 0.054

1 - 2 PM 0.072

2 - 3 PM 0.067

3 - 4 PM 0.063

4 - 5 PM 0.067

5 - 6 PM 0.068

6 - 7 PM 0.052

7 - 8 PM 0.020

The first thing you need to do is compute the hourly voter arrival rates.

This simply means multiplying the fraction of voters in the table above by

30,000, which is the expected total number of voters on election day. You

should discover the following:
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Arrival Time Fraction of Voters Arrival Rate
6 - 7 AM 0.05 1500
7 - 8 AM 0.106 3180
8 - 9 AM 0.087 2610
9 - 10 AM 0.095 2850
10 - 11 AM 0.112 3360
11 AM - Noon 0.087 2610
Noon - 1 PM 0.054 1620
1 - 2 PM 0.072 2160
2 - 3 PM 0.067 2010
3 - 4 PM 0.063 1890
4 - 5 PM 0.067 2010
5 - 6 PM 0.068 2040
6 - 7 PM 0.052 1560
7 - 8 PM 0.02 600

Now you need to determine the smallest number of voting booths in each

hour to ensure that the average waiting time in queue, , is less than one

minute.

Here’s a three-step approach to solving this problem:

(a) For each hour let  be the expected number of voters arriving that

hour, and set 1 = 5 minutes which means that the service (voting) rate
 = 12hr.
(b) Set , the number of servers (voting booths), to the smallest integer

greater than  = 12. This is the smallest number of voting booths you
can consider and still be in steady state.

(c) Using either the Queueing Tool Pak function QTPMMS_Wq or the

QUEUEBOOK equivalent, evaluate the value of . Is it ≤ 1 minute (or
0.016666 hours)? Since the arrival and service rate information are in hours

while your waiting time target is in minutes, you can make this easier on

yourself if you multiply the resulting value of  from whatever queueing

package you are using by 60; then you can just ask if you got a number less

than one. If the answer is yes, STOP. If not, try another value of .

Now, there are boring and cute ways to search for the smallest value of

 that works. The boring way is to just keep incrementing  by one over

the value you start with in (b), and keep going until  ≤ 1 minute. One
cute way is to use a “binary chop” search (i.e. bisection). Assuming the

value of  in (b) (call this (1)) is too small (that is  is too large), try
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a larger value of ; call this (2). Now suppose this results in   1
minute. Would a smaller value of  work? Set (3) = smallest integer

≥ ((1) +(2))2 and try that. If it is still true that   1 minute, you
know that all values of   (3) are too big as well. Now set(4) = smallest
integer≥ ((1)+(3))2. Suppose it turns out that for this number of servers
  1 minute. Then (4) is too small, and so is any value of   (4)

So what next? You set (5) = smallest integer ≥ ((4) +(3))2. And you
keep going until you hit the smallest integer  such that  ≤ 1 minute.
This approach cuts the number of eligible solutions in half at each step! As

it turns out, for this problem, the boring method is just as fast, so there

are no real efficiency gains (though there could be for other problems...).

In particular, for those of you using the QTPMMS_Wq function in Excel,

simply incrementing  until you get the waiting time  1 minute is easy,
as you can set up a spreadsheet to do the calculations in parallel (that is,

simultaneously vary in all time periods as a function of ). My solutions

appear below:
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Arrival Time Arrival Rate # Booths
6.5 1500 129
7.5 3180 269
8.5 2610 222
9.5 2850 242

10.5 3360 284
11.5 2610 222
12.5 1620 139
13.5 2160 184
14.5 2010 172
15.5 1890 161
16.5 2010 172
17.5 2040 174
18.5 1560 134
19.5 600 53

Note that the relationship between the required number of voting booths

and the arrival rate is practically linear in this application. In fact, a regres-

sion of the number of voting booths required versus the arrival rate yields

the results:

Regression Statistics
Multiple R 0.999983
R Square 0.999967
Adjusted R Square 0.999964
Standard Error 0.369236
Observations 14

Coefficients Standard Error t Stat P-value
Intercept 3.3509335 0.31470215 10.648 1.81E-07
Arrival Rate 0.0836696 0.000139454 599.98 3.1E-28

This is interesting — it says that in essence, ≈ 335+ since the mean
service time 1 of 5 minutes equals 0.833 hours (the regression coefficient
on the arrival rate is 0.0837, really close!). So basically, all you need to do to

satisfy the requirements is figure out the expected number of occupied voting

booths , and add 4 as an insurance measure (since 4 is the smallest integer

greater than the intercept of 3.35). Note that in the actual solution above,

the average difference between the minimum number of booths required to

keep the waiting time in queue under a minute and the expected number of
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occupied booths  equals 4.07.

7.7.4 Big Data at the NSA

According to Washington Post investigative reporters, “Every day, collec-

tion systems at the National Security Agency intercept and store 1.7 billion

e-mails, phone calls and other types of communications.” (D. Priest and W.

M. Arkin, 2010, “National Security Inc.,” Washington Post, (July 20) A1.)

Suppose that the NSA intercepts communication messages (SIGINT) in ac-

cord with a Poisson process where the mean message arrival rate is as stated

above. Assume that the NSA initially processes such intercepts for further

study (or discard) using 341 automated algorithmic data analyzers (i.e. ded-

icated computers), each of which is capable of analyzing and classifying at

most 5 million intercepts per day. Assume further that the duration of time

required for a single data analyzer to process a single intercept follows an

exponential distribution (equivalently, when busy, a data analyzer processes

intercepts in accord with a Poisson process).

(a) What is the standard deviation of the daily number of messages in-

tercepted by the NSA?

Since new messages are intercepted in Poisson fashion with mean 1.7

billion per day, and since for any Poisson variable, the variance equals the

mean, we have that the variance of the daily number of messages intercepted

also equals 1.7 billion. The standard deviation is just the square root of

the variance, which is
√
17 billion =

√
1 700 000 000 ≈ 41 231 The only

thing tricky here is that you have to remember to take the square root of the

"billion" and not just the 1.7!

(b) What is the expected number of intercepts in queue waiting for an

available data analyzer?

The problem statement clarifies that in addition to the Poisson arrival

rate of 1.7 billion messages per day, there are 341 “servers” each of which

is capable of processing up to 5 million intercepts per day. That the ser-

vice time required to process a single intercept is exponentially distributed

(equivalently, that the analyzers process intercepts in Poisson fashion when

busy) coupled with the fact that the customers are intercepted e-mails who

are not going to drop out on account of impatience implies that the entire

system can be modeled as an ∞ queue with  = 341,  = 17
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billion per day, and  = 5 million per day. This is great, because you can

use the Queueing ToolPak QTPMMS_Lq function to figure out the expected

number of intercepts waiting in queue! I get:

So there are, on average, 317.77 or about 318 intercepts waiting in the NSA

queue for initial processing. The probability that all 341 servers are busy

turns out to equal 0.935. There’s a lot going on at the NSA!

Note that if you did not have access to the Queueing ToolPak, you could

also have determined the answer directly from the formula for  that applies

for the ∞ queue as it appears in Queueing Theory’s Greatest Hits

in your course pack:

where

It took me about 5 minutes to implement the formulas above directly in

Excel, and guess what? I get  = 31777. So there.

(c) A newly transferred human intelligence (HUMINT) specialist has,

thanks to the recent government shutdown, been placed in charge of the

NSA’s SIGINT collection efforts. Bored, the new boss hijacks one of the 341
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automated data analyzers from SIGINT intercept processing to play Candy

Crush, leaving 340 servers to handle incoming NSA intercepts from around

the globe. What happens to the queue of NSA intercepts awaiting initial

processing? Be precise.

So what happens to national security when the head of NSA SIGINT

collection decides to play Candy Crush? Well, since each server can process

at most 5 million intercepts per day, reducing the number of servers from

341 to 340 means that the total daily NSA intercepted message processing

capacity is reduced to 5 million × 340 = 1 700 000 000 = 17 billion. Uh

oh...for queues of this type, if the maximum total processing rate exactly

equals the arrival rate, the queue explodes! To illustrate, watch what hap-

pens inside the Queueing ToolPak if you try to calculate the expected number

of messages in queue with only 340 servers:

Not good. You can also see this directly from the equation for  shown

above: if  = , your formula for  involves division by zero, and you

know what that does (to really see what happens, you need to plug the

formula for 0 into the formula for  and see what happens; you still end

up dividing by zero). Moral: if you are in charge of the NSA, don’t play

Candy Crush.
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7.7.5 A Backup Service Model

The SCII (Small City in Iowa) hospital system currently fields three ambu-

lances. Calls arrive in Poisson fashion at an average rate of 10 per hour. Each

ambulance requires an average of 20 minutes to service a call. If all three

ambulances are busy, the SCII staff alerts the Big Bucks Backup Corporation

(BBBC), which immediately dispatches one of its many, many, many private

ambulances. BBBC ambulances also require an average of 20 minutes to

service a call.

(a) What percentage of the time are all three SCII ambulances busy?

This is an instance of the Erlang Loss Model — i.e. the 33 queue.
The analysis is similar to our homeless shelter and (the first part of the) ICU

examples from class. Arrivals occur at rate  = 10hour, while the average
service time equals 20 minutes, which means that the service rate  equals

3 per hour. Using the Erlang loss formula, the percentage of time that all

three SCII ambulances are busy is given by:

3 =
()33!P3
=0()

!
=

617

1 + 333 + 556 + 617
= 038

So we see that all three ambulances are busy 38% of the time. You could also

have obtained this result using the function QTPMMS_PrFull(10,3,3,0).

(b) What is the expected number of busy BBBC ambulances servicing

SCII calls?

Let’s look at a “block diagram” of this system:

From the picture above, it is clear that the expected number of busy

BBBC ambulances, call this B(2), is given by

(2) =
38

3
= 127

(c) BBBC makes money doing this sort of thing. If the cost per busy

BBBC ambulance per minute is twice the overall cost per minute for SCII

ambulances (i.e. SCII pays for their own ambulances on a 24 hour basis, but

only pays BBBC ambulances on an as needed basis), and neglecting the fixed
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10 Calls/hr 6.2 Calls/hr B(1) × μ = B(1) × 3 = 6.2

 Lose 38%
of Calls

3.8 Calls/hr

B(2) × μ = B(2) × 3 = 3.8

         B(1) Busy 
    SCII Ambulances

       B(2) Busy
  BBBC Ambulances

Figure 7.1:

costs of purchasing new ambulances, how many ambulances should SCII field

to minimize expected costs per unit time?

Well let’s see. The total cost per hour will equal the sum of the costs for

SCII ambulances (primary) plus the costs for BBBC ambulances (backups).

Let  be the cost per hour for SCII ambulances, and suppose we staff 

of them. Then the costs per hour for the SCII fleet will just equal  on

average. Now, if we have ambulances, then the probability that all of them

will be busy is given by the Erlang loss formula

 =
(103)!P

=0(103)
!

·

This means that the arrival rate on calls to the BBBC ambulances will equal

10× , and consequently the expected number of busy BBBC ambulances

serving SCII calls will equal 10×3 (see the block diagram above). Now,
the costs of a busy BBBC ambulance are twice the average cost per SCII

ambulance, so the total costs of using BBBC ambulances when we staff 

SCII vehicles is given by 2× × 10× 3 So, the problem is:

min


+ 2× × 10× 3
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This is easily accomplished in a spreadsheet, either using the formula for 

above, or more conveniently using QTPMMS_PrFull(10, 3, , 0). Note that

the specific value of  is immaterial, so we can set it to one. I obtain:

  Total Cost

0 1 6.67

1 0.77 6.13

2 0.56 5.73

3 0.38 5.53

4 0.24 5.6

So, set  = 3 — hey! They are already operating optimally!

7.7.6 Optimizing ICU Admissions

Each arrival to the ICU receives an APACHE score (APACHE stands for

Acute Physiological and Chronic Health Evaluation); the APACHE scores

can in turn be converted to survival probabilities conditional upon whether

the patient is, or is not, admitted to the ICU. Figure 1 on p. 134 of the paper

shows the survival probabilities as a function of the APACHE scores with (top

curve) or without (bottom curve) the ICU derived from data collected at the

Hebrew University-Hadassah medical center in Jerusalem. Note that for any

APACHE score, patients admitted to the ICU always have a higher survival

probability than patients not admitted (the top curve is always higher than

the bottom curve). Also note that whether admitted to the ICU or not, the

survival probability declines as the APACHE score increases — those with

the lowest APACHE scores are in good shape, while those with the highest

scores are in serious trouble.

To determine the incremental survival probability gained from admission

to the ICU as a function of the APACHE score, simply subtract the bottom

curve from the top curve in Figure 1. The result is shown in Figure 2 on p.

134 of the article. Note that the largest incremental gains in survival accrue

to those with intermediate APACHE scores, rather than those at either end

of the severity spectrum.

Now, there is a distribution of APACHE scores across all those who arrive
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at the ICU (see Figure 6 on p. 135). This distribution can be converted to a

distribution of incremental survival probabilities by filtering the probability

distribution of APACHE scores in Figure 6 through the transformation from

APACHE scores to incremental survival probability offered in Figure 2. It

turns out that after doing this, the distribution of incremental survival prob-

abilities across ICU arrivals is uniformly distributed between 0.03 and 0.44.

That is to say, a randomly sampled ICU arrival would, if admitted to the

ICU, gain an incremental survival benefit (probability) that is equally likely

to fall between 0.03 and 0.44. The fraction of all arrivals with survival benefit

of at least  is shown as a function of  in Figure 3 on p. 134. Presented in

probability density form, the uniform distribution of survival benefits across

ICU arrivals appears as shown below. Note that the average survival benefit

from this distribution is simply given by (003 + 044)2 = 0235, that is,
a randomly selected ICU arrival would gain an additional 23.5% chance of

surviving — that’s pretty good (which is why we have ICUs!).

Distribution of Incremental Survival Probability 
Over ICU Arrivals
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Let  denote the arrival rate to the ICU;  represent the service rate

(departure rate) per ICU bed; and  denote the number of beds in the

ICU. For the example in the paper,  = 2.297 arrivals/day;  = 0.164 de-

partures/bed/day; and  = 8 beds. The capacity of the ICU, that is, the
maximum rate with which patients can be processed (and hence with which

patients can be admitted) is equal to  = 8 × 0164 = 1 31 persons per
day.

First Come First Served

Suppose that any patient who arrives is allowed entry if there is an empty bed;

otherwise the patient is denied admission. Since there is no discrimination

among patients, any patient admitted would be expected to gain the average

survival benefit of 0.235. Thus, the annual expected number of incremental

lives saved on account of operating the ICU would equal

Annual Lives Saved = 131× 0235× 365 = 1124

So the deterministic benchmark suggests that the ICU would save 112.4 lives

per year on average if ICU admission was strictly first come first served.

Cherry Picking

However, if the idea is to save as many lives as possible, why not admit

those with the highest incremental survival benefits within the bed-capacity

constraint? There are 2.297 arrivals per day, but the ICU can only process

1.31 per day. Note that 1312297 = 057, so deterministic reasoning would
suggest “cherry picking” the 57% of the arrivals with the highest survival

benefits. That amounts to selecting only those arrivals with survival benefits

in the yellow shaded region in the figure below (the yellow region is 57% of

the total). This is equivalent to selecting only those patients with survival

benefits at least as large as ∗ where ∗ is the solution to
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044− ∗

044− 003 = 057
This solves to yield ∗ = 044 − 057 × (044 − 003) = 0206. Now, if only
those with incremental survival benefits of at least 0.206 are admitted, the

average benefits for such admits is simply (0206 + 044)2 = 0323 Thus,
the annual expected incremental lives saved under cherry picking is given by

Annual Lives Saved = 131× 0323× 365 = 1544

So, deterministic reasoning suggests that if only those with incremental sur-

vival benefits of at least 0.323 are admitted (that is, if the 57% of all arrivals

with the highest benefits are admitted), the expected annual number of lives

saved can be increased from 112.4 per year under first come first served to

154.4 per year under cherry picking, a substantial increase.

(i) What is the conditional expected survival benefit for admitted

patients?

The key is to note that the survival benefit distribution will now be uni-

form between ∗ and 0.44 as opposed to between 0.03 and 0.44. Therefore,
the conditional expected survival benefit for those admitted will be given by

(|  ∗) =
∗ + 044

2
·
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(ii) Produce a formula for the total ICU admission rate in patients

per day that applies for all potential values of ∗ between 0.03 and 0.44.
(HINT: be careful!)

Clearly what will happen is that as ∗ increases from 0.03, the number of
patients eligible for admission will fall. However, with ∗ = 003, the arrival
rate is  ≈ 23  131 = . So we have to be careful in distinguishing

between the arrival rate and the admission rate. Let’s start with the arrival

rate: if we apply a lower cutoff of ∗, then the arrival rate (∗) will be given
by

(∗) = 23×Pr{  ∗} = 23× 044− ∗

044− 003 for 
∗ between 0.03 and 0.44 inclusive.

Now, what about the admission rate? Clearly the maximum admission rate

is 1.31 patients per day as that is the capacity of the ICU. However, if ∗ is
large enough, then the implied arrival rate (∗) will be less than 1.31 per
day, and the facility cannot admit more patients than those that arrive! So,

your formula needs to be of the form:

Admission Rate (∗) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
131 if (∗) ≥ 131

(∗) if (∗)  131

which simplifies to

Admission Rate(∗) = min(131 (∗)) = min(131 23× 044− ∗

044− 003)

Note that the admission rate switches from 1.31 patients per day to (∗)
patients per day once (∗)  131, or equivalently when

23× 044− ∗

044− 003  131 or when

∗  0206

So another way to express the admission rate is

Admission Rate (∗) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
131 if ∗ ≤ 0206

23× 044−∗
044−003 ∗  0206

·
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(c) You hope to maximize the expected annual number of lives saved

from operating the ICU, so you use this objective to guide your choice of the

cutoff value ∗.

(i) What value of ∗ maximizes the expected annual number of lives
saved? Explain your reasoning!

Using the results from part (b), the expected annual number of lives saved

from operation the ICU as a function of the cutoff ∗ is given by

(Annual Lives Saved) = Admission Rate (∗)× (|  ∗)× 36525

A graph of the expected annual lives saved as a function of the cutoff ∗

appears below:

Looking at this figure, it is clear that the annual expected lives saved in-

creases linearly as a function of ∗ before it declines. And look what the

magic maximizing value of ∗ turns out to be: 0.206, that value of ∗where
the admission rate exactly equals the ICU capacity of 1.31 patients per day!

Why is this happening? Simple: under the fluid assumption, the ICU can

simply take the best patients, that is, those with maximal incremental sur-

vival benefits. So, starting with ∗ = 044, the ICU starts lowering the

value of ∗ until they can no longer accept patients, which happens when the
admission rate exactly equals 1.31 patients per day (which happens when

∗ = 0206). It makes no sense to use a higher cutoff than 0.206, as then the
ICU has excess capacity while admitting all patients with survival benefits in

excess of the cutoff. It makes no sense for the ICU to choose a cutoff lower
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than 0.206, as then not all patients can be admitted, and the ICU might

admit patients with benefits lower than 0.206 while losing some with with

higher benefits. So, the best thing for the ICU to do is to “cherry pick” the

best patients (from the standpoint of incremental survival), which leads to

only accepting patients with ∗  0206

Probabilistic Reasoning: Erlang Loss Model

The real problem is probabilistic: arrivals do not “flow” into the ICU, but

rather arrive discretely according to some random process which we will

assume to be Poisson. This leads to the Erlang loss model as the

natural representation for the problem. Potential ICU admits arrive in accord

with a Poisson process with rate  (= 2297 in our example). Now, we can
still implement a cherry picking policy by specifying a minimum incremental

survival benefit ∗ that is required for admission. For any particular value of
∗, this yields a new arrival rate of potential admits given by Pr{ ≥ ∗}
where  is the random variable denoting incremental survival benefits (the

distribution of which is uniform, that is equally likely to fall, between 0.03

and 0.44 in our example). However, even after applying the benefit threshold,

there is still a probability given by (
∗) that all  beds will be busy; this

follows from an Erlang loss model with arrival rate Pr{ ≥ ∗}, and 

servers each working with rate . Thus, the actual rate with which patients

admitted to the ICU is given by Pr{ ≥ ∗}(1 − (
∗)). To get in, an

arrival must both have a benefit of at least ∗ and find at least one free bed.
The flow pattern is illustrated in the figure below.

λ  λPr{B  ≥ b *}         λPr{B  ≥ b *}(1-Pm (b *))         λPr{B  ≥ b *}(1-Pm (b *))

     λPr{B  < b* }            λPr{B  ≥ b *}Pm (b *)

m beds in the
ICU

Now, recall from Queueing Theory’s Greatest Hits (or equivalently from

equation (3) on p. 132 of the paper) that the probability that  servers out

of  in an Erlang loss model are busy is given by

 =
()!P

=0()
!

for  = 0 1 2 

The probability that all beds are filled when a benefit threshold (or hurdle)
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∗ is in force is found from this formula by substituting Pr{ ≥ ∗} for the
arrival rate and evaluating the formula above for  = . Specifically, we have

(
∗) =

(Pr{ ≥ ∗})!P

=0(Pr{ ≥ ∗})! ·

For the example at hand where the incremental benefits  are equally likely

to fall between 0.03 and 0.44, note that

Pr{ ≥ } =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1   003

44−
44−03 03 ≤  ≤ 44

0   044

·

Finally, if a threshold ∗ is applied, note that the expected survival benefit
for those admitted to the ICU simply equals (∗ + 44)2 (providing ∗ falls
between 0.03 and 0.44).

Example: First Come First Served (∗ = 003)

To evaluate the First Come First Served policy, simply set the benefit thresh-

old ∗ = 003, which means that anyone arriving to the ICU will be admitted
providing that there is a bed available (since everyone has an incremental sur-

vival benefit of at least 0.03 in this example). Using the Erlang loss model

spreadsheet available on the course web site, and plugging in the appropriate

parameter values ( = 2297,  = 0164, and  = 8) you will discover that
the probability that all 8 beds are filled is given by

8 =
(22970164)88!P8
=0(22970164)

!
= 0491

There is almost a 50% chance that all beds are filled! Note that on average,

the number of beds filled equals (from Little’s Theorem after tossing out

those ICU arrivals who do not get admitted due to finding all beds filled)

2297× (1− 0491)0164 = 713
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Also, as before the average benefit is just given by (003 + 044)2 = 0235
Thus, under the First Come First Served policy, the expected annual number

of lives saved by the ICU is given by

Annual Lives Saved = 2297× (1− 0491)× 0235× 365 = 1003

Note that this is smaller than the equivalent figure computed under deter-

ministic reasoning, which was equal to 112.4.

Finding the Optimal Benefit Threshold

The general formula for the expected annual number of incremental lives

saved as a function of the minimum benefit threshold ∗ is given by

Annual Lives Saved = ×Pr{ ≥ ∗}× (1−(
∗))×(| ≥ ∗)× 365

Specialized to the parameters and benefit distribution of our example, we

have

Annual Lives Saved = 2297× 44− ∗

44− 03
× (1− 8(

∗))× ∗ + 44

2
× 365

where the formula for the loss probability 8(
∗) appears earlier in these

notes. The optimal benefit threshold is the one that maximizes the annual

expected number of lives saved. The optimal benefit threshold is found by

graphing the expected lives saved as a function of the benefit threshold and

choosing that benefit that maximizes expected lives saved (the graph shows

daily as opposed to annual lives saved, but this will yield the same optimal

benefit threshold):
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The optimal threshold is given by ∗ = 0194. This leads to excluding 40%
of arrivals on the basis of insufficient benefit (that is, Pr{  0194} = 04),
while admitting 60% of arrivals still yields a loss probability 8(

∗ = 0194) =
02577. The resulting probabilistic flows are shown below:

2.297 2.297*0.6         2.297*0.6*(1-0.2577)         2.297*0.6*(1-0.2577)

     2.297*0.4         2.297*0.6*0.2577

m beds in the
ICU

The expected annual lives saved with the optimal threshold ∗ = 0194 equals

Annual Lives Saved = 2297× 06× (1− 2577)× 194 + 44

2
× 365 = 1184

This is an improvement over First Come First Served by 18 lives per year,

which seems worthwhile.

Note that in comparison to the deterministic model, the stochastic model

is less optimistic (albeit more realistic): the queueing model estimates ex-

pected annual lives saved of 118.4 versus the 154.4 from the deterministic

model. However, it is interesting to note that both the deterministic cherry

picking model and the Erlang loss model produce nearly identical optimal

benefit thresholds: 0.194 in the Erlang loss model versus 0.206 in the deter-

ministic model.
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Bed-Specific Hurdles

The paper considers an even more general admission control, namely, one

where the optimal benefit threshold depends on how many beds are filled.

This model is developed on p. 133 of the paper. The idea is simple: as

beds fill up, you should raise the benefit threshold since capacity has become

scarcer. One can formulate a more general Erlang model (see equations

(8)-(10) on p. 133) to determine the optimal bed-specific thresholds and

the expected lives saved. Of interest in this specific application was that

the optimal bed-specific hurdles only saved an additional expected 1.4 lives

beyond the policy with a single benefit threshold. Now, if you think there

are ethical issues applying a single benefit cutoff, imagine what happens with

bed-specific thresholds — the same patients could be admitted or rejected

based on the simple order in which they arrive! In the Jerusalem example,

the extra benefits from the more complicated policy are not sufficient to

justify arguing for bed-specific hurdles, but in other situations, it could be

that substantial additional lives could be saved this way. Something to think

about!

7.7.7 Repeat COVID-19 Testing

In the Fall of 2020, Yale determined that repeat SARS-CoV-2 asymptomatic

testing of all students and high-contact faculty and staff would be necessary

to enable the safe opening of the university. The Yale Health planning team

determined that ten testing sites would be necessary to handle the 2,320 daily

tests it would take to cover the population screened. Assume that these tests

were uniformly spread over the ten testing sites (so each site conducted one-

tenth of the daily tests), and suppose that each testing site operated for 8

hours per day. In planning how to deliver this service, it was assumed that

within each site there would be some number  testing stations, each of

which would be occupied by at most a single person at a time. Further,

after several trial runs, it was assumed that the average time required for an

individual to enter a testing station, self-swab, and depart was equal to ten

minutes. With these assumptions:

(a) What is the smallest number of testing stations required at each

testing site to process the demand for testing? Remember that the number

of stations must be an integer!
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Given that a testing site must process 2,320/10 = 232 tests per day, and

given that each site will operate for 8 hours, the hourly demand for testing

is given by  = 2328 = 29 tests per hour. Furthermore, we are told that

the service time 1 = 10 minutes, which means that the hourly processing
capacity per testing station is given by  = 6 tests per hour. Consequently,
the expected number of busy servers (or occupied testing stations) is given

by

 =



=
29

6
= 483

which means that each site needs at least 5 testing stations.

(b) Initially planners imagined persons simply showing up at random

(that is, in accord with a Poisson process) at the daily demand rate implied

by the assumptions above. Further, the duration of time spent “in service”

(that is, the time an individual occupies a testing station) was presumed to

be exponentially distributed with mean equal to ten minutes as described

above. On average, how much time would each person screened spend at a

testing site (that is, the sum of the time spent “in service” plus waiting time

to enter a testing station) if the number of testing stations was equal to your

answer from part (a) above?

The assumptions above correspond to those of an ∞ queue,

and you are being asked to find the average total time spent per visit to the

testing site, or  , when the number of servers is  = 5 (since that’s the
answer to part (a)). There are several ways you could do this: you can use

the formula for  from Section 3 of Queueing Theory’s Greatest Hits in the

coursepack, then compute  =  + (where  = 296 from part (a)), and
then compute =  (Little’s Theorem). Or you could use the Queueing

Toolpak or Queuebook to just compute  directly. For example, using the

Queueing Tookpak to compute  yields
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or 31.449 persons in the system, which implies that  = 3144929 = 108
hours. Whichever way you do it, you’ll discover that  = 108 hours (65.07
minutes)!! That sucks!!

(c) Planners felt that the population would rebel against getting tested

if the average time required per visit to a testing site exceeded 15 minutes.

This being the case, what is the smallest number of testing stations possible

that would satisfy this waiting time constraint (consistent with all of the

assumptions and data presented above)?

You are still in ∞ land, but you’ve discovered from (c) that

 = 5 won’t work because the total time in the system is 65 minutes, far

in excess of the 15 minute target. So, you need to increase the number of

servers. Let’s try adding one more so  = 6. Again you are free to use any
of your myriad available approaches to get the answer, but done correctly

you’ll discover that just adding one server reduces the average time spent

in the system from 65 minutes to 14.5 minutes! That makes 6 the smallest

number of testing stations per site for which the average total time spent per



7.7 EXAMPLES 183

visit is less than 15 minutes.

(d) One of the Yale Health staffers suggested that rather than assume

those getting screened would arrive in accord with a Poisson process, it would

be possible to schedule arrivals giving everyone a specific arrival time. Fur-

thermore, this staffer thought that with practice, the time spent in testing

stations, rather than being exponentially distributed, could be brought to es-

sentially equal ten minutes with probability one! Under these assumptions,

what would be the smallest number of testing stations to keep the total time

spent at a testing site below 15 minutes?

Well, with an arrival rate of 29 per hour, in principle one could schedule

an arrival once every 1/29 of an hour or once every 2.069 minutes. We know

that at least 5 testing stations are needed from (a) above. At a capacity of 6

tests per hour for each station, having five perfectly scheduled stations could

process 30 tests per hour. This means that if everyone was perfectly scheduled

and it took exactly ten minutes to process each test, you could get by with

only five stations. In fact, if appointments and processing times were really

adhered to flawlessly, you could handle 30 tests per hour with five stations

— suppose five people show up on the dot once every ten minutes — those

five people would enter the five testing stations just as they empty out their

previous occupants, and lo and behold you’d be processing 30 tests per hour.

BUT — note what is required for this to work — appointments plus processing

times have to be perfect! This can be achieved in mechanized production

systems (e.g. robots and conveyer belts), but once you add variability into

the process (in arrivals or service times or both), this all falls apart. Given

that the expected number of occupied testing stations equals 4.83 without

regard to the probability distributions of the interarrival and service times

(keeping their means fixed), trying to get by with only five stations per testing

site would be a recipe for disaster. Six stations on the other hand? Works

just fine.

7.7.8 The Oldest Person in the World

A supercentenarian is someone who lives to age 110 or beyond. The de-

mographer Jutta Gampe has estimated that the mortality rate for super-

centenarians is constant at approximately 0.7 per supercentenarian per year

for both men and women (though more women reach age 110 than men;

see http://www.demogr.mpg.de/books/drm/007/3-1.pdf if interested). The
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Gerentology Research Group has estimated that on average, there are 375

living supercentenarians on the planet.

(a) Suppose that on average, the number of persons who reach age 110

each year is equal to  Based on the information provided thus far, provide

a numerical estimate for .

The key here is to recognize this as a queueing system!  is the arrival

rate of new supercentenarians (the rate at which people reach their 110

birthday). The service time corresponds to the remaining life expectancy

of new supercentenarians. We are told that “...the mortality rate for su-

percentenarians is constant at approximately 0.7 per supercentenarian per

year...” which means that the mean “service time,” which is equivalent to

the expected remaining duration of life, is equal to 107 = 143 years. So,
recognizing that the number of living supercentenarians is just equal to the

number of “customers in the system,” we have via Little’s Theorem that

 = 

which, for this problem, works out to

375 = × (107)

and consequently

 = 375× 07 = 2625
new supercentenarians per year.

(b) Suppose a person has just reached her 110 birthday. On average,

how much longer will this person live?

Well, if you answered part (a), then you have already answered part (b)!

Since the mortality rate is constant at 0.7 for anyone aged at least 110 years,

the expected remaining life is just given by 107 = 143 years.

(c) Let  denote the actual number of supercentenarians alive;  is a

random variable. What is the probability distribution of , that is, produce

a mathematical expression for

Pr{ = } for  = 0 1 2 3 
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Let’s see — we have an infinite server queueing system here owing to “self-

service” — each supercentenarian serves him/herself. Checking out Queueing

Theory’s Greatest Hits on the course website reveals that for an infinite server

queue, the probability distribution for the number of customers in service is

just Poisson with mean  which in this case is given by 375 (as we are

told that on average there are 375 living supercentenarians; or note that

 = (375143)07 = 375 (since 107 = 143!). So, we conclude that

Pr{ = } = 375−375

!
for  = 0 1 2 3 

This will look just like a normal distribution with a mean of 375 and a

standard deviation of
√
375 = 19 4

(d) Suppose that the oldest person in the world, who of course is a super-

centenarian, has just died (e.g. https://www.nytimes.com/2022/04/27/world/asia/kane-

tanaka-japan-worlds-oldest-person.html). On average, how much time will

pass until the next oldest person in the world passes away?

Well, since the mortality rate for all supercentenarians is constant at

about 0.7 per person per year, from the time the oldest person in the world

dies, on average it will take 107 = 143 years until the next oldest person
passes away.





Chapter 8

Deterministic Fluid Models

8.1 Overloaded Queues with Reneging: Queues

in Public Housing

The salient feature of public housing systems is that the rate at which house-

holds apply for public housing greatly exceeds the rate at which housing

units become available. This is the basic cause of the long waits for hous-

ing assignments cited in the introduction. Denoting the average applicant

arrival rate by  and the average unit turnover rate (which is equivalent to

the assignment rate) by , it is true that    for most large public hous-

ing authorities. For example, from April 1984 through March 1985, 4,422

eligible applicants arrived at the Boston Housing Authority, while only 771

households moved out of public housing units [I].

While waiting lists are large, they are not infinitely so. The reason for

this is that many applicants drop out (or renege) from public housing wait-

ing lists before receiving a unit assignment. Unlike customer behavior in

some queuing systems where reneging occurs due to impatience, housing

applicants renege only when they have the opportunity. In other words,

housing applicants will leave a waiting list if alternative housing has been

secured. A reasonable assumption which reflects this states that the rate at

which applicants renege is proportional to the number of applicants waiting

in queue. More formally, we assume that if  applicants are waiting in queue,

the dropout rate of applicants from the queue equals ; the parameter  is

called the "household-specific dropout rate." Of course, this assumption is

exceedingly difficult to verify empirically as dropout is only detected when

187
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applicants fail to respond to unit offers.

In saturated queuing systems, one expects the percentage deviation of

queue length from average queue length at any given time to become quite

small (9). This is true without regard to the underlying arrival and service

processes. In such circumstances, a deterministic model of the queuing sys-

tem (commonly referred to as a "fluid approximation") leads to the same

conclusions as the "correct" probabilistic model. This is the case in our

public housing system.

Consider the system described above operating in steady state. Let 

denote the expected length of the public housing waiting list. As the dropout

rate is proportional to queue length, the dropout rate in steady state equals

. Also, since all arriving applicants are housed or drop out, conservation

of flow requires that

 =  + 

Wemay think of equation (1) as the law of conservation of housing applicants.

This law implies the expected number of households on the waiting list is

given by

 =
− 


·

Equation 2 provides a simple explanation for the large waiting lists cited in

the introduction. For example, if 1,000 households apply yearly for housing

but only 100 units vacate annually, and if the average time to find alterna-

tive housing equals 4 years (implying  = 025), then an average of 3,600
households would be waiting for public housing.

Now consider a transient analysis of this system. To make matters more

specific, we will assume a first-come, first-housed tenant assignment policy

(such policies are used; see (7) for examples). Let () denote the size of
the waiting list at time . The transient behavior (according to the fluid

approximation) is described by

()


= − − ()

This simple differential equation has the solution

() = (0)− +
− 


(1− −)

and it is clear that ()→  as →∞.
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As mentioned in the introduction, one of the reasons for modeling housing

systems is to predict waiting times. Assuming first-come first-housed, the

time a newly arriving applicant who finds  households in queue must wait

to receive a housing assignment is equal to the time required to deplete

this queue from  to 0. Letting () denote the number of the original 
households remaining on the waiting list  units after the arrival of a new

application, the queue depletion equation is given by

()


= −− ()

with solution

() = (0)− − 


(1− −)

The waiting time to deplete an initial queue of size , , is then found by

setting (0) =  and solving for () = 0 which yields

 =
1


log(

 + 


)

In steady state, a new arrival would expect to find  applicants waiting, so

the equilibrium waiting time  is, after substituting  for , given by

 =
1


log(




)

An alternative derivation of this result can be found as follows: the frac-

tion of all applicants who eventually receive a housing assignment is, via the

law of conservation of housing, given by

Pr{Receive housing} = 


·

A different expression for the fraction of applicants who receive housing fol-

lows from the proportional reneging assumption, which is equivalent to as-

suming that the likelihood an applicant will wait longer than some time  is

given by the exponential distribution exp(−). In equilibrium, if  is the

waiting time for people receiving housing, then the fraction of all applicants

who receive housing must equal exp(− ). Equating to the earlier expres-
sion for the likelihood of receiving a housing assignment yields the identity

Pr{Receive housing} = 


= −

and solving for  yields (1 log()) as before.
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8.2 Examples

8.2.1 Treatment on Demand

Once upon a time in San Francisco, about 1,400 persons were waiting to en-

ter drug treatment (RE: Kaplan and Johri, Treatment on Demand). There

were roughly 6,300 treatment slots available citywide. Approximately 50%

of those seeking drug treatment dropped off of the waiting list before (indeed

without!) receiving treatment, while for those seeking treatment who did

gain entry to the system, the waiting time from request until the initiation

of was one month on average. Drug treatment advocates wanted the system

to provide treatment on demand, meaning that anyone requesting treatment

should be able to enter immediately. Since there were clearly an insufficient

number of treatment slots, as evidenced by the facts that 1,400 people were

waiting to enter treatment while half of all applicants dropped out of the

treatment queue, the advocates thought that providing an additional 1,400

treatment slots on top of the 6,300 that already existed would take care of the

backlog. Indeed, after expanding the number of treatment slots the queue

quickly diminished, but over time (and to the dismay of treatment advo-

cates), the waiting list rebounded to average about 1,100 persons waiting,

the fraction of applicants dropping off the waiting list decreased from 50% to

40%, and the waiting time for those who received treatment dropped from

one month to three weeks. What happened?

Thinking of the treatment system as an overloaded queue with reneging,

let  denote the annual arrival rate of new drug treatment requests, and let 

denote the number of treatment episodes the 6,300 slot system could process

per year, that is, the treatment capacity. Note that if the average duration of

a single drug treatment episode is equal to  years, then the annual turnover

per treatment slot would equal 1 , and with 6,300 slots that are always
presumed full (due the fact that the demand for treatment clearly outstrips

the available supply), the treatment capacity is given simply by

 =
6 300


·

We don’t know the numerical value of  , but as we’ll see we won’t need to

in order to understand what transpired.

Now recall that 50% of treatment applicants drop out of queue without

receiving treatment. This means that the fraction of applicants who do
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receive treatment is also equal to 50%, which is to say that the demand for

treatment is twice the available capacity. Worded differently,

Pr{Dropout} = Pr{Receive Treatment} = 


= 05

from which we again see that  = 2 — the demand for treatment is twice
the available capacity.

What happened when 1,400 treatment slots were added? Clearly the

treatment capacity increased to some new level, say 0. Presuming that the
average duration of a treatment episode  remained unchanged (as there

was no change to the nature of drug treatment offered), the new treatment

capacity can be determined by

0 =
6 300 + 1 400



=
7 700

6 300
× 6 300



≈ 122× 

As a consequence, the fraction of applicants who were able to receive treat-

ment, assuming that the demand for treatment  remained unchanged, was

given by

Pr{Receive Treatment} = 0



= 122× 


= 122× 05 = 061

or about 60%. Right away we see why the dropout rate only declined from

50% to 40% of the annual applicant rate!

What about the number of people waiting to enter drug treatment? As-

suming that the aggregate dropout rate from the treatment queue is propor-

tional to the number waiting by analogy to the overloaded public housing

model described in the previous section, we see that before the addition of
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the 1,400 new treatment slots,

 =
− 



=
− 05



= 05× 


= 1 400

where 1 is the average time a new treatment applicant is willing (or able)
to wait in queue before reneging. After adding the 1,400 new slots, the new

queue length, say 0, is given by

0 =
− 0



≈ − 06


= 04× 



=
04

05
× 05× 


= 08× 1 400 = 1 120

which is very close to the reported 1,100 persons waiting on average after

1,400 treatment slots were added.

What about the waiting time for those who received treatment? Before

the new slots were added, we were told that this average waiting time, call

it  was equal to 1 month, so again by analogy to the public housing model

we have

 =
1


ln(




)

=
1


ln(



05
)

=
1


ln(2) = 1 month.

After adding the 1,400 slots however, the new waiting time for those who
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receive treatment, say  0, is given by

 0 =
1


ln(



0
)

≈ 1


ln(



06
)

=
1


ln(167)

From this we deduce that

 0


=
ln(167)

ln(2)
≈ 074

and thus

 0 = 074×

= 074× 1 month
≈ 3 weeks

as observed. Oh — note that from the equation  = 1

ln(2) = 1 month, we

can also deduce that 1

= 1 ln(2) ≈ 144 months. On average, those seeking

drug treatment are not able to survive long in queue before dropping out!

8.2.2 A Public Housing Problem

At present, there are 100 households one the waiting list to receive a three

bedroom public housing apartment. Three bedroom units only become avail-

able at a rate of 20 per year. However, the quality of these units is such

that applicants are, on average, willing to wait ten years to receive an assign-

ment. Assuming that the public housing application and assignment process

has reached equilibrium:

(a) What is the annual number of new applicants for three bedroom

units?

We are told that the system is in equilibrium. Letting , , and 1
denote the mean number of households waiting (the mean queue length),

the annual unit turnover, and a household’s average willingness to wait, the
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problem identifies  = 100 households,  = 20 three bedroom apartments

per year, and 1 = 10 years. The “law of conservation of housing applicants”
then states that the annual application rate  is given by

 =  +  = 100× 1

10
+ 20 = 30 new applicants per year.

(b) What fraction of new applicants eventually drop out of the waiting

list without receiving a public housing assignment?

If 30 applicants apply each year but only 20 households receive an apart-
ment (as that is the annual unit turnover), it must be that 30 − 20 = 10
applicants drop out of the waiting list without receiving an assignment each

year (note that  = 10010 = 10). Consequently, the fraction of new
applicants that eventually drop out of the waiting list without receiving a

public housing assignment is given by 1030 = 13

(c) For those applicants lucky enough to receive a three bedroom unit,

on average how years must they wait from application until assignment, as-

suming that households are assigned in first-come first-housed fashion?

Given that households are assigned in first-come first-housed fashion, the

waiting time for those lucky enough to receive housing is just given by

 =
1


log




= 10 log

30

20
= 405 years

(note that log refers to the natural logarithm, also denoted by ln).

8.2.3 Housing Is Their Middle Name

The Boston Housing Authority (BHA) was in the news during 1988 in a

big way. Stories gracing both the Boston Globe and the New York Times

surfaced relating tales of discriminatory action in assigning public housing

applicants to available units. The federal Department of Housing and Urban

Development (HUD) filed charges against the BHA following an investigation

of certain assignment practices. HUD cited the following specific statistics

in accusing the BHA of discriminating against minority applicants:

· On average, non-whites who receive public housing must wait nine
months longer for public housing than white applicants.
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· The above is the case, even though non-whites account for 83.5% of

the waiting list for public housing.

· In addition, only 48% of all assignments are made to minorities (in

spite of the fact that 83.5% of those waiting for public housing are mi-

norities).

That these facts are consistent with a discriminating agency appears self-

evident. However, do these facts imply discrimination on behalf of the BHA?

Consider the following proposition: suppose that the fraction of all BHA as-

signments that are received by minorities is exactly equal to the fraction

of all BHA applications that are submitted by minorities. In this instance,

whites and non-whites would have exactly the same probability of receiving

public housing assistance. Surely such a balance of assignment probabilities

is one reasonable definition of a “fair” assignment process. Assuming such a

balance actually exists, can the three HUD charges stated above be recon-

ciled? If so, what are the implied waiting times (in months) for whites and

non-whites who receive housing? You may assume that the housing system

is in steady state, enabling the application of two fluid models for white and

non-white applicants respectively.

First some notation. Let:

1, 2 = applicant rate for non-whites, whites respectively
1, 2 = waiting time to enter housing for non-whites, whites respec-

tively

1, 2 = assignment (move in) rates for non-whites, whites respectively
1, 2 = dropout (reneging) rates for non-whites, whites respectively
1, 2 = queue lengths for non-whites, whites respectively

The three HUD claims can be summarized as follows:

(1) 1 =2 + 9 (with time measured in months)
(2) 1(1 + 2) = 835% (non-whites are 83.5% of the waiting list)

(3) 1(1 + 2) = 48% (48% of assignments go to non-whites)

In addition, the proposition states that

1

1 + 2
=

1
1 + 2

= 48%
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or that the fraction of all applicants who are non-white equals the frac-

tion of all assignments who are non-white. Note that this implies that the

probability of receiving a housing assignment is the same for whites and for

non-whites, an arguably fair process.

From the fluid model discussed in class, note that

1 =
1

1
log

1

1
=⇒ 1 = 1

−11

and

2 =
1

2
log

2

2
=⇒ 2 = 2

−22

These relationships imply that

1
1 + 2

=
1

−11

1−11 + 2−22

=
1

1 + 2(11−22)

=
1

1 + 2

with the last equality following from the proposition that the fraction of

assignments that are non-white equals the fraction of applicants who are

non-white. This in turn implies that

11 = 22

Now consider charge (2):

1

1 + 2
=

(1 − 1)1
(1 − 1)1 + (2 − 2)2

= 0835

However, substituting in our prior expressions for 1 and 2 leads to the

result that
1

1 + 2
=

11

11 + 22

(recall that 11 = 22 which will help with the last result).
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Now, let  = 1 + 2 be the total application rate. By the proposition,

1 = 48 and 2 = 52

which means that

1

1 + 2
=

481
481 + 522

= 0835

Solving we see that this expression is consistent as long as

1

2
= 01824

which says that the ratio of the average time until an outside housing op-

portunity becomes available to non-whites (11) relative to whites (12) is
given by 1/0.1824 = 5.5. It takes 5.5 times as long for non-whites as whites

to find alternatives to public housing!

Now consider charge (1), which says that 1 =2+9. We have already
showed that, under our proposition of assignments proportional to applica-

tion rates, 11 = 22. So, we must have

11 = 1(2 + 9) = 22

or
1

2
=

2

2 + 9
= 1824

We find that

2 = 2 months, and 1 =2 + 9 = 11 months.

So, the charges could be consistent with a fair assignment policy! The

differences in waiting time could be due to differences in reneging rates. That

12 = 1824 suggests that it takes non-whites 51
2
times longer than whites

to find housing on the open market which in turn reflects the greater number

of alternatives to public housing whites have relative to non-whites in Boston!

This does not prove that the BHA did not discriminate against non-

whites. What it does show, however, is that the HUD claims alone cannot

establish guilt (as long as you believe that assignment in proportion to ap-

plication rates constitutes a fair policy).
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8.2.4 Waiting for a Kidney

Recent data from Israel suggest that on average there are about 800 persons

waiting to receive a kidney transplant. However, the actual number of Israelis

who receive kidney transplants roughly equals 140 per year. Now, not all

those who enter the waiting list for kidney transplants receive them (you can

guess why), thus there is substantial reneging from the transplant waiting

list. For those lucky enough to receive kidney transplants, the average waiting

time is 3.25 years.

(a) Based solely on the figures above, estimate the annual demand for

kidney transplants in Israel (HINT: public housing models).

The hint says “public housing models” and that’s a good hint! Let  be

the annual demand for kidney transplants (i.e. the arrival rate),  be the

actual kidney transplant rate per year, and  equal the reneging rate from

the transplant queue (which by part (c) is the same as the mortality rate

from kidney failure). Then we have two equations, one for the queue length

and the other for the waiting time to receive a transplant for those lucky

enough to get a new kidney. The equations are:

 =
− 



and

 =
1


log




·

Now, the problem statement identifies  = 800,  = 140 per year, and
 = 325 years. Substituting into the equations above yields

800 =
− 140



and

325 =
1


log



140
·

So divide the first of these equations by the second to obtain

800

325
= 24615 =

− 140
log(140)

and solve for . You need to do this numerically (e.g. using Excel, or via trial-

and-error). The result is given by  = 395 8 or about 400, which provides an
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estimate for the annual demand for kidney transplants. Now, this estimate

does assume that the reneging rate is proportional to the queue length, but

that’s not an unreasonable assumption for this problem!

(b) What fraction of those in need of kidney transplants actually receive

them?

Well, once we have an estimate of , the fraction of those in need of

kidney transplants who actually receive them is given simply by




≈ 140
400

= 035

That’s not so good...

(c) Suppose that all reneging from the transplant waiting list is due to

death from end-stage renal disease (i.e. kidney failure). If this were the case,

what would the mean survival time for those in need of kidney transplants be

(assuming it is no longer possible to obtain a kidney transplant)? Note that

your answer must be consistent with the rest of the data in this problem.

This question is a wordy way of asking for the value of 1. You can get
this from either of the equations for the queue length or the waiting time

once you know the arrival rate  ≈ 400. From the queue length equation you
obtain

1


=



− 
=

800

400− 140 ≈ 31 years.
From the waiting time equation you obtain

1


=



log()
=

325

log(400140)
≈ 31 years.

8.2.5 Time Dependent Tenant Assignment Policy

This question pertains to the article Tenant Assignment Policies with Time

Dependent Priorities that is contained in the Course Packet on our policy

modeling website. Suppose that a small housing authority has a turnover

of roughly 100 units per year. There are three main applicant groups. For

each of these three groups, the authority has computed the difference be-

tween the average rent group members would pay to the authority, and the

(higher) average rent group members must pay in their current living arrange-

ments. The authority decides to use these differences as the cost of waiting for
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public housing, under the argument that, for example, a low income house-

hold paying $500/month on the private market that would only have to pay

$200/month to the housing authority is suffering a cost of $300/month of

waiting in queue. The authority thus seeks a tenant assignment policy that

will equalize the waiting costs for those who do gain a public housing assign-

ment.

The arrival rates (), dropout rates (), and rent differentials () are
shown in the table below:

 (applicants/yr)  (per waiting household/yr)  (in $/waiting household/mon

Group 1 150 1 100

Group 2 100 0.67 200

Group 3 50 0.5 300

(a) Of the 100 expected moveouts, how many units should the housing

authority assign to each of the three groups annually?(HINT: use a spread-

sheet!)

Let  equal the waiting time for applicants from group  that receive

housing. From the fluid model discussed in class (and in the article), we

know that

 =
1


log





where  is the (to be determined) assignment rate for group  households.

Using the equation above to solve for  we get

 = 
−

Now, the time-dependent priority model discussed in the article works as

follows: waiting applicants gain points according to group specific rates, cor-

responding to the rent differentials in this example. The “score” for someone

in group  who has waited  time units is just  (though you have to

convert the waiting costs to annual units, or equivalently work with waiting

times in months, for the actual scores to work out properly). In equilibrium,

all applicants who receive housing will have the same score (for recall that

the authority seeks a tenant assignment policy that will equalize the waiting

costs for those who do gain a public housing assignment). Call this score



8.2 EXAMPLES 201

. Then 11 = 22 = 33 =  This means that for the  group,

applicants who get housed have waiting times given by

 = 

(where again you need to keep your time units straight)!

Substituting this into the equation for the assignment rates, we have

 = 
−

Since the total number of assignments per year equals 100, it must be true

that

1 + 2 + 3 = 100

which is equivalent to stating that

1
−11 + 2

−22 + 3
−33 = 100

There is only one unknown in this equation: , the equilibrium score. And

there is one value of  that will solve this equation, as is clear from the figure

below (which plots the total assignment rates implied by different values of

).

The solution is given by  = $2612.932. Plugging this value of  into the
formula for the assignment rates yields:

1 = 17, 2 = 482, and 3 = 348. Note that the assignment
rates sum to 100!

(b) What will the waiting times be for each applicant group?

Now just plug the assignment rates from (a) into the waiting time equa-

tions  = 1 log() The results are:
1 = 22 yrs, 2 = 11 yrs, and 3 = 073 yrs (about 9 months). Even

more simply, use the equation  =  after recalling that  = $2612.932
(and after converting the given ’s from monthly to annual costs). Again

you will find that1 = 26129321200 = 222 = 26129322400 = 12and
3 = 26129323600 = 073

(c) What fraction of the applicants in each group will receive public hous-

ing?

Easy! For each group, this is given by , resulting in assignment

probabilities for each group of:
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Figure 8.1:

Group 1: 11.3%, Group 2: 48.2%, Group 3: 69.6%.

(d) What is the expected cost per accepted household under this policy

(measured in terms of the rent differential)?

This is a giveaway, as you already solved this in part (a). The ex-

pected cost per accepted household is just the equilibrium score, which equals

$2612.932.

8.2.6 The US Terror Queue?

Consider the terror queue approximation that applies when all agents are

almost always available, that is, when − ≈  (i.e.  ≈ 0) as described in
more detail in the paper Terror Queues in the course readings online (Section

3.1, p. 778 — see the discussion preceding and including equation (27)).

(a) Let  denote the number of undetected terror plots,  denote the

time from when a new terror plot is hatched until it is either executed (i.e.

carried out) or foiled (i.e. detected and interdicted),  equal the arrival rate

(i.e. initiation rate) of new terror plots,  be the rate at which terror plots are
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executed per plot per unit time,  denote the number of agents/informants

available for detection, and  denote the terror plot detection rate per plot per

agent/informant. The approximation provides a simple formula for (),
the expected number of undetected plots, in terms of , ,  , and . Your

job is to produce a simple formula for ( ), the mean time from terror plot
initiation until it is either foiled or executed.

First let’s get a flow diagram of what’s going on. Working from the info

in the terror queue slides or paper or both, we can visually depict the model

this way:

This leads to the following “terror flow balance” equation (where the flow is

in units of terror plots per unit time):

 = () + () = ( + )()

Now, this looks exactly like the basic flow balance for how many busy servers

there are in a standard queueing model, and recalling that in such model,

each busy server is matched with a customer in service, we immediately see

that the expected number of customers (undetected terror plots)

() =


 + 
·

Interpreting this equation as “Little’s Theorem” where  is the customer

arrival rate (think “” for standard queueing models) and () is the mean
number of customers in the system (think “” for standard queueing models),

it must be that the mean time from the initiation of a terror plot (customer
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arrival) until the plot is foiled or executed (time customer leaves the system)

is given by

( ) =
1

 + 

(or just plain “” in  =  ). That is, we must have

() = ( ) =


 + 
·

This has an additional interesting interpretation: the mean time required

from the initiation of a terror plot to its execution in the absence of any

intelligence effort (that is, if  = 0, or equivalently completely ineffective
intel effort, in which case  = 0) just equals 1. Conversely, if all plots

took forever to plan ( = 0), then the average time it would take to foil a
plot would just equal 1(). The time required to either foil or execute a
plot is then the minimum of the time to execute and the time to foil, and in

expectation this is given by 1( + ).

(b) The figure below reports publicly disclosed foiled and executed terror

attacks in the United States from 1999 to 2009 inclusive. Executed attacks

include terror plots that failed at the last minute due to malfunctions of some

sort but otherwise escaped detection (examples include Faisal Shahzad’s at-

tempted car bomb in Times Square, and the Christmas attempt of “Captain

Underpants” to bring down Northwest Airlines Flight 253). Suppose that

the data in this figure do in fact represent all foiled and executed terror

attacks in the United States over the time period shown.

(i) Estimate the annual terror plot arrival rate from these data.

The model employed presumes that the terror queue is in steady state,

in which case the terror plot arrival rate equals the terror plot departure

rate. A terror plot departs the system whenever it is executed or foiled,

so the problem just reduces to finding the average of the observed number

of departures from the terror queue. Since the data in the figure below

correspond to departures from the terror queue, all you have to do is find

the average number of plots that were either foiled or executed over the

eleven years shown. That reduces to just adding up the heights of the bars

and dividing by eleven! There were a total of 86 plots that were foiled or

executed, so the annual terror plot arrival rate is estimated as 8611 = 7 8
plots per year.
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(ii) Estimate the fraction of terror plots that are foiled.

This is also pretty easy: we know that the total number of plots foiled

or executed over the eleven years shown equals 86; of these we can easily see

(from tallying the red bars) that a total of 18 were executed, which means

that 86 − 18 = 68 were foiled. Thus, our estimate of the fraction of terror

plots that are foiled is given by 6886 = 079 or 79%. In rough terms, about
1 in 5 plots were executed with the remaining 4 in 5 foiled.

(iii) What mathematical expressions (in terms of , ,  , and ) do the

quantities in (i) and (ii) above correspond to?

The annual terror plot arrival rate from (i) is just  = 78 plots per year.
To understand how the model corresponds to the fraction of terror plots that

are foiled in (ii), look back at the flow diagram presented in discussing the

solution to part (a) of this problem. Note that the rate with which plots are

foiled is given by  per plot per unit time, while the rate with which plots

are executed equals  per plot per unit time. Thus, the fraction of plots

that are foiled will equal the rate with which plots are foiled, divided by the

rate with which plots are foiled or executed, that is

Fraction of terror plots foiled =


 + 
·

We can also write this ratio by splitting the annual terror plot arrival rate

into those that are foiled and those that are executed: on average  new plots
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arrive per year, and of these () are foiled per year on average (look at
the flow diagram!), which yields

Fraction of terror plots foiled =
()


·

I’ll leave it to you to substitute the formula for () into the expression
above to show that you arrive at the same result for the fraction of terror

plots foiled derived previously.

(c) Suppose that based on interrogating captured terrorists and inves-

tigations conducted after successful attacks, intelligence officials estimate

that the mean time from terror plot initiation until interdiction or execu-

tion ( ) = 13 years. Given this figure and your answer to part (a),

estimate the mean and variance of the number of undetected active terror

plots targeting the United States.

Well, we previously saw that () = ( ) = ( + ), and we’ve
just been given the estimate that ( ) = 13 years. So, to get the mean
number of undetected terror plots, we just compute

() = ( ) = 78× 13 = 101

The intelligence estimate ( ) = 13 years combined with our model and
the estimated value of the terror plot arrival rate  from Figure 1 suggest that

there are about 10 expected undetected plots targeting the United States!

Now, the question also asked for an estimate of the variance of the number

of undetected plots. This required some careful reading of the class materials

on your part. On slide 21 of the terror queue presentation, you’ll see the

direct statement

() =  () =


 + 

which pretty much gives it away, no? Or, on p. 778 of the paper, just

before equation (27) where it was suggested that you look, you’ll see the

statement that  has a Poisson distribution with mean and variance equal

to (+). So, the estimated variance of the number of undetected terror
plots equals the estimated mean of 10.1.

(d) Using the same model, what is the probability that there are more

than 5 undetected terror plots targeting the United States?
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As just stated in answering part (c), the key is that the number of unde-

tected plots  has a Poisson distribution with mean (and variance) roughly

equal to 10 (OK, 10.1 to one decimal place). So, to find the probability that

there are more than 5 undetected plots, the easiest thing to do this is find

the probability that there are at most 5 undetected plots and then subtract

from 1, that is

Pr{  5} = 1− Pr{ ≤ 5}
You can do this directly using the Poisson formula — using () = 101 you
would compute

Pr{ ≤ 5} =
5X

=0

(101)−101

!
= 00634

and hence Pr{  5} = 1 − 00634 = 0936 6 or about 94%. Or, you

could do this in one step using the Excel command = 1− poisson(5,10.1,1)
= 0.9366. So, according to the model (via the intel estimate and data from

Figure 1), there is about a 94% chance that there are more than 5 undetected

terror plots targeting the United States! We better catch them!

8.2.7 Terror Queue of the Heart (with apologies to

Bonnie Tyler)

In the United States, the annual estimated all-cause number of deaths for

those with Coronary Heart Disease (CHD), including both known cases and

those undiagnosed, approximately equals 670,000. There are an estimated

17.6 million known CHD patients. It is also known that those newly afflicted

with CHD average 46.3 years until either diagnosis or death, whichever comes

first.

(a) Given these data, what is the mean number of undiagnosed persons

with CHD?

With only the data in the problem to go by, let’s see where a steady-

state analysis gets us, taking advantage of the hint provided by the title of

the problem. Just like in the Terror Queue model, here we have an arrival

rate of persons undiagnosed with CHD. Such an undiagnosed person will

either die or be diagnosed, whichever comes first. Once diagnosed, death

still awaits, but hopefully at a lower rate given treatment for CHD. In steady
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state, then, the arrival rate of new undiagnosed persons with CHD will equal

the all-cause number of deaths for all with CHD, whether diagnosed or not.

See figure below:

Undiagnosed 
Persons with CHD

Diagnosed CHD 
Patients

Newly 
Afflicted 

CHD Diagnosis Death

Death

This means that the arrival rate is approximately 670,000 per year. And,

we are told that those newly afflicted with CHD average 46.3 years until

diagnosis or death. So, the mean number of undiagnosed persons with CHD

just follows from Little’s Theorem and is given by

(# persons with CHD and undiagnosed) = 670 000× 463 = 31 021 000

That’s a lot of undiagnosed CHD!

(b) Suppose that the all-cause per capita mortality rate is 3.5 times higher

for undiagnosed persons with CHD than the per capital mortality rate for

known CHD patients. What are the per capita all-cause mortality rates for

undiagnosed versus diagnosed persons with CHD?

Let  and  be the all-cause mortality rates for persons with CHD who

are undiagnosed and diagnosed respectively. From the problem statement

and our answer to (a) above, we see that the total all-cause deaths per year

is given by

31 021 000 + 17 600 000 = 670 000

However, we are now told that  = 35 (the all-cause per capita mortality
rate is 3.5 times higher for undiagnosed persons with CHD than the per

capital mortality rate for known CHD patients), which leads to the equation

31 021 000× 35 + 17 600 000 = 670 000
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which implies that the all-cause mortality rate for those known to have CHD

is given by

 =
670 000

31 021 000× 35 + 17 600 000 = 00053

or about half a percent per year. This implies that the all-cause mortality

rate for undiagnosed persons with CHD equals 35 × 00053 = 0018 6 or
almost 2%. To check, note that

31 021 000× 00186 + 17 600 000× 00053 ≈ 670 000

as required.

(c) What fraction of those newly afflicted with CHD will be diagnosed?

To figure out the fraction of all those newly afflicted with CHDwho will be

diagnosed, just divide the annual number of all-cause deaths among persons

diagnosed with CHD by the annual number of all-cause deaths among all

persons with CHD. This yields

Pr{Person Newly Afflicted with CHD is Diagnosed} = 17 600 000× 00053
670 000

= 0139

or about 14%.

(d) What fraction of all persons living with CHD have been diagnosed?

By contrast, the fraction of all those living with CHD who have been

diagnosed is given by

17 600 000

31 021 000 + 17 600 000
= 0362

or just over 36%. Clearly, if someone has CHD, it is really important to

get diagnosed, as diagnosed CHD patients have a much lower mortality rate

than undiagnosed persons with CHD, meaning that CHD treatment keeps

one alive longer.
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8.2.8 Treatment and Monitoring

Patients arrive to a specialty hospital that provides patient treatment and

monitoring in accord with a Poisson process with arrival rate . The hospi-

tal has a large number of beds relative to the number of admitted patients,

so there is no bed capacity constraint. Newly admitted patients proceed

directly to the treatment unit. Whenever a patient arrives to the treatment

unit, the length of time a patient spends in treatment is exponentially dis-

tributed with mean 1 (so treatment episodes are completed at rate 
per patient per unit time) When a patient completes a treatment episode,

they are discharged from the hospital with probability 1−, but with prob-

ability  the patient is transferred to the observation unit for monitoring.

Whenever a patient is sent to the observation unit, the length of time spent

being monitored is exponentially distributed with mean 1 (so monitoring

episodes are completed with rate  per patient per unit time). When a pa-

tient completes a monitoring episode, they are discharged from the hospital

with probability 1−, but with probability  the patient is transferred back

to the treatment unit to begin a new treatment episode.

Suppose that the patient arrival, treatment and monitoring processes

have been operating for a long time and that the hospital has reached steady

state. Let the random variables  and  refer to the number of patients

in the treatment and monitoring units respectively, and let  = ( ) and
 = () denote the expected number of patients in the treatment and
monitoring units respectively.

(a) Draw a diagram that indicates all patient flows in the hospital. Your

diagram must show new arrivals, discharges from both the treatment and

monitoring units, and transfers from treatment to monitoring and vice-versa.

Identify  and  on the diagram, and show formulas for all patient flows

along each flow branch using the notation described in the problem statement

(         and ).

Here’s a picture of the flow diagram I drew on my office whiteboard:
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Note that patients arrive directly to the treatment unit (which is why the

 arrow connects to the box containing the average number of patients in

treatment,  ). Also note that patients leave the treatment unit at aggregate

rate  per unit time, but are then (Bernoulli) split to go to monitoring

(with probability ) or discharge (with probability 1−). Similarly, patients
leave the monitoring unit at aggregate rate per unit time, but are then

(Bernoulli) split to go back to treatment (with probability ), or discharge

(with probability 1− ).

(b) Produce flow equations and solve them to determine formulas for 

and respectively in terms of the other parameters in the problem (meaning

that if you knew the numerical values of       and , you would be

able to directly compute the numerical values of  and ).

The equations needed follow directly from the flow diagram above. For

each of the two hospital units, you must have the entering flow set equal

to the exit flow. So, the Inflow = Outflow equations for the treatment and

monitoring units respectively are given by:

+ = 

and

 = 

Solving the second equation yields

 =



 
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and substituting this into the first equation gives

+



 ×  =  

Solving for  we obtain

 =




1

1− 

and consequently from the third equation we obtain

 =




1

1− 
·

(c) Produce a formula for the fraction of all patients in the hospital who

are undergoing treatment, and by implication the fraction of all patients in

the hospital who are being monitored, in terms of the other parameters of

the problem (meaning       and ).

This is easy — the fraction of all patients undergoing treatment is just

given by



 +
=




1
1−




1
1− +




1
1−

=


 + 
·

The fraction of all patients in the hospital undergoing monitoring is found

by subtracting the result above from unity and thus equals (+).
Note that if  = 0, all patients in the hospital would be in treatment as pa-
tients would never enter monitoring, while if  = 1, patients would always go
through both treatment and monitoring before either being discharged (with

probability 1 − ) or being sent back for more treatment (with probability

). In this case, the fraction of patients in treatment would be the same as

the probability that a patient selected at random was in the treatment por-

tion of a treatment-monitoring pair. Since the per episode average time in

treatment (monitoring) equals 1 (1), the chance of finding a patient
in the treatment part of a paired treatment/monitoring episode just equals

the ratio of the (per episode) average time in treatment to the sum of the
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(per episode) average treatment and monitoring times. This ratio is given

by

1
1 + 1

=


 + 
·

(d) Again in terms of the other parameters of the problem (meaning

      and ), produce a formula for the fraction of all discharged

hospital patients who are released from the treatment unit (equivalently, the

probability that when a patient is discharged, it is from the treatment unit

as opposed to the monitoring unit) following two different approaches:

(i) By working with the flows of patients exiting the hospital, and

Here we just need to look at the ratio of the discharged-from-treatment

flow to the sum of the discharged-from-treatment and discharged-from-monitoring

flows. This ratio is given by

 (1− )

 (1− ) +(1− )
=

 (1− )

 (1− ) + 


(1− )

=
1− 

1− + − 

=
1− 

1− 
·

This is interesting — the result only depends upon  and . It does not

depend in any way on the amount of time spent in treatment or monitoring.

So, there should be a more direct way to get this result, which leads us to...

(ii) Using the repetition method (HINT: East Rock).

The hint says East Rock and it’s a pretty good hint. Think of being dis-

charged from treatment as going off the “left cliff” in the East Rock problem,

and think of being discharged from monitoring as going off the “right cliff.”

Also, think of being in treatment as being in “position 1” in the East Rock

problem, while monitoring corresponds to position 2. Starting in treatment

(position 1), what is the probability that the process ends by going off the

left cliff? Let’s call that 1 and write

1 = (1− )× 1 + × 2
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where we recognize that starting in position 1, there is a (1 − ) chance of
going off the left cliff (in which case we stay there), or an  chance of going to

position 2 (treatment) from which there must be some probability 2 of going

off the left cliff given you start in position 2! It’s our usual policy modeling

trick — when you don’t know something, assume you do! Now, from position

2, we can write

2 = (1− )× 0 + 1

since with probability (1− ) you’ll go off the right cliff (be discharged from
monitoring) and thus there is no chance of going off the left cliff, while with

probability  you return to position 1 (treatment). So, substituting the

expression for 2 into the equation for 1 we obtain

1 = (1− )× 1 + × 1

which solves to yield

1 =
1− 

1− 
·

How cool is that?

(e) A new patient has just been admitted to the hospital. What is the

expected total number of treatment episodes this patient will spend in the

hospital before discharge? What is the expected total number of monitoring

episodes this patient will spend in the hospital before discharge? Produce

formulas for each in terms of the other parameters of the problem (meaning

      and ) (HINT: repetition method).

The hint says repetition method, but it could just as easily have said East

Rock again. Let’s stick with the analogy made in part (d)-(ii) above. Let 1
equal the expected number treatment episodes until discharge for a patient

who just entered treatment. Similarly, let 2 be the expected number of

treatment episodes until discharge for a patient who just entered monitoring.

Using our East Rock logic we have

1 = 1 + (1− )× 0 + × 2

and

2 = (1− )× 0 +  × 1 

In the first of these equations, since a patient has just entered treatment,

we augment the expected number of treatment episodes until discharge by
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one. If the patient is discharged immediately following treatment, there are

no more treatment episodes (this happens with probability (1− ) but with
probability  the patient goes to monitoring from which there will be an

average of 2 additional treatment episodes. Now, note that in the equation

for 2 we do not start by counting 1 as it could be that there will not be

any additional treatment episodes (indeed that is the case with probability

1 − ), but with probability  there is a return to treatment from which

an additional expected 1 treatment episodes will occur. Substituting the

second equation into the first we obtain

1 = 1 +  × 1

which solves to

1 =
1

1− 
·

We have just learned that on average a newly admitted patient will experience

1(1− ) treatment episodes.

What about monitoring? Here we need to be careful. Using similar

notation to denote the expected number of additional monitoring episodes

for patients newly admitted to treatment or to monitoring we obtain

1 = (1− )× 0 + × 2

and

2 = 1 + (1− )× 0 +  × 1 

Notice the slight difference in these equations from those used to find the av-

erage number of treatment episodes. Here, we note that a person who newly

enters treatment might not experience any additional monitoring episodes,

while a patient who newly enters monitoring does undergo an additional

monitoring episode. The question again asks for the expected number of

monitoring episodes for a patient who was just admitted to the hospital, and

all newly admitted patients first go to treatment, so the quantity we seek is

1 . We find that

1 = × 2 = × (1 + 1 )

which solves to

1 =


1− 
·
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Note that if  = 0, patients are discharged after treatment with certainty,
and thus the expected number of treatment episodes until discharge is equal

to one while the expected number of monitoring episodes is equal to zero —

the patient is never monitored. On the other hand, if  = 1, then patients
are always monitored following treatment, and thus the expected number of

treatment and monitoring episodes both equal 1(1− ).

(f) In terms of the other parameters of the problem (meaning      

and ), produce a formula for the expected total time that a newly admitted

patient from the outside will spend in the hospital that accounts for all

possible treatment and monitoring episodes until discharge following two

different approaches:

(i) Use your results from part (e) combined with the average duration

of treatment and monitoring episodes.

Wow, this is really easy after answering part (e)! Since we have already

figured out the expected number of treatment and monitoring episodes, and

we know from the problem statement the expected time spent per treatment

and monitoring episode, we see immediately that the expected total time a

newly admitted patient spends in the hospital, let’s call this  (you’ll see

why in part (ii)), is given by

 =
1

+

1


=
1

1− 
×
µ
1


+





¶


That was easy!

(ii) Use Little’s Theorem and your results from part (b).

Little’s Theorem says  =  . In this problem, the expected number

of “customers” in the “system” () is just the expected number of patients

in the hospital, which in turn is the expected total number of patients in

treatment plus the expected number in monitoring. We figured out both of

these quantities in part (b), so plugging in we have

 =  +

=




1

1− 
+





1

1− 

=


1− 
×
µ
1


+





¶

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So, now using Little’s Theorem we discover (!) that

 =




=
1


× 

1− 
×
µ
1


+





¶
=

1

1− 
×
µ
1


+





¶


Wow!! Exactly the same answer as in (f)-(i) above. See how all this stuff fits

together?

8.2.9 Terror Queue Staffing Models

The terror queue model described in the article of the same name in your

course pack defines  as the terror plot initiation rate (new plots per unit

time),  as the terror plot completion rate (so in the absence of any coun-

terterror detection effort, terror plots would average 1 time units from
inception to execution),  as the detection rate per plot per available agent

per unit time,  as the interdiction rate per detected plot per unit time (so

a newly detected plot requires on average 1 time units to be interdicted),
and  as the total number of undercover agents deployed (that is, counting

both agents actively involved in interdicting known plots, and agents search

for undetected plots).

(a) Suppose that the counterterror agency (e.g. the FBI) wants to deploy

enough agents to detect (and interdict) a fraction  of all new terror plots.

That is, the counterterror agency seeks to determine the value of  such that

a newly arriving plot will be detected (and interdicted) with probability 

Determine  using the following three-step argument:

(i) The number of agents  =  +  where  = # of agents

available for detection (on average), and  = average # of agents who are

busy interdicting plots (= # of detected plots being interdicted).

(ii) The mean number of busy agents  must, via Little’s Theorem,

satisfy

 =  × 1

·
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(iii) The mean number of agents available for detection, , must

satisfy


 + 
= ·

You are to justify each of the three steps presented above, and then

determine the function () that reports the number of agents required to
detect (and interdict) a fraction  of all new terror plots.

Step (i) is true by definition, since each agent is either available for de-

tecting existing undetected plots, or is “busy” and in the act of interdicting

a detected plot. For step (ii), note that if a fraction  of new plots are

detected, then the rate with which plots are interdicted must equal  plots

per unit time (that is, of all new plots, a fraction  are interdicted). So,

think of  as the arrival rate of customers (terror plots) to “receive service”

(get interdicted), and 1 as the mean service time which is the same as
the mean time that a detected plot spends getting interdicted. Note that

detected plots never have to wait in an “interdiction queue” as for every de-

tected plot, there is an accompanying server (agent) who immediately begins

the interdiction process. For step (iii), suppose that there are  undetected

plots. Then the total rate at which plots are detected when there are 
servers available equals  while the total rate with which plots execute

equals . The fraction of plots that are detected is then given by the to-

tal plot detection rate, divided by the sum of the total plot detection and

execution rates; this ratio is given by



+ 
=



 + 
·

But, the goal is to detect (and interdict) a fraction  of all new plots, so

equating our two expressions for the fraction of plots that are detected yields



 + 
= ·

Solving the equation above for  in terms of  yields

 =






1− 
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while the Little’s Theorem expression for  from step (ii) gives

 =



·

Finally, step (i) says that  =  +  so our final result for () is

() =






1− 
+




·

(b) Suppose that the agency in question is operating in an environment

where  = 100,  = 1 (so terror plots on average require one year to
plan and execute),  = 4 (so the average time to interdict a plot post-
detection equals 3 months), and  = 01 per plot per agent per year (so if,
for example, there were 10 available agents and 5 plots in progress, the total

plot detection rate would equal 5 × 10 × 1 = 5 detections per year, or 2.4
months until detection on average). For these parameters, produce a plot

of  as a function of . How many agents are required to interdict 50% of

all plots ( = 05)? How many are required to prevent 90% of all agents

( = 09)? What can you say in general about the shape of ()?

Substituting in the values for    and  into the result from (a) yields

 =
1

1



1− 
+
100

4


= 10


1− 
+ 25·

Plotting as a function of  yields
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 = 10 
1− + 25

To interdict 50% of all plots requires 10 5
1−5+25× 5 = 22 5 agents, while

to interdict 90% of all plots requires 10 9
1−9 + 25 × 9 = 112 5 agents. The

shape of () is convex, with the required number of agents exploding in
unbounded fashion as  −→ 1. Pretty sobering reminder of why it is not

realistic to expect that all terror attacks can be prevented!

(c) In the United States, it has been estimated that of 35 attempted

Jihadi terror attacks in the United States between 9/11/2001 and 6/30/2011,

seven successfully evaded detection while the remaining 28 were interdicted.

Considering the 9.8 years over which these 35 attempted attacks took place,

let  = 357 new Jihadi plots per year. Also, given that 28 of 35 plots

were successfully interdicted, take  = 080 Finally, suppose that  = 415,
 = 11500, and  = 16 With these parameter assignments, how many

undercover agents would you estimate have been devoted to finding and

interdicting Jihadi terror plots in the United States?

This is just plug and play:  = 



1− +



 = 415

11500
× 08

1−08 +
357
16
× 08 =

16002. And the number becomes interesting given the following: according
to an FBI report (http://www.fbi.gov/stats-services/publications/fbi_ct_911com_0404.pdf),

since 9/11 the FBI “...increased the number of Special Agents working ter-

rorism matters from 1351 to 2398.” Hmmmmmmm.....

(d) Suppose that the government estimates a benefit  for each terror plot
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that is interdicted, but also incurs a cost  for each agent deployed. Argue

that the net benefits of deploying  agents are then given by

() =  − 

where as before,  is the fraction of plots that are interdicted. Using your

model from part (a) above that expresses the number of agents that must be

deployed to interdict a fraction  of all attacks, and using the parameters for

   and  from part (c) above, what fraction of all terror plots should be

prevented if the government seeks to maximize net benefits when the benefit

to cost ratio  =  = 2 100? What is the implied optimal number of

counterterror agents that the government should deploy? You can do this

numerically, or you can produce an exact formula.

First, if there is a benefit  for each attack prevented, and a fraction  of 

attacks per year are prevented, then the annual benefit of preventing attacks

at this level clearly equals , while the costs of doing so equal  , so the

formula is correct. What is important to note is that  can be expressed as

a function of  via our formula from part (a), so plugging in and rewriting

the net benefits as a function of  yields

() =  − ()

=  − 

µ






1− 
+






¶


We want to maximize the net benefits as a function of , and once we figure

out what the right value of  is, we can just plug it into the result from part

(a) to figure out the optimal staffing level  . We can do this analytically —

differentiating the net benefits with respect to  yields




() = − 

µ




µ
1

1− 
+



(1− )2

¶
+





¶
= − 

µ


 (1− )2
+





¶


Equating to zero and solving for  yields

 = 

µ


 (1− )2
+





¶
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which is the same as

− 


=



 (1− )2


which is the same as

(1− )2 =






− 

which is the same as

1−  =

s




1


− 1 ·

If we denote the benefit-to-cost ratio  by , we arrive at

 = 1−
r





1

− 1
as the general result. Note that the larger this benefit-to-cost ratio, the larger

the value of  (the greater the fraction of plots we prevent by deploying more

agents in accord with the result of part (a)). With the parameter values

given, the optimal fraction of terror plots to prevent is given by

 = 1−
s

415× 16
357× 11500

1

2100× 16− 1 = 077

From this, the result of part (a) tells us that we should assign  = 



1−+



 =

415
11500

× 077
1−077 +

357
16
× 077 = 1339 3 or about 1,340 agents.

And what if you don’t know calculus? Just plot () as a function of
 and find the maximum. But wait — we don’t know  and , we only know

that  =  = 2 100. No problem — just divide both sides of the net benefit
equation by the (unknown) constant cost  to produce

()


=  −

µ






1− 
+






¶
= 2 100× 357×  −

µ
415

11500
× 

1− 
+
357

16
× 

¶


Plotting this against  yields



8.2 EXAMPLES 223
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Zooming in between  = 7 and  = 9 yields

0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84 0.86 0.88 0.90

3200

3400

3600
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which makes it pretty clear that the optimal value of  equals 0.77 (to two

decimals). Plugging into our formula from part (a) again yields the optimal

number of agents  = 1 340
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8.2.10 An Adoption Agency

Prospective adoptive parents (PAPs) apply to an adoption agency at an

average rate of 30 per month. Immediately upon application, newly arriving

PAPs are placed on the agency’s waiting list. Of course, many of these

PAPs are looking at other adoption options, and some are continuing their

attempts at achieving pregnancy on their own. As a consequence, we assume

that PAPs drop off of the waiting list at a rate of 0.2 per month (or worded

differently, on average PAPs are willing to wait 5 months before dropping

out).

New babies available for adoption are discovered by (or referred to) the

agency at an average rate of 10 babies per month.

Whenever a new baby arrives, the agency notifies the PAP on the waiting

list who has been waiting the longest, and admits that PAP to the selection

stage of the adoption process (one PAP at a time, so PAPs could be single

adults or couples). The selection stage works as follows: all PAPs in the

selection stage continuously review all available babies. Following a review

of medical records, birth family history and the like, the probability that any

PAP agrees to adopt a randomly selected baby is only equal to 1% (one reason

for the low probability is the opportunity to interact with lots of babies, in

addition to the specific desires/requirements of individual PAPs). Note that

the number of PAPs in the selection stage is always equal to the number of

babies being reviewed for adoption. Eventually, all PAPs who survive the

waiting list and enter the selection stage will adopt a baby (and equivalently,

all babies are eventually adopted by some PAP in the selection stage).

(a) Let  denote the number of PAPs on the waiting list in month .

Given the information in the problem, complete the following equation:

+1 =  + 

What we have is:

+1 =  +New PAPs - Dropouts - PAPs entering selection stage

=  + 30− 02 − 10
= 08 + 20
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(b) Let  denote the number of babies under review for adoption in

month . Note that by the design of the program,  also denotes the number

of PAPs in the selection stage of the adoption process. Given that all PAPs

in the selection stage review all available babies, in month  what is the

aggregate rate with which babies are adopted? (That some PAPs could

select more than one baby, or that some babies could be selected by more

than one PAP is not your problem so don’t worry about it.)

There are  PAPs. Each PAP looks at each of the  babies, and adopts

with probability 0.01. Thus the expected number of adoptions per PAP

equals 001. Repeating over all PAPs, the aggregate rate of adoption is

thus given by  × 001 = 001
2
 

(c) Having answered part (b), complete the following equation for the

number of babies available for adoption (equivalently, PAPs in the selection

stage) over time:

+1 =  + 

We have:

+1 =  +New Babies - Adopted Babies

=  + 10− 0012
 

(d) Suppose that the program begins with 10 available babies and 10

PAPs in the selection process, and no other PAPs on the waiting list. Using

your results from (a) and (c), produce a graph showing the number of PAPs

on the waiting list and the number of babies available for adoption for the

first 24 months (i.e. two years) of the program.

(e) Suppose that the program has reached a steady state, that is, the

number of PAPs on the waiting list and the number of babies available for

adoption no longer change with time. What is the steady state number of

PAPs on the waiting list? What is the steady state number of babies available

for adoption (which equals the steady state number of PAPs in the selection

stage)?

Let  denote the steady state length of the waiting list. Substituting into

part (a) we get

 = 08+ 20
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Adoption Agency Dynamics
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which solves to yield  = 100 Note from the figure in part (d) that this

steady state is reached after 24 months. As for the number of babies up for

adoption, denote this by . From part (c) we get

 =  + 10− 0012

which solves to yield  =
√
1000 = 31 623

(f) How long did those PAPs who survived the waiting list wait to enter

the selection stage?

Note that the waiting list of PAPs evolves exactly like the waiting list

in the public housing models we discussed in class. Thus, for those PAPs

who survive the waiting list (similar to those applicants who receive public

housing), the waiting time in equilibrium is given by

 =
1


log





=
1

02
log

30

10
= 549 months.

(g) On average, how long does it take for a newly arriving baby to get

adopted?

Let  equal the per-baby departure rate from the adoption agency. What-

ever  is, in equilibrium the average time babies spend in the selection stage

is given by 1. Now, how do we find ? We know that the arrival rate of

babies is equal to 10 babies per month. We also know (from part (d)) that

the average number of babies up for adoption, , is equal to
√
1000. Balance

of flow (the rate with which babies come in equals the rate with which babies

are adopted and leave) requires that

 = 

10 = 

10 =
√
1000

1


=

√
1000

10
=
√
10 = 316 months.
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8.3 Epidemic Models

8.3.1 Modeling Disease Progression

Let ,  and  denote the durations of the latent, asymptomatic infec-

tious, and symptomatic infectious periods for some infectious disease. As-

sume that these three random variables are mutually independent, that a

person infected at time 0 immediately enters the latent stage, then progresses

sequentially through the latent, asymptomatic infectious, and symptomatic

infectious stages, and recovers once all three stages of infection are complete.

The probability distributions for the durations of each stage of infection are

given by:

 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 with probability 1

4

2 with probability 1
2

3 with probability 1
4

 =

⎧⎨⎩ 1 with probability 1
3

2 with probability 2
3

and

 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3 with probability 1

2

4 with probability 1
3

5 with probability 1
6

·

(a) What is the shortest possible course of infection (that is, time from

infection through recovery)? What is the probability that a newly infected

person experiences the shortest possible course of infection?

Well, the shortest course of infection occurs when each of the stages of

infection takes on the shortest possible time. These are 1 day, 1 day, and

3 days respectively (for ,  and ), thus the shortest possible course

of infection equals 1 + 1 + 3 = 5 days. And, since the stage durations are
independent by assumption, the probability that someone has a duration of

infection equal to 5 days equals 1
4
× 1

3
× 1

2
= 1

24
·
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(b) What is the longest possible course of infection? What is the proba-

bility that a newly infected person experiences the longest possible course of

infection?

Same idea. The longest stage durations are 3, 2 and 5 days, thus the

longest course of infection possible equals 3+2+5 = 10 days. The probability
of this equals 1

4
× 2

3
× 1

6
= 1

36
· So the shortest course possible is more likely

than the longest!

(c) What is the expected duration of the latent, asymptomatic infectious,

and symptomatic infectious periods? What is the expected duration of the

entire course of infection?

From the definition of the expected value of a random variable we have:

() =
1

4
× 1 + 1

2
× 2 + 1

4
× 3 = 2

() =
1

3
× 1 + 2

3
× 2 = 5

3
·

() =
1

2
× 3 + 1

3
× 4 + 1

6
× 5 = 11

3
·

And, since the expected value of a sum equals the sum of the expected values,

the expected overall duration of infection equals 2 + 5
3
+ 11

3
= 22

3
or 71

3
days.

(d) The incubation time is defined as the time from infection until symp-

toms develop, which in this case is the sum +. What is the probability

distribution of the incubation time (that is, what is the probability that the

incubation time equals 1 day, 2 days, 3 days, ... for all possible days)? What

is the mean incubation time? Can you verify this from results you already

obtained earlier?

We need to find the probability distribution of  + . The table be-

low reports all possible combinations of latent and asymptomatic infectious

periods, and records their joint probability of occurrence along with the im-

plied duration of the incubation time. The final distribution is just found by

adding up the probabilities for all incubation times with the same duration.

It’s that simple! (In the table, “wp” means “with probability”)
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 = 1 wp
1
3

 = 2 wp
2
3

 = 1 wp
1
4

 = 1 + 1 = 2

 = 1
4
× 1

3
= 1

12

 = 1 + 2 = 3

 = 1
4
× 2

3
= 2

12

 = 2 wp
1
2

 = 2 + 1 = 3

 = 1
2
× 1

3
= 1

6
= 2

12

 = 2 + 2 = 4

 = 1
2
× 2

3
= 2

6
= 4

12

 = 3 wp
1
4

 = 3 + 1 = 4

 = 1
4
× 1

3
= 1

12

 = 3 + 2 = 5

 = 1
4
× 2

3
= 2

12

Adding up over the table we find that the incubation time  = +
takes on the values 2, 3, 4 or 5 with probabilities 112, 212 + 212 = 412,
412+112 = 512, and 212. These probabilities sum to one, as indeed they
must. The mean incubation time, evaluated from this distribution, equals

() = 2× 1

12
+ 3× 4

12
+ 4× 5

12
+ 5× 2

12
=
11

3
·

Note that this is equal to ()+() = 2+
5
3
based on our earlier results

from part (c).

(e) Similarly, find the probability distribution of the total time spent

infectious (that is, the sum  + ), along with the mean duration of time
spent infectious.

Using exactly the same approach, we find:

 = 3 wp
1
2

 = 4 wp
1
3

 = 5 wp
1
6

 = 1 wp
1
3

 = 1 + 3 = 4

 = 1
3
× 1

2
= 1

6
= 3

18

 = 1 + 4 = 5

 = 1
3
× 1

3
= 1

9
= 2

18

 = 1 + 5 = 6

 = 1
3
× 1

6
= 1

18

 = 2 wp
2
3

 = 2 + 3 = 5

 = 2
3
× 1

2
= 2

6
= 6

18

 = 2 + 4 = 6

 = 2
3
× 1

3
= 2

9
= 4

18

 = 2 + 5 = 7

 = 2
3
× 1

6
= 2

18

Again the sum of the probabilities equals one as it must. Adding over

the table, we find that the infectious period equals 4, 5, 6, or 7 days with

probabilities 3/18, 8/18, 5/18, and 2/18. The mean infectious period equals

() = 4× 3

18
+ 5× 8

18
+ 6× 5

18
+ 7× 2

18
=
16

3
·
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Note that this is equal to ()+() =
5
3
+ 11

3
based on our earlier results

from part (c).

(f) Considering the incubation time and the total time spent infectious,

are these two quantities independent of each other, positively correlated (so

a longer incubation period is associated with a longer total time spent infec-

tious), or negatively correlated (so a longer incubation period is associated

with a shorter total time spent infectious)? Answer by finding the covariance

of the incubation time and total time spent infectious.

Clearly these quantities cannot be independent, since they both contain

the asymptomatic infectious period . So, the larger  is, the larger both

the incubation and infectious periods are, while the smaller  is, the smaller

both the incubation and infectious periods are. Thus, the incubation and

infectious periods are positively correlated. Further, the asymptomatic in-

fectious period  is the only source of correlation, since  and  are

independent of each other (and of ).

To find the covariance between the incubation and infectious periods, first

recall that the covariance for any two random variables  and  is given by

( ) = ( )−()( )

Applying this formula to  =  +  and  =  +  we find that

( +   + ) = [( + )( + )]−( + )( + )

= [ +  +  +  2]

−[()() +()() +()() +()
2]

= ( 2)−()
2 =  ()

because the crossproduct terms all cancel out due to independence — that is,

() = ()(), and similarly for the other crossproducts. Since
the variance of  is positive, the covariance of the incubation time and the

total time spent infectious is positive, and thus these two random durations

are positively correlated as claimed above.

8.3.2 Minor Outbreaks Again

(a) A person infected with Nonovirus has just entered the community. The

probability distribution for , the number of infections transmitted by this
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initial case, is given by

Pr{ = } =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
14  = 0

for

34  = 2

and zero probability for any other value of .

(i) What is the mean number of secondary infections ()?

Applying the definition of expected value, we have () = 0× 14+2×
34 = 64 = 15

(ii) What is the probability  that whatever outbreak ensues will be self-

extinguishing (i.e. a minor outbreak)?

We need to solve the equation

 =
1

4
+
3

4
2

for . Note that  = 1 is one solution, but it is not the solution we seek.
Multiply both sides of the equation above by 4 and rearrange the terms to

get the quadratic equation

32 − 4 + 1 = 0
The solution is given by the smallest root of the quadratic above, which we

find from

 =
4±√16− 12

6
=
2

3
± 1
3
= (

1

3
 1)

so we conclude that  = 13. There is a 1/3 chance that Nonovirus will
self-extinguish without any intervention.

(b) Oh great, now a person infected with Ohnovirus has just entered

the community. The probability distribution for , the number of infections

transmitted by this initial case, is given by

Pr{ = } =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
12  = 1

for

12  = 2
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and zero probability for any other value of .

(i) What is the mean number of secondary infections ()?

Applying the definition of expected value, we have () = 1 × 12 +
2 × 12 = 32 = 15. Ah, so the expected number of Ohnovirus infections
transmitted from the index case equals 1.5, just like Nonovirus.

(ii) What is the probability  that whatever outbreak ensues will be self-

extinguishing (i.e. a minor outbreak)?

We need to find the smaller root of the equation

 =
1

2
×  +

1

2
2

You can reduce this equation to  = 2 from which it is obvious that the

two solutions are  = 1 and  = 0. We want the smaller root, which means
that  = 0. There is zero chance of a minor Nonovirus outbreak!

(c) Rats! Whoknows virus just found its way into the community. Less

is known about this virus except that Pr{ = 0} = 0 and
P∞

=1 Pr{ =
} = 1
(i) What is the probability  that whatever outbreak ensues will be self-

extinguishing (i.e. a minor outbreak)?

We seek the smaller root of the equation

 =
∞X
=1

Pr{ = }

and by inspection, we see that  = 1 is a solution (since
P∞

=1 Pr{ = } =
1), as is  = 0 (since 0 = 0 for  = 1 2 3 , and thus we get 0 = 0). Bad
news: Whoknows virus cannot lead to a minor outbreak, just like Nonovirus.

(ii) Using this result for Whoknows virus, explain the different public

health threats posed by Nonovirus and Ohnovirus.

Well, we just learned from Whoknows virus that if Pr{ = 0} = 0,
there is zero chance of a minor outbreak. Ohnovirus is like Whoknows virus

this way, since for both there is zero chance that an infected person fails

to infect at least one other person. On the other hand, the fact that there

is a 1/4 chance that a person with Nonovirus fails to infect anyone enables
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the possibility of self-extinction (the probability of which equals 1/3 as you

found earlier). Nonovirus is thus less of a threat than Ohnovirus from the

standpoint of triggering a major outbreak. Of course if Nonovirus is fatal

while Ohnovirus is inconsequential, you’d rather have a major Ohnovirus

outbreak for sure than a 2/3 chance of a Norovirus epidemic!

8.3.3 Estimating the Length of a Chain of Infection:

Vaccinia

From class and your coursepack readings on HIV/AIDS, you know that for

an infectious disease (such as HIV), the reproductive rate of infection, de-

noted by 0, is the expected number of secondary infections transmitted

directly by a single infected person early in the epidemic (when the fraction

of the population infected is negligible). Suppose a single infectious person

is introduced to a huge population (so we will take it as infinite in size) of

otherwise uninfected (i.e. susceptible) persons. The infection in question

can be characterized by 0 as discussed above. Suppose that 0  1 (so the
expected number of infections generated by this new infected person is less

than one).

(a) Let  be the expected total number of infections generated over all

time starting with this single infected person (that is,  is 1 (for the initially

infected person) plus the sum of the number of infections directly transmitted

by the initially infected person, plus the number of infections generated by

each of these secondary infections, plus the sum of all tertiary infections, etc.

etc. etc.). Use the repetition method to determine a simple expression for 

in terms of 0.

This is easy — a newly infected person will generate 0 direct infections,

and for each newly infected person, the future looks exactly the same as

it did starting with the first infected person, and thus each new infection

will him/herself generate a total of  infections over all time, including

him/herself! This implies that the expected total number of infections gen-

erated over all time from an initially infected person is given by

 = 1 +0

from which we obtain

 =
1

1−0
·



8.3 EPIDEMIC MODELS 235

Note how much easier this is than taking the “Fresca” approach of summing

the geometric series, that is

 = 1 +0(1 +0(1 +0) + 

= 1 +0 +20 +30 +40 + 

=
1

1−0
providing 0  1

(b) A concern raised during the Great Smallpox Debates of 2002 was

that the vaccinia virus used in smallpox vaccination could itself be trans-

mitted from a recently vaccinated person to others, with possibly problem-

atic complications resulting. Indeed, an alarming presentation was made at

an important national meeting suggesting that 20% of all smallpox vaccine

complications stemmed from transmitted vaccinia infections. However, a

still balding but formerly fat Yale professor suggested that these same data

implied that 80% of all complications were not due to vaccinia transmission

(and hence due to direct vaccination), implying that the ratio of compli-

cations due to vaccinia transmission to complications unrelated to vaccinia

transmission equals 20%/80% or 0.25. Using the result from (a) above, what

is the implied expected total number of vaccine complications over all time

per direct vaccine complication (that is, the sum of the initial direct com-

plication plus all future transmitted vaccine complications resulting from the

original direct complication)? And, given a death rate of 1 per million from

vaccination (due to direct complications), how should this death rate be ad-

justed to account for deaths that could result from complications due to

transmitted vaccinia?

First, let’s just model vaccinia transmission, and then ask how one would

see the consequences of vaccinia transmission in data reporting vaccine com-

plications. Suppose that vaccinia transmits with 0  1. Then from part

(a) we know that the expected total number of vaccinia infections resulting

from a person initially infected with vaccinia (i.e. a person vaccinated against

smallpox) would equal  = 1(1−0).

Now, suppose that anyone with vaccinia develops a vaccinia complication

with probability  Then the expected total number of vaccinia complica-

tions that would result from a single person initially infected with vaccinia

would just equal  (which is just the expected total number of vaccinia
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infections that lead to a complication). If  persons were directly vacci-

nated, then you would expect a total of  vaccine complications, with

 of these among those directly vaccinated. This means that the num-

ber of vaccinia complications attributable to transmitted vaccinia just equals

 −  = 
³

1
1−0 − 1

´
=  0

1−0 · Consequently, the ratio of indirectly
transmitted vaccinia complications to complications among those vaccinated

directly would be given by

# indirect complications

# direct complications
=

 0
1−0


=
0

1−0
·

Now, the data reported at the conference implied that 20% of all compli-

cations resulted from vaccinia transmission, which in turn implies that 80%

of all complications resulted from direct vaccination. This means that the

ratio of indirect to direct complications would solve

0

1−0
=
02

08
= 025

which implies that 0 = 02 Returning to part (a), the total number of
vaccinia infections that would result from a single directly vaccinated person

equals  = 1(1 − 0) = 18 = 125 The total number of complications
that would result then equals 125 per person directly vaccinated. Since the
death rate among those directly vaccinated was previously estimated as 1 per

million, the argument above shows that the effect of indirectly transmitted

vaccinia on deaths amounts to increasing the death rate per person vaccinated

from 1 per million to 1.25 per million (i.e. set  = 1).

While it is clear that the reported ratio of transmitted to direct vaccine

complications equals 0.25, the timing over which this ratio was obtained is

not clear. The argument above assumed that the indirect complications were

observed over all time. Let’s instead consider the other extreme, and assume

that all of the data resulted from a single “generation” of transmission, that

is, that  persons were vaccinated, that each of these  persons generated on

average an additional 0 vaccinia infections, that vaccinia infections led to

complications with probability , but that only complications among either

those directly vaccinated or those who became infected with vaccinia from

someone directly vaccinated were observed (because the observation period
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only amounted to one generation, namely, those initially vaccinated in the

military along with a small number of first responders — this was before

the vaccination of 500,000+ military personnel plus 40,000 or so civilians).

This argument would imply that the total number of observed complications

equals + 0, and that the observed ratio of transmitted to direct com-

plications would equal 0 = 0 In this case, you would model vaccinia

transmission as an infection process with an 0 of 0.25. From part (a), this

results in a total over all time of

 =
1

1−0
=

1

1− 025 =
4

3
= 133

vaccinia infections per person directly vaccinated (and thus 1.33 complica-

tions).

To summarize, taking the death rate due to vaccinia as 1 per million in-

fected with vaccinia ( = 1), then accounting for all vaccinia trans-

mission beyond direct vaccination, we can safely say that the death rate

should increase from 1 per million vaccinated to a number between 1.25 and

1.33 per million vaccinated. If you vaccinate a population of 10 million,

instead of expecting 10 deaths from vaccine complications, now you should

expect 12.5 to 13.3. Not a huge excess to worry about in the event of a small-

pox attack (which would really be the only event in which such large-scale

vaccination would take place)!

8.3.4 Repeat Screening for HIV Infection

Throughout the history of the HIV/AIDS epidemic, certain populations have

been subjected to repeat HIV testing. These include, but are not limited

to, commercial sex workers, prisoners, and persons in military service. The

reasons for such testing are varied: commercial sex workers are typically

screened because they are potentially at high risk for the transmission and

acquisition of HIV, while persons in military service are considered part of

a “walking blood bank.” In some sense, persons in the population at large

who engage in high risk behavior and regularly have themselves tested also

constitute a repeatedly screened population.

This problem considers one aspect of this issue: how often should persons

be tested? Let us agree that undetected infections are costly, and identify a

“cost of infection”  per person-year of undetected infection in the population.
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Let us also agree that testing is costly, at a charge of  per test. For simplicity,

we will assume that HIV testing is perfectly sensitive and specific: if the test

says HIV+, then the person tested is truly infected, while an HIV- result

means that the person is free of infection. Let the incidence rate of new

infections (per uninfected person per unit time) remain constant and equal to

, and let the time in between successive HIV tests (the “screening interval”)

be denoted by  .

(a) Recall that each person in this population is screened once every 

time units. Suppose an individual has just become infected. On average, how

much time will pass from the moment of infection until the next screening test

(when the infection is detected)? (HINT: the timing of infection is completely

independent of the timing of HIV tests, the latter happening once every 

time units without fail!)

Since persons in the population are getting tested every  time units,

the time until the next screening test is clearly something between 0 and 

inclusive. Furthermore, since the timing of infections is completely random

with respect to testing times, a newly infected person is equally likely to

be anywhere within the interval bounded by the last and next testing times.

This means that the average location of the time of infection within a screen-

ing interval is smack in the middle! Consequently, the expected time from

infection until the next screening test equals 2.

(b) Suppose that there are  persons in the population, and that the

number of infected persons is sufficiently small relative to the population size

that the aggregate rate of new infections in the population can be written

as  per unit time. What is the expected number of undetected infected

persons in the population? (HINT: it obviously has something to do with

the length of time that a newly infected person remains undetected!!)

Well let’s see. Suppose that there are  persons who are infected but

undetected in the population on average. Then the rate with which persons

are detected must equal (2) = 2 , since on average each undetected
infected person remains as such for 2 time units. However, it must also
be the case that the rate with which persons are detected equals  since all

infections are eventually detected, and new infections are occurring in the

aggregate at rate . We thus have the balance of infection flow result:

 =
2


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from which we obtain

 =


2
·

This result assumes that the persons stay in the population until they are

detected with infection. Of course, in reality people are arriving and depart-

ing the population, but this model still works as long as the arrivals and

departures cancel to leave the number of persons in the population constant

and equal to .

(c) Now, if it costs  per test, and there are  persons in the population

each getting tested once every  time units, what is the aggregate cost of

testing per unit time? (HINT: recall the EOQ model.)

Clearly, if each person is tested once every  time units, then the testing

rate equals 1 per person per unit time. This means that the total number of
tests conducted in the population equals  per unit time, and consequently

the total aggregate cost of testing is given by  per unit time.

(d) In the State of Nevada, commercial sex work is legal and regulated

in certain counties. The HIV incidence rate among these sex workers has

been estimated as 4 new HIV infections per thousand sex workers per year

(that is,  = 0004). The state uses standard enzyme immunoassay tests
(EIAs) to detect HIV antibody; these cost $5 per test. Finally, suppose that

the public health department has, using a variety of arguments, decided that

the cost of undetected infection  equals $360,000 per year of undetected

HIV infection in a commercial sex worker. Total public health costs can

be thought of as the sum of the total cost of undetected HIV infection and

the total cost of screening. The former cost is simply equal to  times the

number of undetected infected persons in the population, while the latter

cost you found in part (c) above. Given the data values provided for ,  and

, what is the optimal screening interval? That is, what numerical value of

 minimizes the total public health costs? Feel free to answer using Excel,

or try to do this analytically. (HINT: recall the EOQ model.)

Let’s see - the aggregate cost of infection is just equal to  = 2 per
unit time, while the aggregate cost of testing is given by  per unit time.

Thus, total public health costs are given by:

Total Public Health Costs =


2
+




·

We want to minimize this as a function of the screening interval  . Note that

 doesn’t matter in this problem so we can just set  = 1.
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We’ll do this analytically first. To minimize the total public health costs,

differentiate the expression above with respect to  and set the result equal

to zero. We get:





µ


2
+





¶
=



2
− 

 2
= 0

which leads to the solution

 ∗ =

r
2


·

This makes sense: if the incidence rate  or the cost of infection  increase, the

optimal screening interval  ∗ decreases (that is, you screen more frequently).
Conversely, if the test cost  increases, the optimal screening interval in-

creases (that is, you screen less frequently). Note the analogy to the EOQ

model: in the EOQ, the optimal order quantity is given by ∗ =
p
2

where  is the item demand,  is the setup cost, and  is the holding cost.

The time between orders (the cycle time) is given by ∗ =
p
2.

Comparing this to  ∗ we see that the testing cost  plays the role of the
setup cost in the EOQ, the cost of infection  is equivalent to the holding

cost, and the infection rate  is equal to the demand rate . Pretty cool, no?

Repeat screening for HIV is an EOQ problem in disguise.

Continuing with the problem at hand, we plug in the parameter values

( = 0004  = $360 000,  = $5) and obtain

 ∗ =

r
2× 5

360 000× 0004 = 0083333 years =
1

12
years = 1 month.

Guess what? In Nevada, regulated commercial sex workers are screened once

per month for HIV!

Now, suppose you don’t know calculus and did not recognize the EOQ

analogy. You could still have found this answer by plugging in the values of ,

, and  into the formula for Total Public Health Costs above, set  = 1, and
then calculated the resulting costs for different values of  in a spreadsheet.

Doing so, you would discover the following relationship between annual total

costs and  :
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Note that Total Public Health Costs are minimized when the screening

interval is set to 1 month, a result you could also have obtained via the Solver

by minimizing Total Public Health Costs with  as the decision variable using

the GRG Nonlinear option.


