

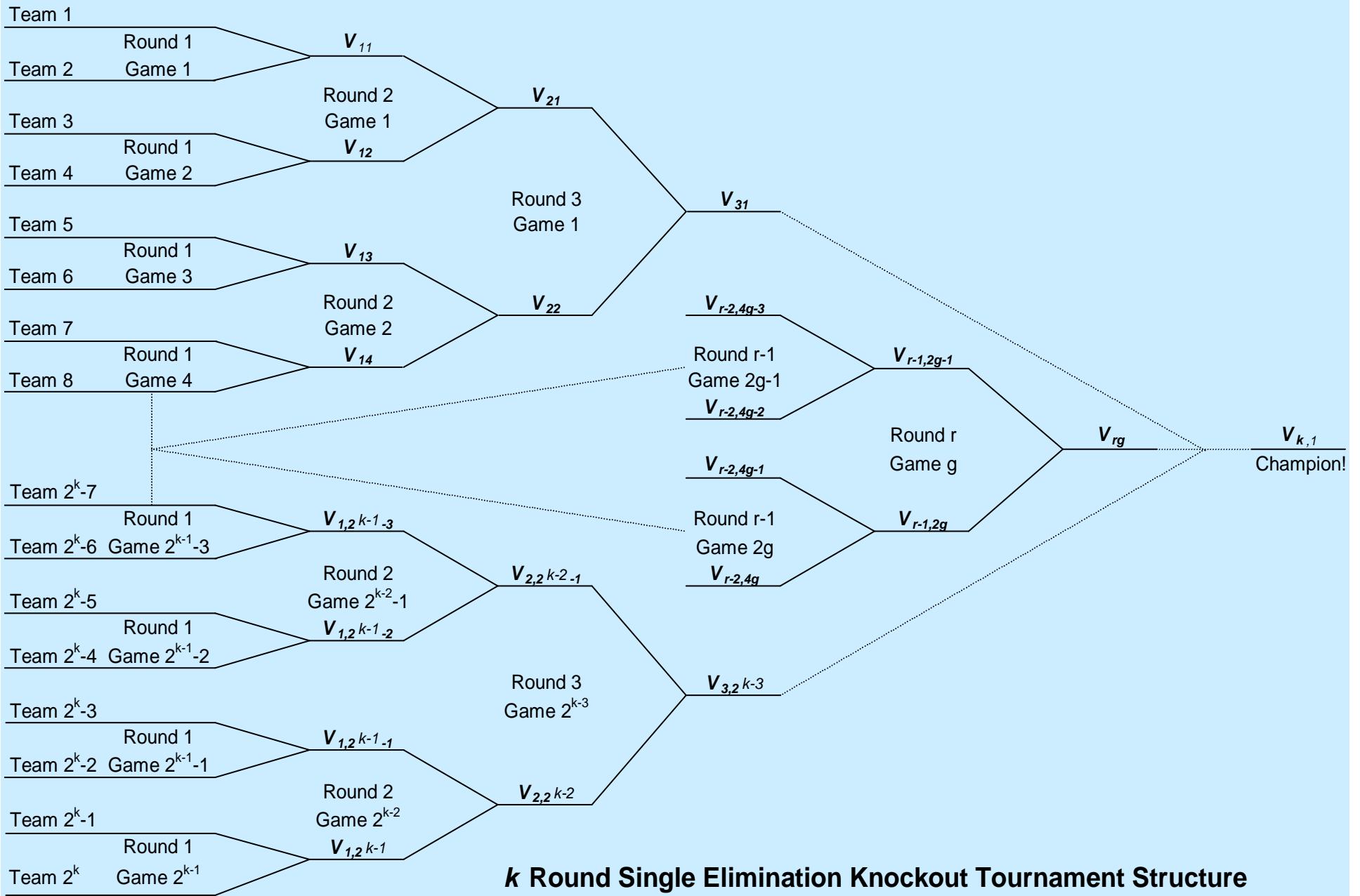
WWF....SMACKDOWN!!!!
AWESOME BABY!!!!

A woman in a light-colored zip-up hoodie and dark pants stands in a living room, facing a brown and white dog. A basketball is suspended in the air between them. The room has a fireplace, a window, and a potted plant. A large, white, cloud-shaped speech bubble originates from the dog's position.

She still thinks
I'm a
freakin'
Husky!!!!

Duke over UCLA by 3!
Temple over UCONN by 7!

March Madness And The Office Pool


Edward H. Kaplan
Stanley J. Garstka

Yale University
School of Management

What We're Going To Do:

- ◆ Describe tournament structure
- ◆ Embed office pools in tournament structure
- ◆ Illustrate with a random tournament (let Alli Baby pick the winners!)
- ◆ Illustrate with toy Markov tournaments
- ◆ Show how to maximize the expected number of points in a real pool
- ◆ Markov models for college tournaments
- ◆ Empirical results


Single Round Elimination Tournament Structure

The Victor!

Tournament Structure Facts

- ◆ Tournaments with k rounds start with 2^k teams, and require $2^k - 1$ games
- ◆ e.g. NCAA tournament has 6 rounds, 64 teams, and 63 games
- ◆ The number of possible realizations equals $2^{2^k - 1}$, so for the NCAA tournament there are 2^{63} or about 9.22×10^{18} (that is, more than 9 billion billion) possible realizations

Office Pools

- ◆ Points are awarded for correctly naming game winners *a priori*
- ◆ Score for the pool is the sum of the points awarded for each game
- ◆ (S)he who gets the most points wins
- ◆ Simplest case: pick as many games correctly as possible
- ◆ More complex case: points increase with tournament depth; upset points awarded

Example: A Random Tournament

Example: A Random Tournament

- ◆ For a team to win in round r , it must win r games in a row! This has probability $1/2^r$
- ◆ In round r of a k round tournament, there are 2^{k-r} games
- ◆ The expected number of games called correctly in round r is thus $2^k/4^r$
- ◆ The expected fraction of correct calls goes to $1/3$ (geometric series in $1/4$)!
- ◆ Variance (# correct) goes to mean / 1.05

Possible Objectives

- ◆ Maximize expected winnings (money is everything)
 - Need to worry about other players

Possible Objectives

- ◆ Maximize expected winnings (money is everything)
 - Need to worry about other players
- ◆ Maximize expected number of points in the pool (we want to be right!)
 - Does not depend on the behavior of others
 - Does depend on probability assessments for game outcomes, and pool rules for points

Example: 2001 Euro Final Four

Row Beats Column With Probability:	ПаваНайк	EFES Pilsen	ЦСКА	מכבי
ПаваНайк	--	0.6	0.6	1
EFES Pilsen	0.4	--	0.6	1
ЦСКА	0.4	0.4	--	1
מכבי	0	0	0	--

- ◆ Draw: Пава/Пilsen, מכבי/ЦСКА, winners
- ◆ Who should you pick to maximize the expected number of wins?

Example: 2001 Euro Final Four

Row Beats Column With Probability:	Παναθηναϊκός 1908	ΕΦΕΣ Pilsen	Ε.Π.Ο. Ολυμπιακός	ЦСКА Москва
Παναθηναϊκός 1908	--	0.6	0.6	1
ΕΦΕΣ Pilsen	0.4	--	0.6	1
Ε.Π.Ο. Ολυμπιακός	0.4	0.4	--	1
ЦСКА Москва	0	0	0	--

- ◆ Clearly choose **μεταξιά** over ЦСКА
- ◆ Πανα or Pilsen?
- ◆ Who should you pick for the final?

Example: 2001 Euro Final Four

- ◆ To maximize expected number of correct picks, pick **Пава** over Pilsen, **מכבי** over ЦСКА, and **מכבי** over **Пава** (expected wins: $.6 + 1 + .4 = 2$)
- ◆ Optimal to pick **מכבי** over **Пава**, *even though* **Пава** *beats* **מכבי** w.p. 0.6!
- ◆ Really picking **מכבי** to win final, *not* to beat **Пава**!
- ◆ Picking **Пава**, **מכבי**, **Пава** yields an expected $.6 + 1 + .6 \times .6 = 1.96$ wins

Example: Impact of Depth Points

Row Team Beats Column Team With Probability:

	A	B	C	D
A	--	0.5	0.6	0.2
B	0.5	--	0.7	0.2
C	0.4	0.3	--	0.6
D	0.8	0.8	0.4	--

- ◆ A plays B, C plays D, winners play
- ◆ What picks maximize $E(\# \text{ wins})$?
- ◆ What picks maximize $\Pr\{\text{Pick WINNER!}\}$?

Example: Impact of Depth Points

Row Team Beats Column Team With Probability:

	A	B	C	D
A	--	0.5	0.6	0.2
B	0.5	--	0.7	0.2
C	0.4	0.3	--	0.6
D	0.8	0.8	0.4	--

- ◆ To maximize $E(\# \text{ wins})$, choose B-C-B (yields expectation of 1.35)
- ◆ Team D has highest chance (32%) of winning (pick A-D-D or B-D-D)

Example: Impact of Depth Points

Row Team Beats Column Team With Probability:

	A	B	C	D
A	--	0.5	0.6	0.2
B	0.5	--	0.7	0.2
C	0.4	0.3	--	0.6
D	0.8	0.8	0.4	--

- ◆ Suppose you get 1 point for calling each of first two games, d points for championship
- ◆ If $d < 20/7$, pick B-C-B, otherwise pick A-D-D or B-D-D

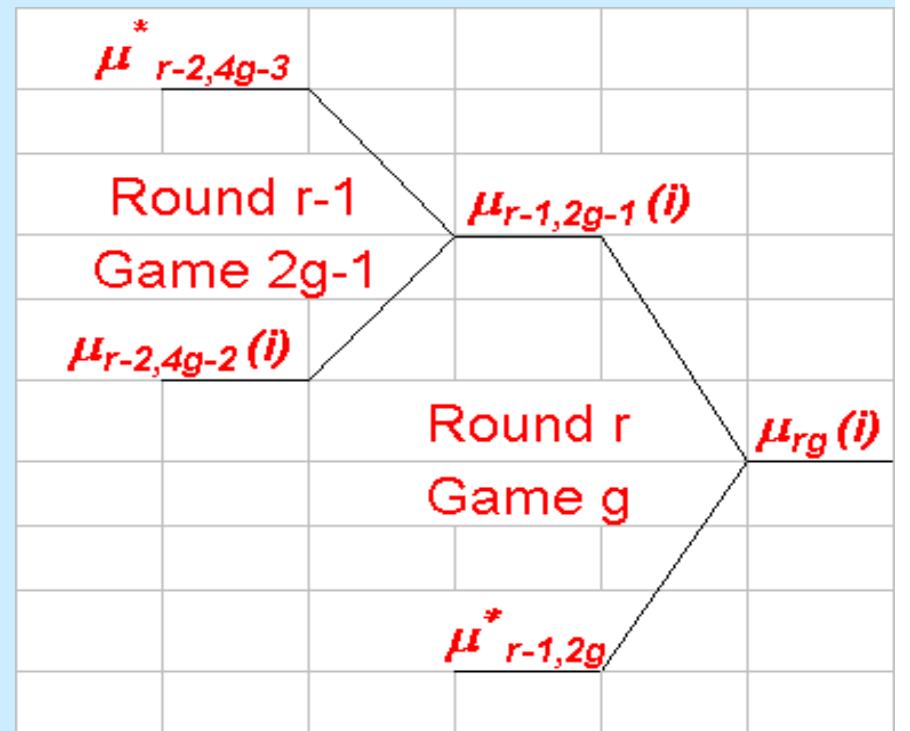
Optimizing in Real Time

- ◆ Let $\mu_{rg}(i)$ denote the expected points through game g if team i to win that game
- ◆ Let μ_{rg}^* denote the expected points optimally thru game g
- ◆ Let $\pi_{rg}(i)$ be the probability of correctly picking team i round r
- ◆ Let $\omega_{rg}(i) = \Pr\{i \text{ wins}$

Optimizing in Real Time

- ◆ Let $\mu_{rg}(i)$ denote the expected points through game g if team i to win that game
- ◆ Let μ_{rg}^* denote the expected points optimally thru game g
- ◆ Let $\pi_{rg}(i)$ be the probability of correctly picking team i round r
- ◆ Let $\omega_{rg}(i) = \Pr\{i \text{ wins}$

Optimizing in Real Office Pools


- ◆ Let $\mu_{rg}(i)$ denote the expected number of points through game g in round r if choose team i to win that game and act optimally
- ◆ Let μ_{rg}^* denote the expected points gained optimally thru game g in round r
- ◆ Let $\pi_{rg}(i)$ be the points awarded for correctly picking team i to win game g , round r
- ◆ Let $\omega_{rg}(i) = \Pr\{i \text{ wins game } g, \text{ round } r\}$

Optimizing in Real Office Pools

$$\mu_{rg}(i) = \mu_{r-1,2g-1}(i) + \mu_{r-1,2g}^* + \pi_{rg}(i)\omega_{rg}(i) \quad \text{if } i \text{ plays in } r-1,2g-1$$

$$\mu_{rg}(i) = \mu_{r-1,2g-1}^* + \mu_{r-1,2g}(i) + \pi_{rg}(i)\omega_{rg}(i) \quad \text{if } i \text{ plays in } r-1,2g$$

$$\mu_{rg}^* = \max_{i \in \tau(r,g)} \mu_{rg}(i)$$

Markov Models for College Basketball

- ◆ We need to compute the probabilities that any team i wins game g in round r ($\omega_{rg}(i)$)
- ◆ We do this via Markov models
- ◆ Markov assumption: in any game between two teams i and j , the probability that i beats j equals p_{ij} independently of other games

$$\omega_{rg}(i) = \omega_{r-1,2g-1}(i) \sum_{\ell \in \phi(i,r)} \omega_{r-1,2g}(\ell) p_{i\ell}$$

Markov Models for College Basketball

- ◆ We consider three models:
 - regular season record
 - expert ratings (Sagarin ratings)
 - Las Vegas Odds

Regular Season Model

- ◆ $p_{ij} = s_i / (s_i + s_j)$ (Bradley-Terry model, or model of *quasi-independence*)
- ◆ Estimate the parameters via (constrained) maximum likelihood based on regular season (and conference tournament) results
- ◆ Use 64 NCAA teams, 32 NIT teams, and all others lumped into *megateam* (so 96 free parameters)
- ◆ Provides connectivity among all teams

3 Team Example

- ◆ a plays b , c plays b , but a and c never play
- ◆ f_{ab} and f_{cb} are respectively the observed fraction of time a and c beat b
- ◆ Solve 3 equations:

$$\frac{s_a}{s_a + s_b} = f_{ab}, \frac{s_c}{s_b + s_c} = f_{cb}, s_a + s_b + s_c = 1$$

- ◆ Implied s_a depends on performance of c !

$$s_a = \frac{f_{ab}(1 - f_{cb})}{1 - f_{ab}f_{cb}}$$

Sagarin Ratings

- ◆ Sagarin provides estimates of scoring rates λ_i for all Division I NCAA teams
- ◆ We assume *uncorrelated Poisson scoring!*
- ◆ Let X_{ij} be the point spread. Under the model, X_{ij} is approximately normal with mean $\lambda_i - \lambda_j$ and variance $\lambda_i + \lambda_j$
- ◆ $p_{ij} = \Pr\{X_{ij} > 0\}$

Las Vegas Odds

- ◆ Las Vegas takes bets on NCAA games
- ◆ Two types of bets: point spreads and point totals (“over/under” bets)
- ◆ If market is correct, then can directly estimate scoring rates from quoted point spreads and point totals, and use uncorrelated Poisson model
- ◆ Implies that the actual point spread that will occur is normally distributed with mean given by Vegas point spread line, and variance given by Vegas over/under line!

Tournament by Tournament

	NCAA 1999	NCAA 1998	NIT 1999	NIT 1998
	Actual/Expected/Standard Deviation of Wins			
Chance	-- / 21.3 / 4.5	-- / 21.3 / 4.5	-- / 10.7 / 3.2	-- / 10.7 / 3.2
Pick the Seeds	36 / -- / --	39 / -- / --	17 / -- / --	13 / -- / --
Regular Season	39 / 42.6 / 4.3	37 / 43.5 / 4.1	17 / 12.9 / 3.4	18 / 15.0 / 3.4
Sagarin	41 / 41.4 / 4.2	39 / 38.5 / 4.5	15 / 13.1 / 3.4	13 / 13.0 / 3.4
Las Vegas Odds	38 / 44.6 / 3.8	35 / 45.1 / 4.3	22 / 17.5 / 3.7	15 / 19.2 / 3.7

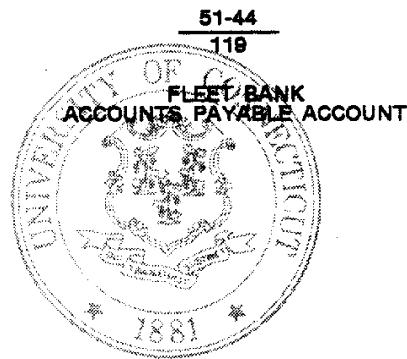
Packard Pool

- ◆ Run by a math professor at Mesa State U.
- ◆ Points awarded if correctly call n^{th} seed to win in round r given by $(1+n)\rho(r)/2$ where $\rho(r)$ increases nonlinearly as r goes from 1 thru 6 ($\rho(1) = 1,890$ while $\rho(6) = 27,720$)
- ◆ How would we have done?

The Packard Pool!

	NCAA 1999	NCAA 1998
	Actual/Expected/Standard Deviation of Total Score	Actual/Expected/Standard Deviation of Total Score
Pick the Seeds	239,256 / -- / --	233,702 / -- / --
Regular Season	274,956 / 302,964 / 47,293	356,969 / 304,181 / 54,213
Sagarin	405,421 / 299,062 / 55,738	274,572 / 273,333 / 63,974
Las Vegas Odds	299,942 / 339,887 / 62,735	213,285 / 514,516 / 138,543

- ◆ Winner of 1999 pool scored 333,572 points
- ◆ Our Sagarin model would have won!
- ◆ Winner of 1998 pool scored 218,545 points
- ◆ Our Regular Season and Sagarin models would have won (as would picking the seeds)!


2000 NCAA Tournament Results

		CBS Sportsline Pool	Packard #2 Pool	ESPN Pool
# Participants		95,000	40	580,000
Upset Points?		Yes	Yes	No
	Percentile	99.97	92.5	71.3
Massey Ratings	$x / \mu / \sigma$	426 / 239 / 76	341,807 / 275,271 / 59,876	780 / 799 / 203
	# Wins	39	38	37
	Percentile	83.1	90	61.9
Sagarin Ratings	$x / \mu / \sigma$	228 / 241 / 105	304,304 / 268,067 / 66,167	710 / 738 / 193
	# Wins	29	38	39
	Percentile	40.2	70	32.5
Regular Season	$x / \mu / \sigma$	173 / 248 / 93	262,872 / 277,201 / 76,480	530 / 713 / 185
	# Wins	37	31	
	Percentile	95.8	80	28.4
Las Vegas Odds	$x / \mu / \sigma$	263 / 258 / 54	281,388 / 315,024 / 51,254	510 / 1,027 / 196
	# Wins	40	40	39

So, Did We Make Any Money?

UNIVERSITY OF
CONNECTICUT
STORRS, CONNECTICUT 06269

PAY *Two hundred fifty and 00/100 Dollars*
TO THE
ORDER
OF EDWARD H. KAPLAN
YALE SCHOOL OF MANAGEMENT
PO BOX 208200
NEW HAVEN CT 06520-8200

51-44
119

FLEET BANK
ACCOUNTS PAYABLE ACCOUNT

CHECK NO. 15-645073

CHECK DATE

03/26/00

CHECK AMOUNT

*****\$250.00

VOID AFTER 120 DAYS

SECOND SIGNATURE REQUIRED ABOVE \$9,999.99

A handwritten signature in black ink, appearing to read "D. Kaplan".

AUTHORIZED SIGNATURE

THE BACK OF THIS DOCUMENT CONTAINS AN ARTIFICIAL WATERMARK - HOLD AT AN ANGLE TO VIEW

15645073 10119004451 6772 8052

How About 2001?

- ◆ Tried to predict *women's* tournament
- ◆ After first two rounds, the model correctly picked 42 of 48 games, beating 99.7% of 60,831 entries in *ESPN* pool
- ◆ But then...
- ◆ Of remaining 15 games, model got only 4 correct, ending up at the 48.3%-ile

2001 Men's Tournament

- ◆ Highlights: beat 71.3% in the 600,000+ *ESPN* pool
- ◆ Came in 3rd place!!!...
- ◆ ...in the Yale School of Management pool, winning \$17.50
- ◆ And, Stan and I won *four T-shirts* in the Fantasy Cup Tournament...
- ◆ ...for coming in 180th out of 1200+
- ◆ The winner got \$5,000

Web Implementation

- ◆ Tom Adams’ “poologic” calculator at

<http://www.poologic.com/>

SO.....

Wanna dance??????

