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1. Systems of Flow

There are many systems, biological and other, that can be construed as systems
of flow. Non-biological examples include river systems, transportation networks,
computer and telecommunication networks, manufacturing supply chains, finan-
cial networks and even accounting systems (ever heard of a cash flow?). Biological
systems include blood circulation, population dynamics (of animals, humans, bac-
teria, viruses etc.), and of course, disease transmission and progression, which is
the subject of this class. While the modeling of infectious diseases is usually ap-
proached directly in terms of epidemiological specifics (and eventually we’ll get
there too), there are some basic principles governing systems of flow that are
quite remarkable in their generality. Knowledge of these principles enables their
application to any system of flow, including epidemiological systems of disease
transmission and progression. We will therefore explore some of these ideas before
jumping into what would be considered a more standard treatment of epidemic
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modeling, and when we do take the required jumps, hopefully the material below
will clarify matters.

1.1. Fundamental Equation of Flow

In the simplest system of flow, we focus on the movement of material (people,
water, goods, money) into and out of a single “state” or “compartment” (see
figure below). In economics or operations research, the quantity of material in
the state is commonly referred to as “stock” (as in “the stock of inventory” or
the “stock of money”), but we’ll usually just talk about the “compartment size”
in referring to the amount of material in the given state. Let N(t) denote the
compartment size at time t, α(t) denote the arrival rate at time t, and δ(t) denote
the departure rate at time t.

α(t ) δ(t )
N (t )

In deterministic models, the amount of material that “flows” into the compart-
ment between times t and t+∆t is given by α(t)∆t, while the amount that flows
out of the compartment during this same time slice equals δ(t)∆t. Arguing from
first principles, we have a very simple and fundamental equation that describes
the compartment size over time:

N(t+∆t) = N(t) + α(t)∆t− δ(t)∆t. (1.1)

This fundamental equation of flow simply says that the compartment size in the
next time instant equals the compartment size now, plus whatever shows up over
the next time instant, minus whatever leaves. Think of all the things this equa-
tion describes. The number of persons infected with HIV tomorrow equals the
number of persons infected today, plus the number of new HIV infections, minus
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the number of HIV-infected persons who die. As a less harrowing example, the
amount of money in your checking account tomorrow equals the amount today,
plus deposits, transfers in, interest etc. that “arrive” to your account, minus with-
drawals, checks cleared, transfers out etc. that “depart.” My kid is taking a bath;
how much water is in the tub in the next instant? Well, whatever is there now,
plus whatever comes in from the faucet, minus whatever said kid splashes out (or
drinks, or releases down the drain...). You get the idea.
In continuous time, it is easy to convert the fundamental equation of flow to

differential form by taking the limit as ∆t→ 0. That is, re-writing the equation
as

N(t+∆t)−N(t)
∆t

= α(t)− δ(t) (1.2)

and letting ∆t→ 0 yields
dN(t)

dt
= α(t)− δ(t) (1.3)

which has the general solution

N(t) = N(0) +

] t

0

[α(u)− δ(u)] du (1.4)

where N(0) is the compartment size at time 0, which itself can be arbitrary (e.g.
Dec 16, 1955 which is my personal time 0, or the time at which an epidemic begins,
etc.). Equation (1.4) is hardly a surprise, and really is just a re-statement of the
fundamental equation of flow: what you’ve got at time t is whatever you started
with at time 0, plus everything that arrived between 0 and t, minus everything
that left.
So far the arguments have been in deterministic terms, but the ideas carry

over to probabilistic (or stochastic) flow as well. In probabilistic models, α(t)∆t
represents the probability of a single arrival between t +∆t, while δ(t)∆t is the
probability of a single departure over the same time interval. Think of the flow
system as representing the queue (including the person using the machine if ap-
plicable) at your local ATM machine. The probability a customer shows up and
joins the queue in the next ∆t time units is α(t)∆t, while the probability that
someone leaves (due to completing service, or getting impatient and just drop-
ping out) equals δ(t)∆t. For stochastic models, equation (1.4) models the expected
compartment size over time (though we really should replace N(t) by E[N(t)] and
similarly for N(0) to recognize what’s fixed and what’s random).
In this class (and in most of the literature governing mathematical epidemiol-

ogy), we technically will take the deterministic view. However, I will argue that in
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spite of this, opportunities for probabilistic interpretations abound when studying
epidemiological systems of flow (i.e. disease transmission and progression), and in
fact the ability to employ such interpretations not only makes the models easier to
explain (and more convincing to the explainee!), it also sometimes leads to amaz-
ingly elegant shortcuts to the formulation and solution of models for infectious
diseases.
Virtually all models for infectious diseases can be viewed as repeated applica-

tion of the fundamental equation of flow in various guises. Much of our attention
will focus on creating biologically and/or epidemiologically plausible sub-models
for the arrival and departure rates α(t) and δ(t) for epidemiologically (and some-
times demographically and in the case of intervention programs even logistically)
meaningful compartments. Key to such sub-models is to recognize some addi-
tional relationships. For example, what is the relationship between the number of
deaths per unit time in a population and the duration of life itself? More gener-
ally, how can one relate the time spent by an individual in a compartment to the
aggregate rate with which individuals of all ages leave said compartment? Note
that the compartment in question could represent just about anything: persons
infected with some disease, or persons waiting to be vaccinated but otherwise
uninfected, or persons placed in quarantine, or persons displaying symptoms, etc.
Since so much of epidemiology involves the duration of important periods (e.g.

time to infection, incubation period, duration of infectiousness, time to recovery,
time to death etc.), it is not surprising that biostatisticians have developed a
family of models for durations data under the general heading of survival analysis.
But, as with our more general view of systems of flow, these same tools are much
more general. Reliability theory is a long-established sub-field in engineering
that, among other things, pays a lot of attention to the time until systems fail
with the idea of designing systems that postpone failure beyond some reasonable
time with high probability (enabling preventative maintenance to occur before
a catastrophic failure does). Of course things don’t always work out nicely, as
Three Mile Island, or the recent East Coast blackout (which, for convenience,
we’ll blame on Cleveland) demonstrate. Economists also have use for such models.
Think about the labor market: what are the typical durations of employment, or
unemployment for that matter? How about the duration of a strike?
I digress (it’s happened before, why stop now?). The point is, we need to

review some basic probability models for describing durations and connect them
to epidemiology so that we have some basic tools and terminology to work with
later. So here we go.
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2. Modeling Durations: Basic Probability Models

Consider some state, and let the random variable T denote the total amount of
time an individual spends in this state. Or alternatively, let T denote the time
from some arbitrary starting point until some event (a person becomes infected,
the strike ends, the Red Sox win the World Series) occurs. We will assume that
T is finite (even for the Red Sox) and continuous. What are the most convenient
ways to describe random variable T? There are three approaches that all convey
the same information (in that mathematically you can always derive them from
each other with no additional help), but have different advantages depending upon
what you are trying to do. There, that was informative! The three functions used
to describe T are the...

2.1. Survivor, Density, and Hazard Functions

Let’s start with the survivor function S(t). This is simply defined as the proba-
bility that the duration in question exceeds t, that is,

S(t) = Pr{T > t}. (2.1)

The survivor function, being a probability, always falls between 0 and 1. Also,
the survivor function is non-increasing, which is to say that while it can remain
constant over arbitrary swaths of time, when it changes value, it can only get
smaller. This makes sense. Let T be the time to death (otherwise known as your
age at death). The chance of living past the age of 10 cannot be smaller than the
chance of living past the age of 100, especially since to make it past 100, you first
have to make it past 10! That is,

Pr{T > 10} = Pr{10 < T ≤ 100}+Pr{T > 100}
≥ Pr{T > 100}. (2.2)

Note also that T is a non-negative random variable (life starts at birth, that is, at
time 0), and that (usually) S(0) = 1 and S(∞) = 0, which means that everyone
gets to play the game of life, but no one lives forever. If we are considering human
mortality, this is not strictly true as of course there are stillbirths (or miscarriages
or abortions etc.). On the other hand, focusing on all durations that actually
start (live births in our example), the endpoints clearly make sense.
A different way to describe durations is directly in terms of a probability

density f(t), that is,
Pr{t < T ≤ t+∆t} = f(t)∆t. (2.3)
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The relationship between S(t) and f(t) follows directly from the laws of proba-
bility, whence

S(t) = Pr{T > t} =
] ∞

t

f(u)du (2.4)

or, working in reverse,

f(t) = −dS(t)
dt

· (2.5)

Note that ] ∞

0

f(t)dt = S(0) = 1 (2.6)

which simply says that the probability that the duration equals something is equal
to unity. Knowledge of the probability density leads definitionally to all sorts of
interesting things, such as the mean and second moment of the survival time T ,
defined as

E(T ) =

] ∞

0

tf(t)dt (2.7)

and

E(T 2) =

] ∞

0

t2f(t)dt (2.8)

from which one obtains the variance of T as

V ar(T ) = E(T 2)− [E(T )]2 (2.9)

as is well known. However, as we will see shortly, there are other formulas worth
knowing for these same quantities that will simplify matters greatly.
The third and most physically or biologically motivated approach to describing

the duration T is via the hazard function h(t). The hazard function is the instan-
taneous probability that the duration ends in the next ∆t time units, conditional
on survival through time t. Applied to human lifetimes, the hazard rate becomes
the age-specific mortality rate, usually denoted µ(a), familiar to demographers
and others. In general, the hazard rate is defined by

h(t)∆t = Pr{t < T ≤ t+∆t|T > t}
=

f(t)∆t

S(t)
(2.10)

whence

h(t) =
f(t)

S(t)
· (2.11)
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Now, to obtain the survivor function from the hazard, using equation (2.5) in
equation (2.11) yields

− 1

S(t)

dS(t)

dt
= h(t) (2.12)

and upon integration (and remembering that S(0) = 1) we obtain the important
result

log(S(t)) = −
] t

0

h(u)du (2.13)

whence
S(t) = e−

U t
0 h(u)du (2.14)

and, from equation (2.11),

f(t) = h(t)S(t) = h(t)e−
U t
0 h(u)du. (2.15)

2.2. Special Cases

In principle, almost any non-negative random variable can be used to model dura-
tions, as evidenced in your readings from Probabilistic Reliability: An Engineering
Approach. We will have opportunities to use many different duration models (to
describe, for example, incubation times for AIDS, anthrax, or smallpox). How-
ever, two special cases are worth considering at this time.

2.2.1. Constant Survival Time (Type I Survival)

As argued by Anderson and May, the model of constant survival time provides
an approximation for lifespans in the developed world. While it is not true that
everyone literally dies at exactly the same age, the distribution of age at death is
not that variable. For constant survival through death at age �, we have

S(t) =

 1 0 < t ≤ �

0 t > �
· (2.16)

The probability density and hazard functions are not particularly nice for Type I
survival. The hazard function is defined for this case as

h(t) =

 0 0 < t < �
∞ t = �
who cares? t > �

(2.17)
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while the density is given by
f(t) = i�(t) (2.18)

where i�(t) is the unit impulse function centered at �, that is, i�(t) = 0 for t 9= �,
yet somehow limε→0

U �+ε

�−ε i�(t)dt = 1. Stick with the survivor function. Oh, and of
course for Type I survival, E(T ) = � and V ar(T ) = 0.

2.2.2. Constant Hazard Rate (Type II Survival)

Mainly employed for mathematical convenience, the assumption of constant haz-
ards for mortality and disease progression dominates in epidemiological models.
Though this assumption is rarely justified on the basis of descriptive accuracy, the
results one obtains regarding several (though not all) aspects of epidemics turn
out to be surprisingly robust to departures from this assumption. Proceeding, if
the hazard rate h(t) is constant and equal to (say) µ > 0, then direct applica-
tion of equations (2.14) and (2.15) leads to the following results for the survivor
function and probability density:

S(t) = e−µt for t > 0 (2.19)

and
f(t) = µe−µt for t > 0. (2.20)

Under Type II survival, random variable T follows the exponential distribution
with mean 1/µ (as is easily verified by Equation (2.7)). That µ = 1/E(T ) is a
special case of a more general result as we will discover.

2.3. Expected Survival Time

As mentioned in the discussion surrounding equation (2.7), one can obtain the
mean duration E(T ) definitionally from the probability density. But for non-
negative random variables such as durations, there is an even simpler formula
called “integrating the tail” that involves only the survivor function. Here’s how
it works: suppose T refers to human lifetime, and focusing on a random live birth
at time 0, define

Φ(t) =

 1 Still alive at time t

0 Not alive at time t
· (2.21)
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Then the duration of life (equivalently, age at death), T , can be expressed cleanly
as

T =

] ∞

0

Φ(t)dt (2.22)

as is clear from the figure below. Thus, the expected duration of life is given by

E(T ) = E

�] ∞

0

Φ(t)dt

�
=

] ∞

0

E [Φ(t)] dt. (2.23)

Staying Alive!

0

1

T

Φ(t)

        t

So we have changed the problem into figuring out the expected value of Φ(t).
But wait, this is easy — since Φ(t) only takes on the values 0 or 1, we have

E[Φ(t)] = Pr{Φ(t) = 1} × 1 + Pr{Φ(t) = 0} × 0
= Pr{Φ(t) = 1}. (2.24)

Now, what is the probability that Φ(t) = 1? This is exactly the same as the
probability that someone born at time 0 is alive at time t, that is, if T > t (since
T after all is the time of death, so if your time of death is greater than t, you are
alive at time t!). And as we all know, Pr{T > t} = S(t), the survivor function!
We have thus shown that

E[Φ(t)] = Pr{Φ(t) = 1} = Pr{T > t} = S(t), (2.25)
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and as a consequence, the expected duration E(T ) is given by

E(T ) =

] ∞

0

E[Φ(t)]dt =

] ∞

0

S(t)dt. (2.26)

This is what we mean by integrating the tail: the mean duration is equal to the
integral of the survivor function.
Let’s try this out for our two special cases. For Type I survival, where S(t) = 1

for 0 < t ≤ � and S(t) = 0 otherwise, we have

E(T ) =

] ∞

0

S(t)dt =

] �

0

1dt+

] ∞

�

0dt = � (2.27)

(big surprise there — we assume everyone dies at age �, and lo and behold, the
average duration of survival exactly equals �). For Type II survival, we get

E(T ) =

] ∞

0

e−µtdt =
1

µ
(2.28)

as claimed earlier.
Using the representation T =

U∞
0

Φ(t)dt also enables the derivation of higher
moments. For example, see if you can convince yourself that the second moment
E(T 2) is given by

E(T 2) = 2

] ∞

0

tS(t)dt, (2.29)

a fact we will have use for below.

2.4. Disease Transmission/Progression and Duration Modeling

In considering infectious diseases, individuals pass through various phases or
states. Each one of these phases can be thought of as a compartment subject
to the fundamental equation of flow as individuals become infected, then infec-
tious, then recover or die. Connecting up the various compartments leads to an
epidemiological system of flow, while doing so mathematically leads to an epi-
demiological model.
Epidemiology texts and journals abound with disease-specific observations and

descriptions of the relevant phases. A brief but good discussion can be found in
Anderson and May’s text, pp. 29-31 (Table 3.1 reports ranges for incubation,
latent and infectious periods for several different infections), and also pp. 55-57.
Here I wish simply to review some definitions and link them to duration variables.
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The first duration variable is the disease-free lifespan, which I will denote by
L (note that Anderson and May reserve L for the average time until death). All
of the rules discussed in the previous section for the general duration variable T
apply to L, that is, it has a survivor, density and hazard function representation,
is finite, etc.
Let’s consider a common, endemic (that is, stable prevalence), contagious

infection in the population that makes people ill but doesn’t kill them. Now,
suspend reality and imagine living forever. Of interest is the time to infection,
or equivalently the time spent susceptible. If one lived forever, one would be-
come infected at some point. Let’s denote the time to infection in this imaginary
world by TS for the time spent susceptible. Now, back to reality. From birth,
either one becomes infected, or one dies for non-disease related reasons (so-called
“natural” mortality). Thus, the actual time a person would remain susceptible
in this circumstance would be the minimum of TS and L. Either you die be-
fore becoming infected (in which case you are no longer susceptible to infection
since you’re dead), or you get infected (in which case you are no longer susceptible
since you’re infected). However, for many diseases (especially childhood diseases),
TS << L so it is not so unreasonable to ignore natural mortality when computing
time to infection (see Table 3.1 in Anderson and May). So, one can imagine a
compartment of susceptibles in the population with arrival rates determined by
births (and perhaps also by immigration) and departure rates related to the time
to infection.
Upon infection, for most diseases, one enters a latent phase where, though

infected, one is not infectious. Having already grabbed the letter L to denote
disease-free lifespan, denote the duration of the latent period by TE (E for ex-
posed). Similar definitions attend the time spent infectious TI (or equivalently
the time to recovery or other “removal” from the population), and the time spent
recovered TR.
One can imagine compartments for each of these different phases — time spent

susceptible, latent, infectious and recovered — within the overall population. Link-
ing the compartments together is the first step — this often involves nothing more
than drawing a convincing diagram. Determining appropriate formulas for the
various arrival and departure rates is the next step, and that can be more chal-
lenging. Only then can one begin to truly analyze the model created.
Anyway, the main point of import now is that infectious diseases can be rep-

resented as systems of flow with different compartments for different epidemio-
logically meaningful states, while the time spent in such states (e.g. susceptible,
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latent, infectious, recovered) can be described using duration modeling tools (such
as survivor and hazard functions). But first, let’s take a closer look at the one
compartment model, for the insights derived will help in creating more compli-
cated models for infectious diseases.

3. Stable Flow: The One Compartment Model

3.1. The Stable Population

In this section, we consider a model of stable flow through a one compartment
system. For ease of discussion, we will refer to a steady-state (i.e. constant size
and age-distributed) population of humans replenished by births but depleted by
natural mortality. The overall arrival rate in this population is constant, that is,
α(t) = α independent of time (so the (expected) number of births over a period
of arbitrary duration τ is given by ατ). For the population to remain constant,
it must be that the aggregate death rate δ(t) is also constant and equal to the
arrival rate, thus δ(t) = δ = α.
The duration of life (equivalently age at death) in this population is described

by the random variable L, which itself is characterized by the hazard rate (equiv-
alently age-specific mortality rate) µ(a). We denote the density of persons in the
population of age a by N(a), which means that the actual number of persons with
ages between a and a + ∆a is given by N(a)∆a. The total population size will
simply be denoted by N and is found by tallying everyone alive at all ages, that
is

N =

] ∞

0

N(a)da (3.1)

One immediate equivalence is that the aggregate birth rate α must equal the
population density evaluated at age 0, that is,

N(0) = α. (3.2)

Another is that the aggregate death rate δ must be consistent with random vari-
able L, which after all is determined by the age-specific mortality rates µ(a).
Thus, we must have

δ =

] ∞

0

µ(a)N(a)da = α. (3.3)
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3.2. Age Distribution in the Stable Population

What is the distribution of the population by age? This turns out to be extremely
easy to answer. The only people in the stable population now who are exactly
aged a are those who arrived a time units ago and remain alive. Given that the
arrival rate is constant, the number of persons who arrived between a and a−∆t
time units ago is equal to α∆a = N(0)∆a, and of these, the fraction S(a) survived
until the present moment, and are thus aged a. The result couldn’t be simpler:

N(a) = N(0)S(a). (3.4)

Note that this immediately verifies equation (3.3), since] ∞

0

µ(a)N(a)da =

] ∞

0

µ(a)N(0)S(a)da = N(0) = α (3.5)

where we have used equation (2.15) to recognize that µ(a)S(a) = f(a), the prob-
ability density of age at death, and equation (2.6) which notes that probability
densities integrate to unity.

3.3. Stable Population Size and Little’s Theorem

Now that we know the age distribution of the population, we can find the total
population size N by direct integration. We have

N =

] ∞

0

N(a)da =

] ∞

0

N(0)S(a)da = N(0)E(L). (3.6)

This says something pretty important: the total population size equals the arrival
rate multiplied by the expected duration of stay in the population. This is an
instance of what is known as “Little’s Theorem” from queueing theory, which
states that the expected number of customers in a queueing system is equal to the
product of the arrival rate and their average waiting time. The stable population
can indeed be thought of as a queue: customers arrive (i.e. people are born) at
rate α = N(0), and wait in the system (i.e. live!) on average for E(L) units of
time.
Now that we know the age distribution and the population size, we can divide

to obtain the age-density of the population, that is, the fraction of the population
of age a. Denoting this density by g(a) we have

g(a) =
N(a)

N
=
N(0)S(a)

N(0)E(L)
=
S(a)

E(L)
· (3.7)
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This is also a special instance of a well-known formula from a branch of stochas-
tic processes called “renewal theory.” While the fraction of new arrivals to the
population that will die at age a is given by f(a) = −dS(a)/da, the fraction of
the stable population currently aged a is given by equation (3.7).

3.4. A Note Regarding the “Average” Hazard

Sometimes there is a need to produce an average death rate per person in the
population. The obvious figure one should employ is simply the number of deaths
per person per unit time. Equations (3.3) and (3.5) remind us that the number
of deaths in total per unit time is simply δ = N(0), while equation (3.6) provides
the total population size, so the number of deaths per person per unit time, that
is, the per capita death rate, is given by

δ

N
=

N(0)

N(0)E(L)
=

1

E(L)
· (3.8)

This generalizes the result for Type II survival (constant mortality rate indepen-
dent of age) as described in the discussion following equation (2.20).
Another way to see this is to consider a population-weighted average of the

age-specific mortality rates. Since N(a) is the density in the population of age a,
and thus subject to death at rate µ(a), it must be that overall average mortality
is given by ] ∞

0

N(a)

N
µ(a)da =

] ∞

0

S(a)

E(L)
µ(a)da =

1

E(L)
(3.9)

where we have again recognized that µ(a)S(a) = f(a), and
U∞
0
f(a) = 1.

3.5. Mean Age in the Stable Population

The mean age at death equals E(L), but what is the mean age in the population?
Given that the age density in the stable population is given by (3.7), applying
first principles yields] ∞

0

ag(a)da =

] ∞

0

a
S(a)

E(L)
da =

E(L2)

2E(L)
(3.10)

as follows from equation (2.29).
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3.6. Special Cases

We again consider the special cases of Type I and Type II survival. For Type I
survival, the age-density g(a) in the stable population is uniform between 0 and
�, that is,

g(a) =


1
�

0 < a ≤ �

0 all other a
(3.11)

from which the mean age in the population is easily seen to equal �/2 (this also
follows directly from equation (3.10) upon recognizing that E(L) = �). With
Type II survival, recalling that E(L) = 1/µ and S(a) = e−µa, we obtain

g(a) =
S(a)

E(L)
=
e−µa

1/µ
= µe−µa = f(a) (!!) (3.12)

This is interesting, for it says that the fraction of the stable population at age a is
exactly equal to the fraction of new arrivals who will expire at age a. In particular,
the average age in the population is, somewhat oddly, equal to the average age
at death averaged over new arrivals. This means that while a new arrival can
expect to die at age 1/µ, the average age of those currently alive in the stable
population equals this same value of 1/µ. This is another well-known implication
of the “memoryless property” of the exponential distribution. It forgets — so not
only is the average age in the population equal to 1/µ — a living person in the
population selected at random would, without regard to his or her current age,
also expect to live on average another 1/µ time units.

4. Disease Transmission and Progression in the Stable Pop-
ulation

We are now ready to contemplate disease transmission and progression in a sta-
ble population. The material to be covered leads to results that are essentially
equivalent to what Anderson and May present in pp. 66-75 of their text, but in-
stead of developing everything with (partial) differential equations, our approach
will build on the methods discussed thus far. There are notational differences as
shown in the table below, but hopefully after reading both sets of notes, you will
have a much better foundation for modeling infectious diseases.
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Some Differences In Notation

Function Kaplan Notes Anderson and May

Survivor Function S(a) �(a)
Arrival Rate α = δ = N(0) B = N(0)
Life Expectancy E(L) = � L

4.1. Three Compartments: Susceptible, Infected, Recovered

As in Anderson and May, we will assume a simple three stage model whereby
arrivals to the population are uninfected but susceptible, that those susceptibles
who become infected also immediately become infectious, and that those infectious
either die of other causes while still infectious, or recover from infection — and then
die of something else (you just can’t win in this game).

4.2. Age Distribution of Number Susceptible, Infected and Recovered

We begin rather generally by assuming that susceptibles arrive to the population
with rate α, that the duration of life is described by the non-negative random
variable L which can have any distribution we wish, and that in the absence of
natural deaths, new arrivals would remain susceptible for TS time units, followed
by an infectious period of duration TI . Furthermore, we assume that the random
variables L, TS and TI are mutually independent. Upon recovery from infection,
persons simply go on with their lives until they die.
Denote the density of persons in the population of current age a who are

susceptible, infectious, or recovered byX(a), Y (a), and Z(a). We can immediately
write down formulas for these variables via direct probabilistic reasoning. We will
do so, and then we will investigate their consequences.
Let’s start with susceptibles of age a. To be susceptible and aged a, one must

have arrived a time units ago, still be alive (so L > a), and still be susceptible (so
TS > a). We therefore immediately see that

X(a) = N(0) Pr{L > a}Pr{TS > a} (4.1)

where the multiplication of the probabilities follows from the independence of L
and TS.
Note that we have not made any assumptions about the nature of the infection

process other than, whatever the age-specific infection rates are among suscepti-

16



bles, the resulting time to infection (absent death from other causes) is given by
the random variable TS. To see how the infection process and TS are linked, let
λ(a) denote the age-specific incidence of infection among susceptibles of the same
age. Then λ(a) is the hazard function associated with the duration TS, which
means that

Pr{TS > a} = e−
U a
0 λ(u)du (4.2)

as shown in equation (2.14). For example, if λ(a) = λ, a constant independent of
age, then the time spent susceptible is exponentially distributed.
Now focus on the density of infectious persons of age a. To be alive and

infectious at age a means that one must first be alive (so L > a), have become
infected (so TS ≤ a), but not to have recovered yet (so TS+TI > a). This implies
that

Y (a) = N(0) Pr{L > a}Pr{TS ≤ a < TS + TI}. (4.3)

Again, this is a general result for the stable population.
The density of recovered individuals follows from similar reasoning. One must

be alive (L > a) and have been infected but recovered (TS + TI ≤ a) in order to
be both alive and recovered, whence

Z(a) = N(0) Pr{L > a}Pr{TS + TI ≤ a}. (4.4)

The total population density at age a, N(a), is simply the sum X(a)+Y (a)+
Z(a). Noting that

Pr{TS > a}+Pr{TS ≤ a < TS + TI}+Pr{TS + TI ≤ a} = 1 (4.5)

(why?), we see that as in the one compartment model,

N(a) = N(0) Pr{L > a}. (4.6)

4.3. Applications of Little’s Theorem

4.3.1. The Total Number of Susceptibles

Recall from equation (4.1) thatX(a) = N(0) Pr{L > a}Pr{TS > a}. The product
Pr{L > a}Pr{TS > a} is simply the survivor function for the minimum of the
two random variables L and TS. That is, if M = min(L, TS), then M > a if
and only if both L > a and TS > a. We therefore see that the total number of
susceptibles in the stable population is given by

X =

] ∞

0

X(a)da = N(0)E[min(L, TS)]. (4.7)
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This is nothing more than an application of Little’s Theorem. The arrival rate is
N(0), while the expected duration of time spent susceptible (now including time
spent susceptible by those who die prior to infection) is exactly E[min(L, TS)].

4.3.2. Prevalence = Incidence × Duration

The total number of new infections per unit time in the stable population, that
is, the aggregate incidence rate, can be represented in two general ways. First,
noting that one becomes infected if TS ≤ L (the time susceptible is less than the
total lifetime), we immediately have

Aggregate Incidence = N(0) Pr{TS ≤ L}. (4.8)

The second approach is to note that those susceptibles of age a become infected
with rate λ(a), whence

Aggregate Incidence =

] ∞

0

λ(a)X(a)da

=

] ∞

0

λ(a)N(0) Pr{L > a}Pr{TS > a}da
= N(0) Pr{TS ≤ L} (4.9)

with the last equality following by recognizing λ(a) Pr{TS > a} as the probability
density for the duration TS.
Now, once infected, what is the expected time spent infected? Again one has

to worry about disease-free mortality removing people from the population prior
to recovery. Given that a person has just become infected, that is, that TS ≤ L,
the remaining lifespan is simply L− TS. The mortality-free duration of infection
is by definition equal to TI . The actual time spent infected will be the minimum
of these, so given that infection has occurred, the expected time spent infected
is equal to E[min(L − TS, TI)|TS ≤ L]. From Little’s Theorem, we find that the
total number of infected persons in the stable population is given by

Y�~}�
Prevalence

=

] ∞

0

Y (a)da =N(0) Pr{TS ≤ L}� ~} �
Incidence

× E[min(L− TS, TI)|TS ≤ L]� ~} �
Duration

.

(4.10)
This celebrated “prevalence = incidence x duration” result is true in the sta-
ble population for an endemic infection. Note that if we divide both sides of
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equation (4.10) by the population size N we obtain the per-capitized version of
this result. That is, defining π = Y/N, ι = N(0) Pr{TS ≤ L}/N and d =
E[min(L− TS, TI)|TS ≤ L], we have

π = ι× d. (4.11)

However, this formula is frequently applied incorrectly, owing to the common use
of the word “incidence” to refer to the number of infections per uninfected person
per unit time (which is often very close to, but not exactly the same as, the
per-capita rate of infection ι).

4.3.3. The Number of Recovered Individuals

Finally, we come to the number of recovered individuals, Z =
U∞
0
Z(a)da. We can

again use Little’s Theorem, note that the total number of new recoveries per unit
time in the population must equal N(0) Pr{TS + TI ≤ L}, and also argue that
the expected time spent in recovery is exactly the remaining lifetime L−TS−TI ,
given that the person has lived to both become infected and recover. This logic
yields

Z = N(0) Pr{TS + TI ≤ L} ×E(L− TS − TI |TS + TI ≤ L). (4.12)

But of course, there is an easier way out — since the population is stable, we must
have the conservation N = X + Y +Z (since everyone in the population is either
susceptible, infected or recovered), and thus we can simply set Z = N −X − Y .
The equations for the total population quantities were derived directly and

sometimes with amazing ease, but they are also very general and sometimes a bit
clumsy. We can simplify matters considerably with a very useful approximation,
but first, let’s review the epidemiological system of flow we have spent so much
time developing.

4.4. The Epidemiological System of Flow in the Stable Population

The age-aggregated epidemiological system of flow for the stable population is
shown in the figure below. Note that for each of the three compartments, the
total flow in always equals the total flow out. For example, the total flow out
of the susceptible compartment (X) splits the arrival rate α = N(0) in two:
those who become infected (with probability Pr{TS < L}) and those who die
before becoming infected (with probability Pr{TS ≥ L}). Similarly, the infected
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compartment (Y ) splits the entering flow (N(0) Pr{TS < L}) into those who
recover and those who die before recovering in a manner that conserves the total
flow (for Pr{TS < L} = Pr{TS < L ≤ TS + TI} + Pr{TS + TI < L}). And, as
assumed throughout, the total departures from the population exactly balance
the total arrivals; convince yourself that the sum of the departure rates from each
compartment exactly equals the arrival rate N(0).

α = N (0)     N (0) Pr{T S <L }      N (0) Pr{T S +T I <L }

         N (0) Pr{T S >L }               N (0) Pr{T S <L<T S +T I }           N (0) Pr{T S +T I <L }

X Y Z

4.5. Useful Approximation: TS + TI << L

The model described could be used to model those non-lethal infections encoun-
tered in childhood, adolescence, or even early adulthood that virtually everyone
experiences, and indeed if everyone eventually gets infected (just not at the same
time!), it seems reasonable to presume that TS + TI << L, which means that
Pr{L > TS} and Pr{L > TS + TI} are both well approximated by 1. This simpli-
fies life considerably! First, everyone gets infected, thus the aggregate incidence
rate equals the arrival rate N(0). The time spent in the susceptible state now
becomes TS (with mean E(TS)) instead of min(L, TS), and the age-specific den-
sity of susceptibles X(a) becomes simply N(0) Pr{TS > a}. Similarly, the time
spent infectious now becomes TI (with mean E(TI) instead of the more general
E[min(L − TS, TI)|TS ≤ L]). Prevalence = Incidence x Duration is especially
simple:

Y�~}�
Prevalence

= N(0)� ~} �
Incidence

× E(TI)� ~} �
Duration

(when TS + TI << L) (4.13)

Meanwhile, the time spent in the recovered state is just L − TS − TI under this
approximation. We will have many uses for this approximation, for it will often
be the case that infections move very quickly when contrasted against lifetimes
not afflicted by disease.
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4.6. Mean Age at Infection

What is the age at infection? That is, of all those who become infected, what
is the time at which they do so? One might expect that the answer is given by
TS, the time spent susceptible. In general, however, one needs to worry about
non-disease mortality, which as usual clutters up the formulas. Let η(a) denote
the probability density for age at infection. Since the rate with which persons of
age a become infected is given by λ(a)X(a), while the total infection rate is given
by
U∞
0

λ(a)X(a) = N(0) Pr{TS < L}, the age density among those just infected
is given by

η(a) =
λ(a)X(a)

N(0) Pr{TS < L} (4.14)

and thus the mean age at infection is given definitionally by

Mean Age at Infection =
] ∞

0

aη(a)da. (4.15)

Again, considerable insight (and utility!) is gained by making use of the useful
approximation TS + TI << L, for then η(a) simplifies to λ(a) Pr{TS > a} and as
desired, we have

Mean Age at Infection =
] ∞

0

aλ(a) Pr{TS > a}da = E(TS) (when TS+TI << L).
(4.16)

4.7. The Anderson and May Stable Population Model (pp. 66-75)

To reproduce the Anderson and May stable population model requires recognizing
the specific assumptions they have made. Here they are: disease incidence is
age-independent (that is, the hazard rate λ(a) = λ, and hence TS follows an
exponential distribution with mean 1/λ, that is, Pr{TS > a} = e−λa), while
infected persons recover with constant, age-independent hazard rate υ (and thus
TI is exponentially distributed with mean 1/υ). Results are presented for Type
I and Type II survival (constant lifetime, and constant hazard respectively). See
if you can reproduce some of their results using the equations above (and noting
the notational differences stated earlier).

4.8. The Reproductive Number R0 and “Weak” Homogeneous Mixing

The reproductive number R0 figures prominently in infectious disease epidemi-
ology. It is essentially the number of infections a single infected person could
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transmit in a fully susceptible population. In the stable population, of course, it
is not the case that 100% of all alive are susceptible. Rather, only the fraction
X/N are susceptible. Thus it seems a stretch to imagine that an infected person
could transmit R0 infections in the stable population.
In fact, assuming that new infections are coming from those currently infec-

tious, for the population to remain stable, it must be that the populations of each
of the compartments are also stable (and they are as we have shown — we have
formulas for X, Y and Z after all). This means that in the stable population,
each infected person must transmit not R0 infections on average, but rather 1
infection on average. Each infected person must infect one other to replenish him
or herself.
We now introduce the assumption of “weak” homogeneous mixing, which sim-

ply says that the rate of new infections in the population is proportional to the
fraction of the population that is susceptible. The implication of this assumption
from an infectious person’s point of view should be clear: if everyone is suscep-
tible, then on average the infected person is able to generate R0 infections, so
it must be that R0 is the proportionality constant defining weak mixing. That
is, if each infected person would generate R0 infections were all susceptible, but
only generates a single infection when X out of N persons in the population are
susceptible, R0 must satisfy the equation

R0 × X
N
= 1. (4.17)

SinceN = N(0)E(L) (Little’s Theorem!) andX = N(0)E[min(L, TS)] (uh...Little’s
Theorem!), we have the following result:

R0 =
N

X
=

E(L)

E[min(L, TS)]
≈ E(L)

E(TS)
(when TS + TI << L). (4.18)

This is pretty interesting — it says that we can find R0 by looking at the ratio of
the time spent in the population (which is E(L)) to the time spent susceptible
(which is E[min(L, TS)]), and under our useful approximation, we get an even
cleaner estimate of R0 as the ratio of life expectancy to mean age at infection.
Note that if you substitute in the assumption of age-independent incidence (TS

is exponentially distributed with mean 1/λ) and either Type I or Type II survival,
you can replicate Anderson and May’s results (equations 4.20 and 4.25). Starting
with Type I survival, we have E(L) = � and E[min(L, TS)] =

U �

0
e−λada = 1−e−λ�

λ
,
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whence

R0 =
E(L)

E[min(L, TS)]
=

�
1−e−λ�

λ

=
λ�

1− e−λ� ≈ λ�. (4.19)

For Type II survival, life is even simpler: E(L) = 1/µ, and E[min(L, TS)] =U∞
0
e−µae−λada = 1

µ+λ
, thus for Type II survival we have

R0 =
E(L)

E[min(L, TS)]
=

1/µ

1/(µ+ λ)
= 1 +

λ

µ
≈ λ

µ
· (4.20)

4.9. Strong Homogeneous (“Free”) Mixing, the Transmission Rate β,
and R0

We have one remaining task to attempt, and that is to make the transmission
of infection truly endogenous. Thus far, we have made no specific assumptions
regarding how susceptibles in the stable population become infected. Rather, we
have only assumed that they are infected at some rate. The assumption of strong
homogeneous (or free) mixing is one way to close the loop. We do so by assuming
that the hazard for infection experienced by susceptible individuals is proportional
to the total number of infected persons in the population, that is,

λ = β

] ∞

0

Y (a)da = βY (4.21)

where β is referred to as the transmission rate.
Using this expression for λ enables explicit formulae for the reproductive num-

ber R0 in terms of more fundamental parameters. Recall equation (4.10) for Y ,
repeated below:

Y�~}�
Prevalence

=

] ∞

0

Y (a)da =N(0) Pr{TS ≤ L}� ~} �
Incidence

× E[min(L− TS, TI)|TS ≤ L]� ~} �
Duration

.

(4.22)
As in Anderson and May, assume that the time to recovery TI is exponentially
distributed with mean 1/υ. Applying the equation above to the case of Type II
survival, we immediately obtain

Y = N(0)× λ

λ+ µ
× 1

υ + µ

=
Nµλ

(λ+ µ) (υ + µ)
(4.23)
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where we have used the flow balance N(0) = µN . Substitution into equation
(4.21) yields

λ = βY = βNµ× λ

λ+ µ
× 1

υ + µ
(4.24)

which after cancelling the λ’s and rearranging can be written as

λ =
βNµ

υ + µ
− µ. (4.25)

Substitution in equation (4.20) finally yields

R0 = 1 +
λ

µ
=

βN

υ + µ
≈ βN

υ
(4.26)

which is a well-known formula for R0 under free mixing.
For Type I survival, the general results are messier, but if we accept the

approximation TS + TI << L, then things simplify immediately since under the
approximation,

Y ≈ N(0)×E(TI) = N

�υ
(4.27)

where we have used Little’s Theorem in the form N = N(0)� to express N(0) as
N/�. From this we obtain

λ = βY ≈ βN

�υ
· (4.28)

Placing this result into equation (4.19) yields

R0 ≈ λ� ≈ βN

υ
(4.29)

in agreement with equation (4.26). Even though these results were derived for the
stable population, it turns out they will apply to transient epidemics as well. This
concludes our tour of the epidemiological system of flow in the stable population.
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