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1. Defective Duration Variables

Recall from the “system of flow” notes that a random duration 7' can be char-
acterized in three different ways: via the survivor function S(t) = Pr{T > t},
the probability density function f(t), or the hazard function h(t) = f(t)/S(t).
Our discussion of duration variables focused on proper random variables, that is,
those where S(0) = 1 and S(o0) = 0 (equivalently, [5° f(t)dt = 1, or equivalently,
Jo° h(t)dt is infinite — convince yourself that these conditions do amount to the
same thing). These conditions are satisfied when the duration variable 7' is finite,
as is appropriate for many durations (such as a human lifespan, the duration of
infectiousness, or the length of a strike for that matter!). There are a few bizarre
random variables where these conditions are satisfied yet the expected value of T’
is infinite, but we won’t encounter them.

In the stable population model, we focused on the sorts of diseases that, essen-
tially, would infect every individual in the population within their lifetimes (this
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is the implication of our “useful approximation” that L >> T where L is disease-
free lifetime, and T is the time spent susceptible, equivalently time to infection).
We also assumed that, essentially, everyone recovered from the infection (in terms
of the useful approximation, not only is L >> Tg, but also L >> Ts + T; where
T7 is the duration of infectiousness, so everyone gets infected before they die, but
everyone recovers too — and then they die). Before the advent of vaccination,
these assumptions worked well for rubella, measles, mumps, etc.

Now our attention shifts to modeling true epidemics. Here, a new infection of
some sort is introduced, people become infected, and over time we either see the
epidemic “run its course,” or we see the infection approach a steady (endemic)
state. We will focus on the first situation where epidemics crest and fall. In such
a situation, it will generally not remain true that everyone becomes infected (nor
need it remain the case that virtually everyone recovers from disease).

If it is the case that not everyone becomes infected, then we can no longer
assume that the time to infection is finite. If one lived forever, one might not
become infected at all in an epidemic. Think of ebola fever virus, influenza, or
other fast-moving (and sometimes fatal) infections that tend to “run their course”
in a population following introduction (and for a variety of reasons to be explained
as our course “runs its course”).

Back to duration modeling. Interpreting the duration 7" as the time until some
event occurs, we want a model that allows for the possibility that the event will
never occur. Now, if T' is the time until an event occurs, but it is possible that the
event in question will never occur, then it must be possible for T" to be infinite. If
it is possible for T' to be infinite, that is, there is some probability that the event
never occurs, then we need a model where lim; o, Pr{7" > ¢t} > 0. That is, we
will remove the constraint that S(co) = 0 (though we will keep S(0) = 1), and
instead allow for the possibility that lim; .., S(t) = 1 —p > 0. Note that with
this possibility, we immediately have lim; .., Pr{T" < t} = p < 1. What is the
interpretation of p? Remember, if T" is the time until an event occurs, then if T’
is infinite, the event in question simply does not happen, while if T is finite, then
the event in question eventually does occur. Thus, p is simply the probability that
the event in question actually happens. Applied to an epidemic, recall that T
is the time spent susceptible, which can be interpreted as the time to infection.
If a person is never infected during the epidemic, then Ts is infinite. Thus, p
represents the probability of getting infected over the duration of the epidemic.

Now, there are several implications of the generalization discussed above.
First, if S(c0) = 1 — p, and S(0) = 1, then [;° f(t)dt = S(0) — S(c0) = p.



This is sensible — if we integrate over the probability density of the duration vari-
able, instead of arriving at the conclusion that there must be some finite duration
(which is true for proper random variables where the area under the probability
density equals 1), we see that there is a finite duration (i.e. the event occurs) with
probability p. This is consistent with the previous paragraph.

Here is a second implication. Recall that the relationship between the survivor
function and the hazard function can be expressed as

t
S(t) = e Jo Mwdu (1.1)
If the event in question never occurs, we have

lim S(t) = e Jo MW 1 _p>0 (1.2)

t—o0

which implies that the integral of the hazard function is finite, that is
/ h(u)du = —log(1 — p) < co. (1.3)
0

This works in reverse too — if [7° h(u)du < oo, then S(co0) > 0 and there is a
probability p that the event in question occurs, and complementary probability
1—p that the event does not occur. A random duration variable with the properties
described above (a probability p that T is finite, and a probability 1 — p that T
is infinite) is said to be improper or defective. Equations (1.1) and (1.2) will
prove critical to our approach to epidemics, as we will soon see.
As an example of a defective duration, suppose the hazard function is given
by
h(t) =e". (1.4)

Since the integral of this hazard function equals

/Ot h(u)du = /t e tdu=1—¢"" (1.5)

0

the associated survivor function S(t) is given by

S(t) = e Jo M — o=(1=¢7"), (1.6)

t

Now, since e™* — 0 as t — oo we see that

S(co)=e ' =.3678=1-p (1.7)
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and thus the event associated with the duration 7', whatever that event is, occurs
with probability p =1 —.3678 = .6322 (=1 — 1/e).

Now, obviously the mean duration is infinite for a random duration that has
a positive probability of being infinite. However, it could be of interest to focus
on those with finite durations. The conditional survivor function given that the
duration variable T is finite can be stated (see if you can understand why) as

S(t) —S() _ St —(1—p)
1 — 5(c0) P

Pr{T > t|T' < o0} = (1.8)
To get a better feel for this, ask yourself what happens if you substitute ¢ = 0
in the formula above (remember that S(0) = 1). Now try substituting ¢ — oo.
From this formula, one can derive the associated conditional density and hazard
functions, given that the event of interest occurs. An application could be to
consider the various properties of the time to infection for those who get infected.
For example, if the duration given by the survivor function in equation (1.6)
referred to the time to infection, then the expected time to infection for those
who get infected would be equal to

-1

dt =

1—e1 1 —e!

0o f(lfe*t) -1 0o i
/ ‘ c ‘ / (e — 1)dt ~ 0.77. (1.9)
0 0

2. Incidence of Infection as the Hazard Function for the
Time to Infection T

We now turn our attention to “fast epidemics.” By fast, I mean that the epidemic
runs its course over a period of time that is short relative to the normal human
lifespan L. Note that this is not the same as our “useful approximation” Tg +
T; << L from the stable population model. The import of assuming that an
epidemic is fast is that we can ignore demographic changes in the population.
The viewpoint is thus that of a cohort: at time 0, an infection is introduced to an
otherwise susceptible population of size N, and we assume that the population
size remains constant over the time required for the epidemic to run its course
(though several members of this “constant” population could be dead by the time
the epidemic is finished!). The key issues we wish to address are whether a newly
introduced infection can lead to a serious epidemic (that is, will the infection
“take off,” or equivalently, will an epidemic even occur following introduction of
the infection); the final size of the epidemic expressed as either the number in
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or fraction of the population that becomes infected; the maximal incidence rate
achieved over the duration of the epidemic, and epidemic dynamics such as the
time required to infect a certain percentage of those who eventually will become
infected, or the mean time to infection for those who get infected.

We will make one key assumption, which is that at any point in time, all
susceptibles in the population face the same risk of infection at that point in time.
With the introduction of infection at time 0, let A(¢) denote the instantaneous risk
of infection to any susceptible in the population. That is, the probability that a
randomly selected person from the population would be infected between t and
t + At, given that they have not become infected by time ¢, is equal to A(t)At.
In epidemiological terms, the function A(¢) is the instantaneous incidence rate
of infection at time t. Mathematically, A(t) is just the hazard function for the
duration variable Ty, the time to infection. Now, since in general not everyone
will get infected in the epidemic, it is possible for T to be infinite (for recall that
if an event does not occur, then the time until that event occurs must be infinite!).
Thus, the instantaneous incidence rate A(t) is the hazard rate for the defective
duration 7.

If we know the incidence rate, we can apply the results of the previous section.
Let p(t) denote the probability that an individual in the population becomes
infected by time ¢ after the infection is introduced at time 0. Using equation (1.1)
we immediately conclude that

p(t) = Pr{Ts <t} = 1 — ¢~ Jo Awau (2.1)

and thus the final size of the epidemic (expressed as the fraction of the population
that ultimately gets infected) can be expressed as

p= lim p(t) = 1— e Jo A (2:2)

These are fundamental equations.
Now let’s consider some epidemic dynamics. Let £, denote the time by which
a fraction a of those who will ultimately get infected do so. To find %, we solve

Pr{Ts < tu[Ts < oo} = 2a) _ (2.3)
b

To determine the mean time until infection for those infected, we evaluate (see
equation (1.8))

E(Ts|Ts < o0) = /Ooo Wdt - /OOO p_TZ)(t)dt. (2.4)
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We defer discussion of whether an infection can “take oft” for just a bit longer.

3. The Basic SIR Model: Classical Approach

Now let’s very quickly restate the classical SIR model as described in most epi-
demic texts (though as we will soon see, this is the simplest case of the SIR
model). The model to be described dates back to a 1927 paper by Kermack and
McKendrick, and is often described as the Kermack-McKendrick model, but in
fact Kermack and McKendrick’s model was much more general, and what follows
was presented as a special case.

Let the number of Susceptible, Infected, and Recovered individuals in the
population (hence SIR) be denoted by X (¢),Y (t) and Z(t) respectively. Assum-
ing that the population remains constant at size N we have the conservation
equation

X(#t)+Y(t)+Z(t)=N fort > 0. (3.1)

The model assumes free mixing, thus the incidence rate at time ¢ is given by
A(t) = BY (1) (3.2)

where (3 is the (assumed constant) transmission rate (with units per person per
unit time). In the aggregate, since there are X (¢) susceptibles in the population at
time ¢, each getting infected at rate A(t) = BY(t), we can describe the dynamics
of X (t) with the differential equation

X
Cil—t =—-X{)A(t)=-BXH)Y(t). (3.3)
Note that equation (3.3) is deterministic, so even though I will continue using
the language of probability, what we are doing is using probabilistic methods to
understand, formulate, solve and interpret what is in truth a completely deter-
ministic model. Also, note that I refer to numbers of individuals, suggesting a
discrete model, when in fact we are treating populations as continuous (so we are
really looking at “flows” of infection and recovery).

Continuing with the formulation, the number of infecteds clearly grows as new
susceptibles are infected. Infecteds are assumed to become infectious immediately
upon infection, and as stated earlier, transmit infections at a constant rate (as
opposed to a rate which depends on how long they have been infected for, a re-
alistic generalization we will attempt later). The duration of infectiousness T
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facing each newly infected individual is assumed to be exponentially distributed
with mean 1/v, after which infected individuals “recover” and are no longer infec-
tious. Note that “recovery” could be achieved by “dying!” Some recovery. Now,
recall from earlier notes that exponentially distributed durations are equivalently
characterized by constant hazard rates, and in the present situation, the constant
hazard is the recovery rate v. Thus, if there are Y (¢) infected and infectious indi-
viduals at time ¢, each recovering from infection with rate v, then the aggregate
recovery rate is simply Y (¢)v. This leads to a differential equation for the number
of infected (and infectious) persons in the population at time ¢ as

% = BX (DY () — vY (2). (3.4)

Finally, whenever an infectious individual recovers, (s)he, uh, enters recovery!
So at time ¢, the number of recovered individuals Z(t) is augmented by new
arrivals at rate vY (). This leads to the equation

dZ
— =vY(?). 3.5
B v (35)
Note that if you sum equations (3.3)-(3.5) you get zero (why? check equation
(3.1)). Equations (3.3)-(3.5) are commonly referred to as the SIR model (or the
Kermack-McKendrick model). Again, what we really have is a special (indeed the
simplest) case of the SIR model in these equations.

3.1. Mechanically Solving the Basic SIR Model

Suppose you want to generate the entire trajectory for a simple SIR model. You
know the input parameters N (which could be 1 — any idea why you might want
to do that?), 5 and v, and you have initial conditions X (0), Y (0) > 0 (or else you
can never generate any infections — note that if N =1, 0 < Y(0) < 1 — again, why
might you want to do things this way?), and Z(0) = N — X(0) — Y(0) (usually
one takes Z(0) = 0; why?). And, you have a spreadsheet program like Excel.
How can you model an epidemic?

Simple — just do the entire thing in discrete time steps. Pick an appropriate
time step (0.1 x 1/(GN — v) for example; see equation (3.8) for a clue underlying



this recommendation), call this time step At, and recursively solve:
X(t+ At) = X(t) — X ()Y (t)At
Y(t+At) =Y () + [BX(t)Y(t) —vY ()] At (3.6)
Z(t+ At) = Z(t) +vY (t)At.

Each of the rows in your spreadsheet will correspond to a point in time, while the
columns will correspond to the different variables.

As an example, the figure below reports an Excel-produced simulation using
the equations above for an influenza outbreak (6 = 1/1500, 1/v = 3 days) in a
population of N = 1,000 (maybe a high school). In the simulation, the time step
used was .1/(BN —v) = .1/(2/3 — 1/3) = .3. Simulating for 50 days required
50/At = 50/.3 = 167 rows in Excel. OK, back to the real stuff.

Simple SIR Epidemic in Excel
(N =1,000; R,=2; 1/v=3 days)
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3.2. The Reproductive Number R, and the Basic SIR Model

Let’s take a quick look at equation (3.4) and ask: what must be true for the
infection to take off? Initially, the number of susceptibles comprises almost the
entire population, so let’s just approximate matters by assuming that X (t) ~ N
early in the epidemic. This approximation leads to the simpler, linear differential
equation (indeed, what we are doing is referred to as linearization)

dY

5 = BN =) Y (1) (3.7)
which has the direct solution

Y (t) = Y(0)ePN-v)t, (3.8)

When will the number of infected people grow? The answer is clear: when the
growth rate SN — v > 0, or equivalently when SN > v, or equivalently when
Ro=0 o1 (3.9)
v
Ry is referred to as the basic reproductive number. It has a very intuitive meaning;:
if we stick a single newly-infectious person into a population of NV susceptibles, this
infectious person is (thanks to the free mixing assumption) spreading infections
at rate N per unit time (recall that the units of the transmission rate [ are
per person per unit time, so multiplication by N gives us infections per unit
time). How long does our index case continue spreading infections? On average
for E(T7) = 1/v for the basic SIR model. Thus, the expected total number
of infections directly transmitted by a newly-infectious individual early in the
epidemic is equal to NG/v. By the way, recall equation (4.26), p. 24 from the
“system of flow” notes — we have essentially the same formula for Ry in the basic
SIR model as in the stable population with an endemic infection!

The definition of Ry as the expected number of infections generated by a
newly-infectious individual early in the epidemic (essentially in a population that
is 100% susceptible) survives for much more general models. Indeed, as we will
see, it is often possible to write down a formula for Ry by inspection once one
understands whatever particular model assumptions are being made. A good and
reasonably general version of R, to remember is

Ro = NBE(Ty). (3.10)
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As an aside, some modelers prefer to focus upon what is called a “contact
rate” and a corresponding probability of transmission per contact, as opposed
to the more general transmission rate . To see the equivalence, focus on a
sexually transmitted disease like gonorrhea. Let ¢ denote the average number of
sexual contacts per person per unit time, and b denote the probability of infection
per contact. A newly infected person would then have ¢ sexual contacts with
susceptibles in the population per unit time, a fraction b of which would lead to
infection. Thus, the index case would be infecting others at rate cb per unit time,
thus a total of ¢cbE(T7) infections would be transmitted over the index’s duration
of infectiousness. This leads to an equivalent formula for Ry

and upon comparing equations (3.10) and (3.11), we see that it really doesn’t
matter which form we use providing that

cb=Npg (3.12)
or equivalently, that
cb
= —- 3.13
p= (313

For certain infectious diseases (STDs readily come to mind), the notion of a con-
tact and per-contact probability of transmission are eminently sensible, but for
others (e.g. influenza, smallpox) it is more difficult to structure things this way.
In practice, as we will see, it is much more sensible to focus on Ry and determine
the transmission rate § via the equation

Ry

3.3. Final Size of the Basic SIR Epidemic

If you like playing with differential equations, you’ll like this. Divide equation
(3.3) by equation (3.5) to obtain an equation for the number susceptible as a
function of the number recovered (!), that is

dX —pX(Z)

e . 1
az v (3.15)
This equation can be solved explicitly to yield
X(Z) = X(0)e +2. (3.16)
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Now, X(0) ~ N, the population size. At the start of the epidemic, virtually
everyone is susceptible, and certainly no one is recovered yet (see parenthetical
remark on Z(0), first paragraph of Section 3.1), so if Z = 0, we’re at the start of
the epidemic if X (0) ~ N. Remember, we’re looking at X as a function of Z here,
not of time! At the end of the epidemic, no one is infected (why???), and thus
everyone is either susceptible (these folks never got infected), or recovered (guess
what happened to everyone who got infected?). So jumping out to the end of the
epidemic, it must be that Z accounts for everyone who was ever infected, that is,
at the end of the epidemic we have

Zs = Np (3.17)

(where the subscript oo reminds us that we are at the end of the epidemic).
Similarly, everyone who did not get infected by the end of the epidemic is still
susceptible, thus it must be true that

Xoo = X(Zo) = N(1 — p). (3.18)

Again reminding yourself that X (0) ~ N, equation (3.16) evaluated at Z,, leads

to

Xoo = N(1 —p) = X(0)e 57> ~ Ne 57, (3.19)
Now, recall from equation (3.9) that Ry = NG3/v. We arrive at the beautiful
result

1 —pre for (3.20)

or, as I like to write this,
p=1—¢ fop, (3.21)

So if you know Ry, you can find the fraction of the population ever infected, that
is, the final size in an SIR epidemic, as the larger root of the equation above.

I said the larger root. Clearly zero is also always a root of this equation. When
is it the correct answer? Suppose Ry < 1 and consider both sides of equation (3.21)
as a function of p. Note that the left-hand side (LHS) of this equation grows at
rate 1 as a function of p (dp/dp = 1 after all), while the right-hand side (RHS)
grows at rate Roe P (this is the derivative of the RHS with respect to p). Now,
if Ry < 1, the derivative of the RHS is always less than the derivative of the
LHS, which means that for all p > 0, the LHS is larger than RHS — and thus the
only solution is p = 0 when Ry < 1. Now, this is not strictly true thanks to the
approximation X (0) = N (which obviously ignores the initial number of infections
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Y (0) — it must be that p > Y'(0)/N no matter what Ry is), but basically equation
(3.21) gives us the right answer. You get a negligible epidemic if Ry < 1.

Note that while p must be found numerically as the root of equation (3.21),
one can write the reproductive number Ry as an explicit function of the final size
of the epidemic, that is,

Ry = _1%(17_27). (3.22)
p
From this equation it is clear that lim, .o Ry = 1 while lim, ,; Ry = co. And, as
the fraction ever infected has to be even lower if Ry < 1 than for Ry = 1, we can
use equation (3.22) and the limits just noted to produce the graph below.

Fraction Ever Infected ( p)

0.8
0.6 -

0.4

0.2 -

Fraction Ever Infected ( p)

0 1 2 3 4 5 6 7 8 9 10

Reproductive Number ( Ry)

Here is a similar trick you can play with this model. We can derive the number
infected Y (t) as a function of the number of susceptibles X (¢) by dividing equation
(3.4) by equation (3.3) which yields

dY(X) BXY —oY v

X oy ~ax b (3.23)

This integrates to yield
Y(X) = %logX —X+0C. (3.24)
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To evaluate the constant of integration C, note that at the start of the epidemic
when X = N, Y just equals the initial number infected, say Y. Thus,

Y(N) =Y, = %logN—NJrC (3.25)

and returning to equation (3.24) we obtain
Y(X):%logX—X+Yg—%logN+N. (3.26)

Let y = Y/N and # = X/N denote the fractions of the population that are
infected and susceptible respectively. Dividing both sides of equation (3.26) by
N, taking Yo/N = yo ~ 0 (since the fraction of the total population infected
initially is negligible), and recalling that Ry = SN /v, we obtain

y(x) = log(z) _ x+ 1. (3.27)
Ry
This provides another route to the final size result, for at the end of the epidemic,
everyone is either susceptible or recovered, so setting y(x) = 0 and rearranging
the equation above (and recognizing that p = 1 — x,, where z, is the fraction
susceptible at the end of the epidemic) yields equation (3.21).
There is another use of equation (3.27). Note from equation (3.4) that dY/dt =
0 when XY = vY, or when X = v/3. But since Y (¢) clearly rises and falls in an
epidemic (look at the graph from our Excel simulation), dY/dt = 0 is exactly the
condition for finding the maximum number infected at any point in time over the
course of the epidemic. And, since A(t) = SY (), the maximum number infected
leads directly to the maximum incidence rate. If X = v/ at the time number
infected is maximal, then the fraction susceptible at this same point in time must
equal z = X/N = v/(BN) = 1/Ry. Sustituting into equation into equation
(3.27), we see that the maximum prevalence of infection at any point in time over
the course of the epidemic y* is given by

1 log(z;) 1
o) = —Bel g 2
B 1_(1—|—logR0)'
= —r

The maximal incidence rate A\* = GNy*. A graph comparing the maximal preva-
lence to the final size as a function of Ry appears below.
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Fraction Ever Infected ( p) and Maximal
Prevalence ( y*)
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4. The Basic SIR Model: Final Size via the Hazard Func-
tion

The hazard function approach enables you to make probabilistic statements about
a deterministic model! Of course, that requires knowing what the hazard function
is. For the basic SIR model, we already saw from equation (3.2) that A(t) = BY ().
The differential equations (3.3)-(3.5) (or their discrete analog in equation (3.6))
enable the actual computation of Y (¢), and thus the hazard \(t) is readily available
for determining quantities such as t,, E(Ts|Ts < 0o) and so forth.

But the main advantage of the hazard approach is that it provides an immedi-
ate route to the final size result, and also enables generalization not only to more
realistic SIR models, but also to models with non-random mixing (a subject down
the road).

Let’s focus on the final size result. From equation (2.2), we have directly that

p=1—e" Jo A0t _ g _ o= JyT BY (e (4.1)

where we have substituted in the specific from of the hazard that corresponds to
the basic SIR model. Focus on the integrated hazard [;° 5Y (t)dt, and ask yourself
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what this is. Clearly [;° Y (t)dt is the total amount of “infectious person-time”
spent in the population over the course of the epidemic. That is, [;° Y (¢)dt is the
total time spent infectious by all persons who were ever infectious.

But wait! The fraction of the population that was ever infectious is, by def-
inition, equal to p! Thus, the number of persons who were ever infections must
obviously equal Np. Furthermore, each infected person spends, on average, F(T7)
time units being infectious, which means that the total time spent infectious by
all persons who were ever infectious must be given by

/0 T Y (#)dt = NpE(TY) (1Y) (4.2)

This identity has to be true for any “fast” epidemic (where the population is
constant and thus the epidemic can be viewed as a cohort), and not just for the
basic SIR model. But, while we’re still playing with the basic model, note that
E(Tr) = 1/v since the time to recovery (which is the same as the infectious period
in this model) is exponentially distributed with mean 1/v. Thus, for the basic
SIR model, we directly arrive at the amazing result that

00 N N
7oy =5 = 0 = Rop ) (43

and thus, from equation (4.1), we instantly obtain the final size result
p=1—e" Jo BYWdt _ 1 _ o—FRop (M (4.4)

Furthermore, it seems like the substitution E(T;) = 1/v was a throwaway; really
what we have is that

p=1— e PNPET) — 1 _ o~ FRop W) (4.5)

where I have used the “general” definition of Ry available from equation (3.10).

5. Finding the Final Size for Generalizations of the Basic
SIR Model

5.1. Non-exponential (arbitrary) Duration of Infectiousness T}

Suppose that the duration of infectiousness in an SIR epidemic has an arbitrary,
non-exponential duration. The (proper!) duration 77 can be described by allowing
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its hazard function v(t) to be arbitrary. The total number of persons who are
infectious at time ¢ consists of persons who have been infected for different lengths
of time and have yet to recover. Let Y (7,t) denote the density of infectious persons
at time ¢ who have been infected for 7 units of time. The total number of persons
infected at time ¢, Y'(¢), is then found by integrating Y (7,t) over the time spent
infected, that is, .

v(t)= [ Y. (5.1)

Note that Y(0,¢) is the total arrival rate of new infections at time ¢. To get a
sense of the flows in this more general SIR model, review the figure below. We
have retained the assumption of free mixing, so the incidence rate (equivalently
hazard rate for infection) at time ¢ is equal to

At) = BY (1) = 8 /T t:OY(T,t)dT (5.2)

while the aggregate recovery rate can no longer be written as vY(t) since the
duration of infectiousness is no longer exponential, but instead must be written
as ['_, Y (7,t)v(r)dr. Make sure you understand this formulation.

t t
X BX(t) Y(r.t)dr‘ Yt I Y(mtyu(ndr | Z(t)

To formulate this model with differential equations would require the use of
partial differential equations (or PDE’s). You will sometimes need to do this
to obtain a complete trajectory of the epidemic, but we’ll leave that to another
day. However, we can immediately obtain the final size equation via our hazard
function approach.

First, note that the reproductive number for this model is exactly given by
equation (3.10). The expected number of infections generated by a newly infec-
tious individual early in the epidemic would indeed be equal to

Ry = NBE(Ty) (5.3)
where we recognize that

E(Ty) = /0 T e o vdugy (5.4)
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as follows from recognizing the survivor function for 7; and integrating the tail.
Second, from equations (2.2) and (5.2), we can write down the final size equation

as
p= 1—e fooo A(t)dt =1 —e f::ooﬂszo Y(T’t)det. (55)

Now, as with the simple SIR model, note that [, ['_, Y (7, t)drdt is clearly the
total time spent infectious by all persons who were ever infectious. As before, we
arrive at the identity

I t:OY(T,t)det — NpE(Ty) () (5.6)

Substituting this result back into equation (5.5) and comparing with equation
(5.3), we obtain
p=1— e PNPE(T) — 1 _ —Fop, (5.7)

What we have just learned is that for a given value of Ry, it doesn’t matter what
the distribution of the duration of infectiousness equals in an SIR epidemic for
purposes of determining the final size. The fraction of (and hence number in)
the population that is ultimately infected only depends on the mean duration of
infectiousness via the reproductive number Ry, and is otherwise independent of
the probability distribution of the infectious period!

5.2. Stages of Infection with Stage-Dependent Infectiousness (Trans-
mission)

Thus far, we have assumed that infectiousness remains constant over the course
of the infectious period (as indicated by the fact that the transmission parameter
B stays constant), and also that infectious individuals become infectious immedi-
ately upon infection. Most infections don’t work this way. As discussed at length
in the book by Anderson and May (Chapter 3), it is typical that a latent period
during which those infected are not yet infectious must pass, followed by an infec-
tious period. For some diseases, there are other identifiable stages during which
infectiousness differs. For example, smallpox progressed through a latent period
to a prodrome characterized by a high fever and flu-like symptoms before reach-
ing the overt rash stage (I say progressed because smallpox is the one infectious
disease that has been eradicated, though there are fears that it could potentially
be re-introduced by terrorists). There is considerable argument regarding the in-
fectiousness of persons in this prodrome relative to the overt rash stage, but the
only important point here is that the infectiousness differs by stage of disease.
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This is an easy generalization to incorporate into the basic SIR framework.
Instead of having a single stage of infection (and associated duration of infec-
tiousness), we now assume that upon infection, individuals pass through & serial
stages of infection, each with their own infectiousness characterized by the trans-
mission rate (3; in stage j, and duration of time 77, spent in stage j of infection,
J =1,2,...,k. Note that if stage j is a latent stage, then 3; = 0. Models with
exactly one latent stage followed by one infectious stage followed by recovery are
known as SEIR models (where the latent stage is represented by E for Exposed;
we have already used the symbol L to represent the duration of a human lifespan,
and besides, who would want to work with SLIR models, I mean how much SLIR
could we get?).

We assume the random variables 77, are mutually independent, proper dura-
tion variables that can have any probability distribution we wish. Otherwise, we
retain the free mixing assumption, which again means that at any point in time,
all susceptibles share the same risk of acquiring infection. The instantaneous
incidence rate (hazard function) A(¢) for this model is given by

AE) = 38,0 (55)

where Y (), the number of infected persons in stage j of infection, is given by
integrating over the density of time spent infectious in stage j, that is,

Yi(t) = [ Yir.0dr (59

as in equation (5.1). Note that the arrival rate to the first stage of infection is
equal to the aggregate rate of new infections, that is,

Y1(0,) = X(HA(D) (5.10)

where as usual X (¢) is the number of susceptibles in the population at time ¢. For
stages 2 through k, the arrival rate to stage j is exactly equal to the departure
rate from stage 7 — 1, thus we have the flow conservation
t
Y;(0,t) = Y 1(1,t)vj_1(T)dr (5.11)
0

T=

where v;(t) is the hazard function associated with Ty, the j* stage of infection.
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The reproductive number Ry for this model is still defined as the total number
of infections transmitted by a single newly-infected individual over the course of
the total duration of infectiousness, but we now need to break this up by stage of
infection. This results in the appealing formula

k
Ry = NZﬁjE(TIj) = NBE(Ty) (5.12)
j=1
where we recognize
(1) = Y. B(T) (5.13)
j=1

as the expected total duration of infectiousness, and

g o1 BE(Tr) 5 B E(Ty,)
Yk E(Ty,) E(Ty)
as the average transmission rate (where the average is weighted by the respective

mean durations of infectiousness across stages).
To race straight to the final size of such an epidemic, we note that

(5.14)

| amar = 7 iﬂij(t)dt (cq 5.8)
= 2.5 /OOO Y;(t)dt

k
= > B;NpE(Ty,) (total time infectious in stage j) (5.15)
=1

k
= pN Z O;E(Tr)
7j=1

= pRy (1) (eq 5.12).
Once again we have, thanks to equation (2.2), the familiar final size equation
p=1—¢ P, (5.16)

This really helps, because all you need to get the final size of the epidemic is Rj.
The specific combinations of infectious stage (including latent stage) durations,
their distributions, and their stage-specific infectiousness don’t matter. All that
does is R,.
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5.3. Duration-Dependent Transmission and Arbitrary Duration of In-
fectiousness

One can go even further. Some would quibble that even a staged model of disease
progression is an inadequate approximation, and that what is really required is
a model where infectiousness varies continuously with the time from infection.
Thus, if a person has been infected for some time 7, then transmission occurs at
rate 3(7).

As Amanda Bynes often states on my daughter’s favorite TV show (I know,
I'm letting her watch too much junk), “Not a problem!!!” First, letting T denote
the duration of infectiousness, we immediately can write down the formula for Ry
as -

Ry=N / B(r)Pr{T; > rydr = NBE(T)) (5.17)

where now we have defined the mean infectiousness 3 as

120 B(1) Pr{Ty > 7}dr [, B(7) Pr{T} > T}dT.

p== [, Pr{T; > 7}dr E(Ty) (5.18)
To understand equation (5.17), note that
/TO:O B(1)Pr{Ty > 7}dr = /uo:oo fr, (u) /i B(7)drdu (5.19)

where fr,(u) is the probability density of the infectious period T;. For someone
who has been infectious for exactly u units of time, the total transmission potential
is [*, B(7)dr; note that if 5(7) was a constant (3, this integral would just equal
Bu, and substitution into equation (5.19) would yield 5y,E(T}) (which is the case
of arbitrary duration of infectiousness but with constant transmission studied two
sections ago).

If the density of persons who have been infected for 7 units of time at time ¢
is denoted by Y'(7,%), then the incidence (hazard) can be written as

Ao = [ " Y(r0)8(r)dr (5.20)

=0

One can repeat the by now familiar steps in our analysis (sounds like a good
homework problem), and arrive at the usual result that

/O T Ab)dt = NpBE(TY) = Rop (5.21)
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and that, one last time with feeling, we have
p=1—¢ P, (5.22)

And this concludes our supplemental notes on the hazard function approach to
SIR-type models.
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