

Yale SCHOOL of MANAGEMENT

YALE UNIVERSITY
School of Public Health

YALE UNIVERSITY
School of Engineering and
Applied Science

Estimating the Size of Hidden Populations

Edward H. Kaplan

How Many Homeless?

- ◆ Three cities conducted systematic sweeps of the homeless population when people were out on the streets
- ◆ Homeless shelter census was also known in each city
- ◆ For every 100 persons found in homeless shelters, there were:
 - 129 persons on the street in Boston
 - 273 persons on the street in Phoenix
 - 130 on the street in Pittsburgh
- ◆ National estimate for total number in homeless shelters was 69,000. Can you estimate total size of the homeless population?

Ratio Estimate for Number of Homeless

- ◆ Idea: let $p = \Pr\{\text{Shelter} \mid \text{Homeless}\}$, $x = \# \text{ homeless in shelter}$
- ◆ Estimate $N = x / p$
- ◆ Told that nationwide $x = 69,000$
- ◆ From surveys estimate that p falls between 0.27 and 0.44
- ◆ So estimate that N falls between $69K / 0.44$ and $69K / 0.27$ or between 157K and 256K
- ◆ If add in confidence interval variability, widen to 155K – 258K

The New York Times

Health

H.I.V. Study Finds Rate 40% Higher Than Estimated

By LAWRENCE K. ALTMAN
Published: August 3, 2008

MEXICO CITY — The United States has significantly underreported the number of new H.I.V. infections occurring nationally each year, with a study released here on Saturday showing that the annual infection rate is 40 percent higher than previously estimated.

SIGN IN TO E-MAIL
OR SAVE THIS
PRINT
SINGLE PAGE
REPRINTS
SHARE

351

New tracking method shows higher rate of HIV

Matthew B. Stannard, Chronicle Staff Writer
Sunday, August 3, 2008

THE WALL STREET JOURNAL. Digital Network

WSJ.com MarketWatch BARRON'S D All Things Digital. More ▾ Enter Symbol(s)

THE WALL STREET JOURNAL.

HIV Infections Were Undercounted In U.S. for Nearly 10 Years, CDC Says

Wall Street Journal

washingtonpost.com

Sign In | Register Now

The Washington Post

Print Edition | Subscribe | PostPoints

AIDS Infection Rate in U.S. Higher Than Previously Estimated

By David Brown
Washington Post Staff Writer
Saturday, August 2, 2008; 2:24 PM

TOOLBOX

Resize Print E-mail

LAT Home | My LATimes | Print Edition | All Sections

Los Angeles Times | Health

You are here: LAT Home > Health

50% off newsstand price. ORDER NOW

Health

HIV epidemic in U.S. worse than previously thought, CDC says

Based on new testing methods, the CDC says there are actually about 56,300 new infections a year ... not 40,000 ... and that rate has been fairly constant for a decade.

How Many New HIV Infections Occur in the US Each Year?

- ◆ Want to know HIV incidence (stratified by important covariates) for monitoring, evaluation of prevention programs, and resource allocation
- ◆ For many years, CDC suggested 40,000/yr
- ◆ Where did the 40,000 come from?
 - Back-of-the-envelope calculation

Estimated HIV incidence

1. Based on women

AIDS-OI incidence, mid-1990s, $\approx 10,000$ /year

stable sero-prevalence among child-bearing women

30% of incidence in women

Total incidence $\approx 33,000$ /year

2. Based on MSM

60.5 million men ages 15-44, 1997 (70.6, ages 15-49)

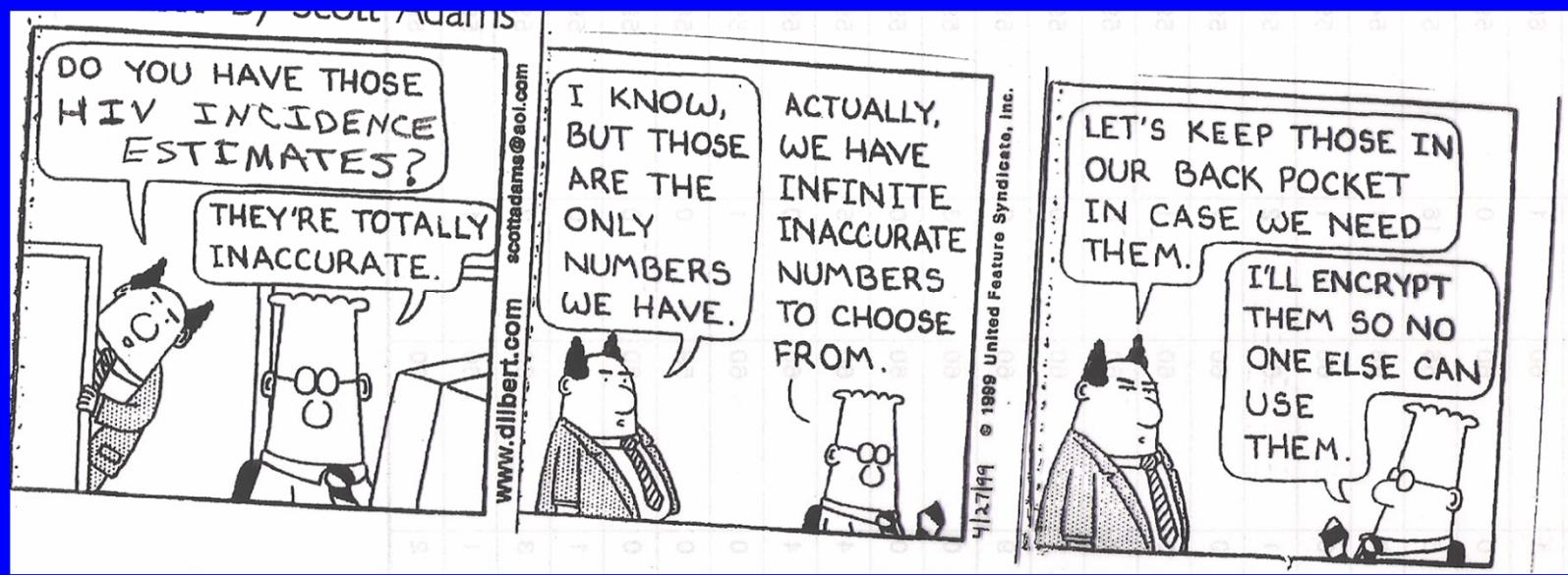
2% active MSM

1.2 million MSM

≈ 0.4 million with HIV

0.8 million at risk

2% incidence/year


16,000 infections/year

60% of infections in MSM

27,000/year in men

70% of all infections in men

38,000 infections/year

Using The BED Assay

ESTIMATING HIV INCIDENCE IN THE UNITED STATES

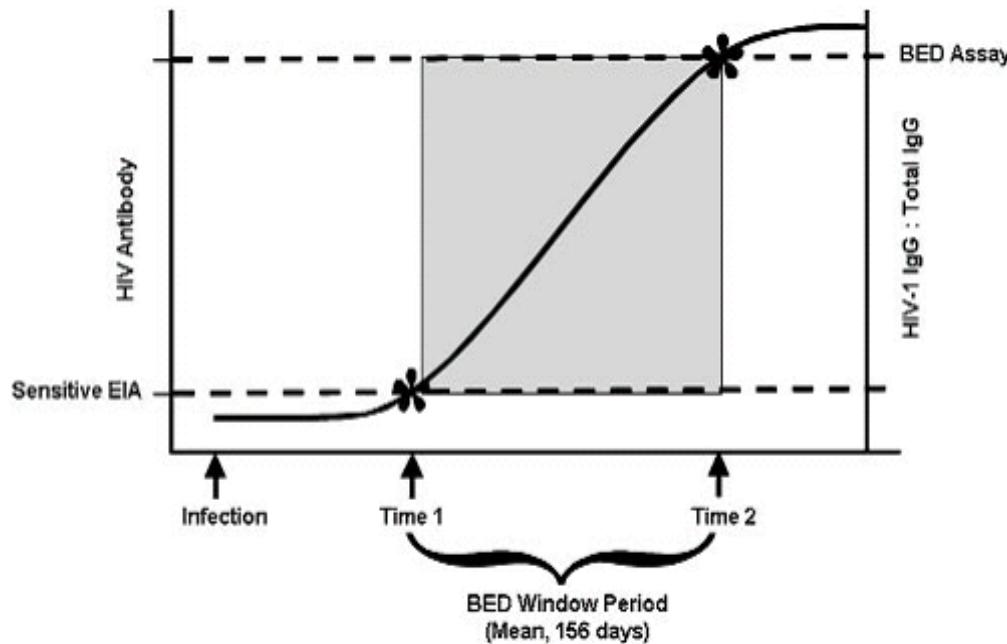
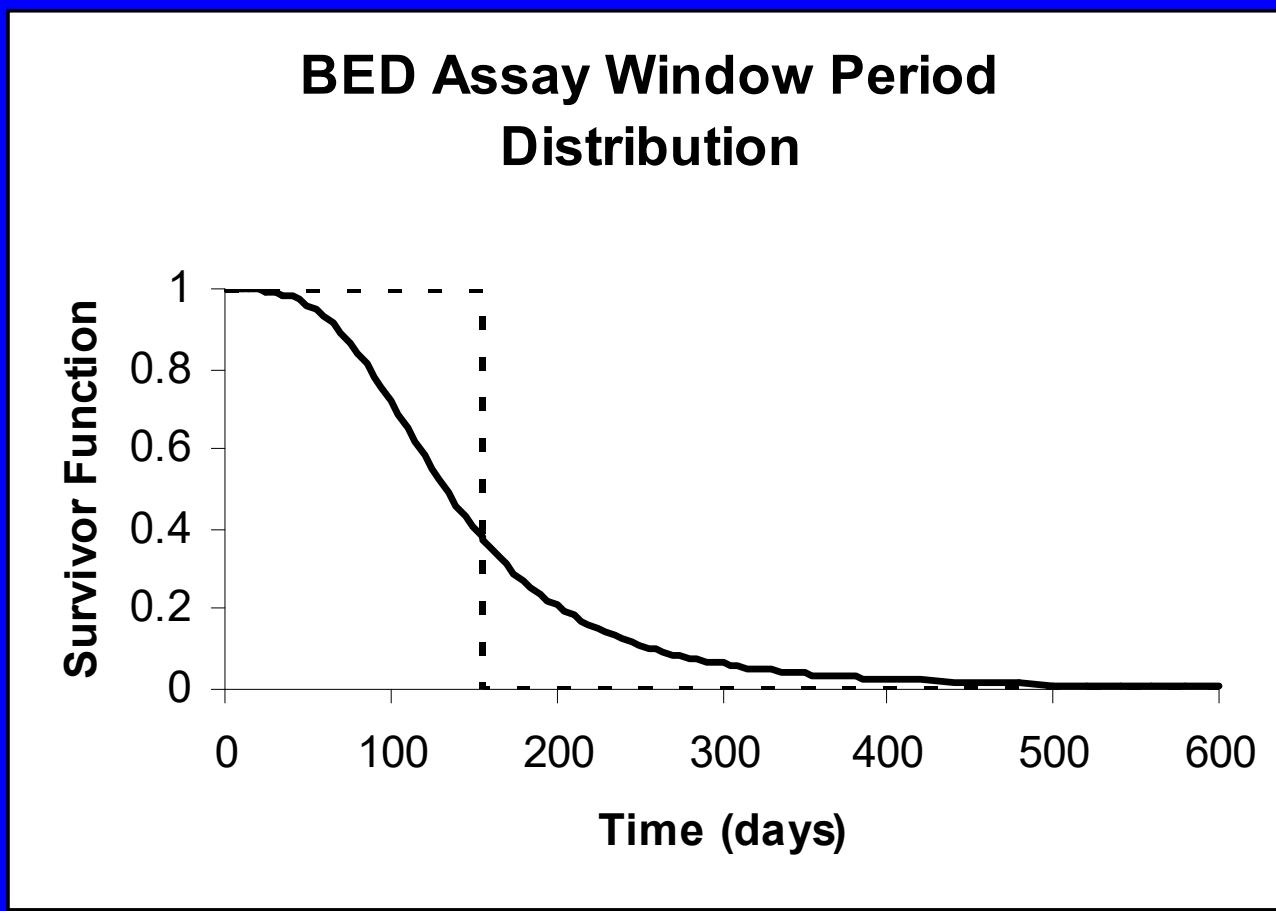



Figure 1. Schematic diagram of serologic testing algorithm for recent HIV seroconversion (STARHS) using the BED assay to determine those recently infected.

BED Assay Window Period Distribution

A Real Simple Model

- ◆ Let:
 - $N = \#$ new infections per year
 - $p_1 = \Pr\{\text{newly infected tested} \leq 1 \text{ year after infection}\}$
 - $p_2 = \Pr\{\text{HIV}^+ \text{ sample receives BED test}\}$
 - $p_3 = \Pr\{\text{BED test reports “recent”} | \text{tested} \leq 1 \text{ year after infection}\}$
 - $R = \#$ “recent” BED test results observed
- ◆ Then:

$$E(R) = E(N) p_1 p_2 p_3$$

so estimate

$$E(N) = E(R) / (p_1 p_2 p_3)$$

Example

Data Missing Completely At Random

Data/Parameter Estimate	Repeat Testers	New Testers
Observed HIV ⁺ Diagnoses	7604	4463
BED Recent Tests	908	298
p_1	0.617	0.240
p_2	0.398	0.426
p_3	0.427	0.427
Estimated Incidence	8660 (7440–10090)	6830 (5660–8210)

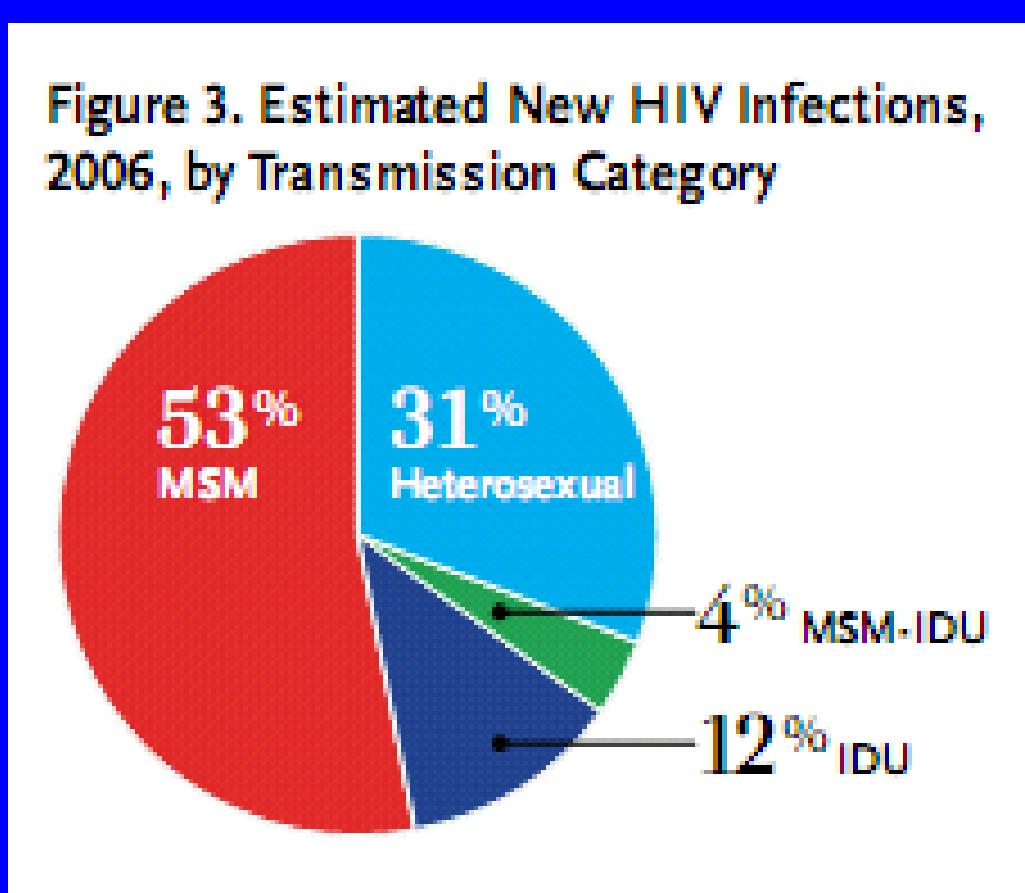
Total Estimated Incidence Among Observed Cases = $8660 + 6830 = 15,490$

Test History Available From $12,067 / 33,802$ Diagnoses or 35.7%

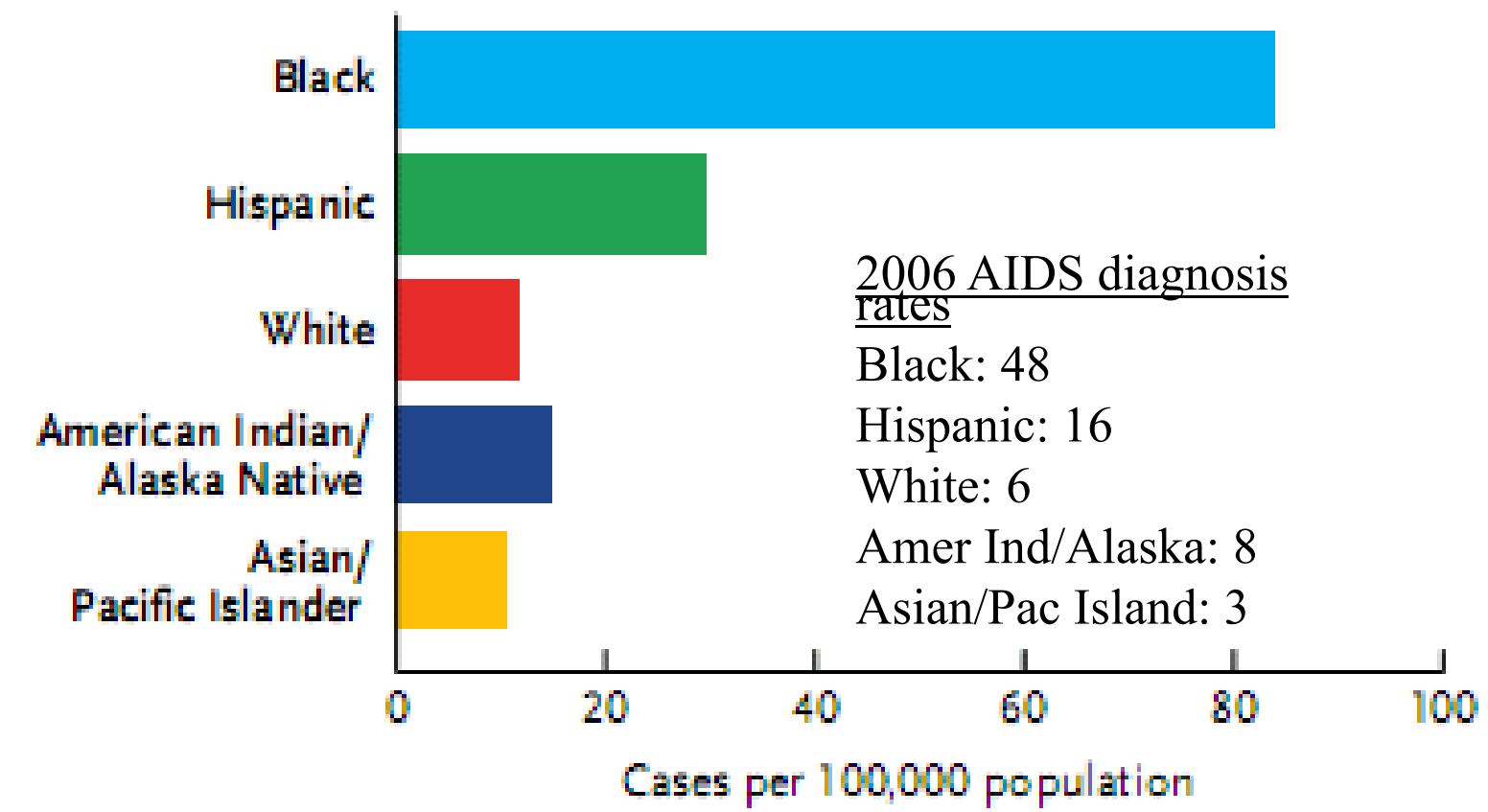
Raises Incidence Estimate Within 22 States to $15,490 / 0.357 = 43,400$ (34,100–55,200)

Implies National Estimate of $43,400 / 0.73 = 59,500$ (46,700–75,600)

- ◆ Recall Holmberg (1996) reported 50% of new infections among IDUs, 26% among MSMs, 24% among HETs
- ◆ Our results:


2006 AIDS diagnoses:

MSM: 43%


HET: 32%

IDU: 18%

MSM-IDU: 5%

Figure 4. Estimated Rates of New HIV Infections, 2006, by Race/Ethnicity

How Many Drug Injectors in New Haven?

- ◆ Suppose I = annual # new HIV infections among drug injectors
 - (could estimate via backcalculation from AIDS data)
- ◆ Suppose r = annual rate of new HIV infections per injector
 - (could estimate via epidemic model – will discuss December 8 in class)
- ◆ Then $I / r = \# \text{ infections/yr} / \# \text{ infections/drug injector/yr}$
= # drug injectors!!

How Many Drug Injectors Are There In New Haven?

(EH Kaplan and D Soloshatz, *Math Comput Modeling* 17:109-115, 1993)

Table 1. Estimating the number of drug injectors in New Haven.

	Weibull	Erlang
\hat{I} ($= \hat{\beta}_1$) (aggregate annual HIV incidence rate among drug injectors)	150.26	141.45
$\hat{\sigma}_{\hat{I}}$ (estimated standard error of \hat{I})	4.41	4.13
\hat{R} (per drug injector annual HIV incidence rate)	0.064	0.064
$\hat{\sigma}_{\hat{R}}$ (estimated standard error of \hat{R})	0.00395	0.00395
\hat{N} (point estimate of the number of drug injectors)	2,350	2,210
$\hat{\sigma}_{\hat{N}}$ (estimated standard error of \hat{N})	160.45	150.90
$\hat{N} - 1.96 \hat{\sigma}_{\hat{N}}$ (lower 95% confidence limit for \hat{N})	2,030	1,190
$\hat{N} + 1.96 \hat{\sigma}_{\hat{N}}$ (upper 95% confidence limit for \hat{N})	2,660	2,510

Estimating prevalence of problem drug use at national level in countries of the European Union and Norway

Ludwig Kraus¹, Rita Augustin¹, Martin Frischer², Petra Kümmel¹, Alfred Uhl³ & Lucas Wiessing⁴

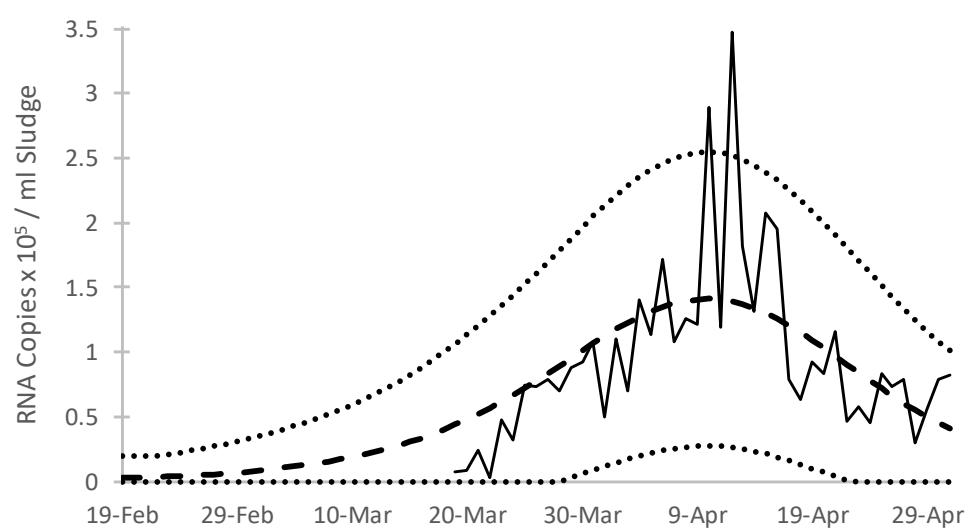
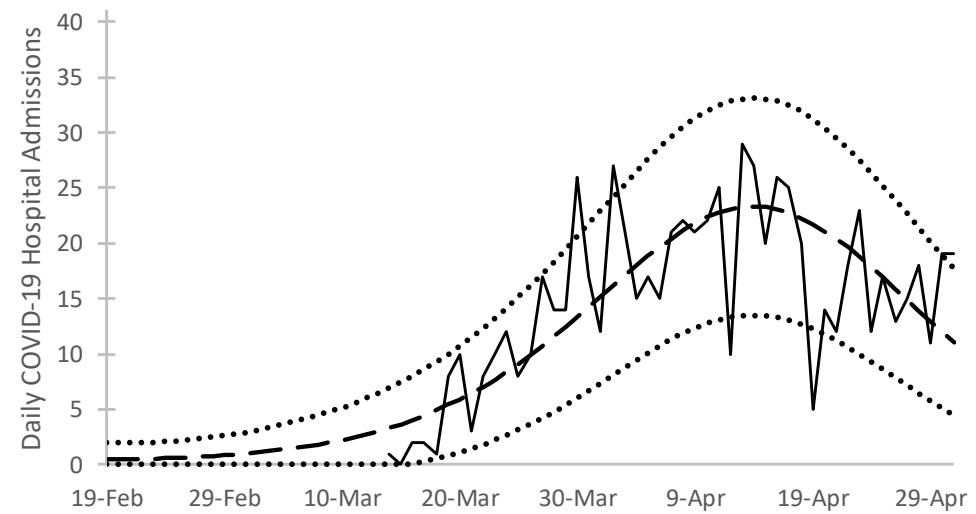

Addiction, 98, 471–485 2003

Table 1 National prevalence estimates of problem opiate use according to method in the EU and Norway (absolute numbers).


Country	Treatment multiplier	Police multiplier	Mortality multiplier	HIV multiplier
Austria 1995* [37]; 2000**			12 000–23 000 (3) ^{d**}	
Belgium 1995 [60]				20 000 (10 300–46 300) ^f
Denmark 1996			15 400 (3) ^d	
Finland 1999 [61]			7 000–14 000 (3) ^d	
France 1995*; 1999**	180 000 ^{***}	150 000 (1) ^{***}		141 000–177 000 ^{f*}
Germany 2000	166 000–198 000	153 000–190 000 (2)	127 000–169 000 (3) ^d	
Ireland 1995*; 1996** [58]			4 700 (4) ^{e*}	
			7 900 (4) (5) ^{e*}	
Italy 1996* [28]; 1999**	277 000 ^{**}	281 000 (2) ^{**}		214 000–272 000 ^{f*}
Luxembourg 1999 [25]		2 620 (1)	1 330–1400 (3) ^d	1 780 ^f
		2 210–2480 (2)	2 090–2150 (3) (5) ^d	
the Netherlands 1998*; 1999**	26 000–30 300 ^{**}	25 800–34 300 (1) ^{c*}		
Norway 2000			10 500–14 000 (4) ^e	
Portugal 1999*; 2000**	41 700–48 700 ^{***}	49 900–56 200 (1) ^{c*}	18 500–36 900 (3) ^{d*}	22 700–33 600 ^{f*}
Spain 1998	177 800		84 000 (4) ^e	
Sweden 1998 [62]				
UK 1996 [59]	243 800		161 100 (3) ^d	161 200 ^f

Empirical Results

SARS-CoV-2 RNA Copies $\times 10^5$ / ml Sludge

Daily COVID-19 Hospital Admissions

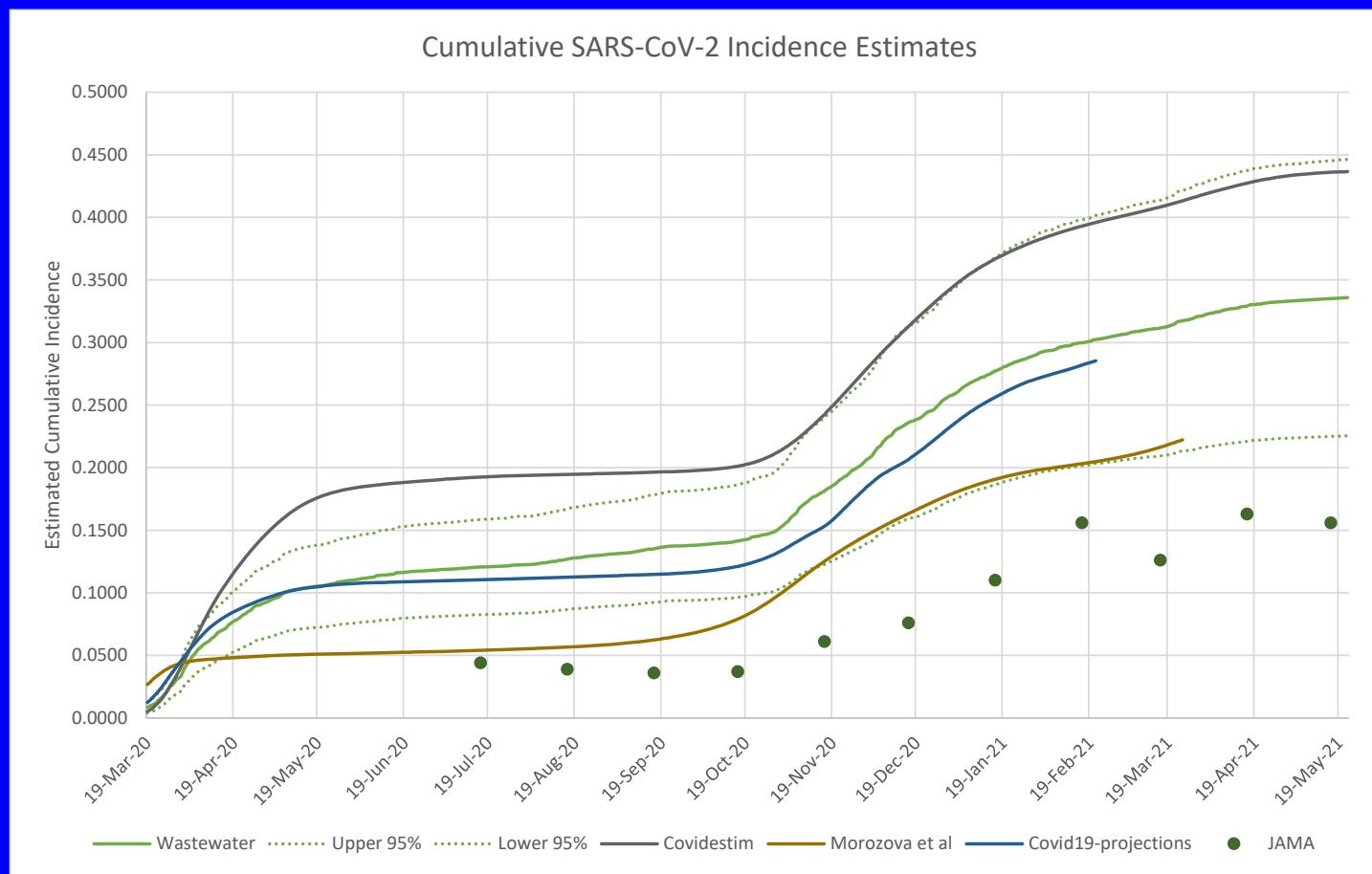
- ◆ Estimated $R_0 = 2.38$ (std error 0.10); $s(0) = 0.984$ (std error 0.003)

Bifurcation Model for 1st Covid Wave

- ♦ Interpret the epidemic model as applying only to *exposed* population; stay-at-home assumed safe
- ♦ Of the New Haven area's 200K population, how many locked down, how many remained exposed, and of those how many got infected?
- ♦ Use the aligning indicators model to estimate answers

Back-of-the-Envelope Bifurcation

- ♦ Let $\phi = \Pr\{\text{Infected during outbreak} \mid \text{exposed}\}$
- ♦ Total hospitalizations $\mathbf{H} = k_H \phi$ (see eqs (16) and (21) in paper)
- ♦ Let \mathbf{N}, \mathbf{C} = total number exposed, total diagnosed COVID-19 cases
- ♦ Write $\mathbf{H} = \mathbf{N}\phi \times \frac{\mathbf{C}}{\mathbf{N}\phi} \times \frac{\mathbf{H}}{\mathbf{C}}$ (verify that RHS indeed = \mathbf{H})
- ♦ Equate the two expressions for \mathbf{H} and simplify to obtain


$\mathbf{N} = \frac{k_H}{\frac{\mathbf{C}}{\mathbf{N}\phi} \times \frac{\mathbf{H}}{\mathbf{C}}}$ and note that $\frac{\mathbf{C}}{\mathbf{N}\phi}$ = cases per infection while $\frac{\mathbf{H}}{\mathbf{C}}$ = fraction of cases admitted to the hospital

Back-of-the-Envelope Bifurcation

- ◆ Estimated $k_H = 1006.6$ from maximum likelihood (s.e. 56.8)
- ◆ CDC estimated infections per case for Connecticut as 6 (s.e. 1.8) from a seroprevalence study March 23 – May 12; this is $\frac{N\phi}{C}$
- ◆ Observed 734 hospital cases and 2,674 diagnosed cases for study population; this estimates $\frac{H}{C}$
- ◆ Taken together, estimate $N = 22K$ (95% CI 18.6 K to 26K)
- ◆ Bifurcation model suggests about 11% of total population exposed
- ◆ Also suggests 18.6K infected (or 9.3% of total population)

Cumulative Infections as of May 1, 2020: Bifurcation Model: 9.3%
(Morozova et al: 5%; covidestim: 14.8%; covid19-projections.com: 9.6%)

Typos in a Book

- ◆ Two proofreaders have been hired to independently read a book manuscript in search of typos
- ◆ The first (second) proofreader will catch any true typo with probability p (q)
- ◆ The first proofreader catches 50 typos, the second catches 40, and the same 10 typos were detected by both proofreaders
- ◆ Can you estimate the total number of typos in the book?

Typos in a Book

- ◆ Let the total number of typos = n
- ◆ $E[\text{Typos found by first proofreader}] = np$ (observed 50)
- ◆ $E[\text{Typos found by second proofreader}] = nq$ (observed 40)
- ◆ $E[\text{Typos found by both}] = npq$ (observed 10)
- ◆ Here comes the cool part: $np \times nq / (npq) = n$ (!!)
- ◆ Plug in the data: estimate $n = 50 \times 40 / 10 = 200$ typos (!!)
- ◆ This is an example of what is called *capture recapture*

Use of Capture-Recapture to Estimate the Prevalence of Opiate Addiction in Barcelona, Spain, 1989

Antònia Domingo-Salvany,¹ Richard L. Hartnoll,¹ Andrew Maguire,¹ J. M. Suelves,² and J. M. Antó¹

TABLE 1. Distribution of unique individuals by occurrence of emergency room episodes in different combinations of trimesters (substudy one, $n = 2,075$), Barcelona, Spain, 1989

	TR1* yes, TR2* yes	TR1 yes, TR2 no	TR1 no, TR2 yes	TR1 no, TR2 no
TR3* yes, TR4* yes	29	35	35	96
TR3 yes, TR4 no	48	58	80	400
TR3 no, TR4 yes	25	77	50	376
TR3 no, TR4 no	97	357	312	†

* TR1, first trimester; TR2, second trimester; TR3, third trimester; TR4, fourth trimester.

† To be estimated.

199 527 477

TR1?	TR2?		527
	Yes	No	
Yes	199		
No	477		
nhat	2466.211		
var	15655		
st dev	125.1199		

Var=nhat*b*c/a^2

TABLE 3. Estimated number of addicts (aged 15–44 years) on the basis of different combinations of two trimesters of emergency room episodes, Barcelona, Spain, 1989

Trimesters	Estimated no. of addicts*	SE*
TR1† and TR2†	2,466	125.1
TR2 and TR3†	2,750	145.8
TR3 and TR4†	2,896	153.5
TR1 and TR3	3,335	198.0
TR2 and TR4	3,518	238.9
TR1 and TR4	3,162	189.2

* Number and standard error (SE) calculated through the following formulae: $N = (a + b)(a + c)/a$, $\text{Var}(N) = (a + b)(a + c)bc/a^2$; where a is the overlap cell and b and c are unique individuals in each sample (13). The numbers of individuals in each cell are derived from table 1.

† TR1, first trimester; TR2, second trimester; TR3, third trimester; TR4, fourth trimester.

Number in first trimester = $199 + 527 = 726$; number in second trimester = $199 + 477 = 676$; number in both = 199.

So, capture recapture estimate = $726 \times 676 / 199 = 2,466$