

Drug Treatment on Demand? In San Francisco...

DRUG TREATMENT

1,400 PERSONS ON WAITING LIST

6,300 TREATMENT SLOTS

\approx 1 MONTH WAIT FOR TREATMENT

50% DROP OUT OF LINE

PROPOSAL: ADD 1400 SLOTS

WHAT HAPPENED?

WAIT LIST \rightarrow 1,100

WAIT TIME \rightarrow 3 wks

% DROP OUT \rightarrow 40%

DRUG TREATMENT

1,400 PERSONS ON WAITING LIST

6,300 TREATMENT SLOTS

≈ 1 MONTH WAIT FOR TREATMENT

50% DROP OUT OF LINE

PROPOSAL: ADD 1400 SLOTS

WHAT HAPPENED?

WAIT LIST \rightarrow 1,100

WAIT TIME \rightarrow 3 wks

% DROP OUT \rightarrow 40%

LET \overline{ATT} = AVG TREATMENT TIME

$\mu = \frac{6300}{\overline{ATT}}$ = ANNUAL SLOT TURNOVER

λ = DEMAND FOR TREATMENT

WHAT IS μ/λ ??

DRUG TREATMENT

1,400 PERSONS ON WAITING LIST

6,300 TREATMENT SLOTS

\approx 1 MONTH WAIT FOR TREATMENT
50% DROP OUT OF LINE

PROPOSAL: ADD 1400 SLOTS

WHAT HAPPENED?

WAIT LIST \rightarrow 1,100

WAIT TIME \rightarrow 3 wks

% DROP OUT \rightarrow 40%

LET $\bar{A}TT$ = AVG TREATMENT TIME

$$\mu = \frac{6300}{\bar{A}TT} = \text{ANNUAL SLOT TURNOVER}$$

λ = DEMAND FOR TREATMENT

$$\text{WHAT IS } \mu/\lambda ?? = .5$$

DRUG TREATMENT

1,400 PERSONS ON WAITING LIST

6,300 TREATMENT SLOTS

~1 MONTH WAIT FOR TREATMENT
50% DROP OUT OF LINE

PROPOSAL: ADD 1400 SLOTS

WHAT HAPPENED?

WAIT LIST \rightarrow 1,100

WAIT TIME \rightarrow 3 wks

% DROP OUT \rightarrow 40%

LET $\bar{A}TT$ = AVG TREATMENT TIME

$$\mu = \frac{6300}{\bar{A}TT} = \text{ANNUAL SLOT TURNOVER}$$

λ = DEMAND FOR TREATMENT

$$\text{WHAT IS } \mu/\lambda ?? = .5$$

ADD 1,400 SLOTS 7700

$$\text{LET } \mu' = \frac{6300 + 1400}{\bar{A}TT} = \frac{7700}{6300} \cdot \frac{6300}{\bar{A}TT}$$

$$\text{WHAT IS } \mu'/\lambda ??$$

DRUG TREATMENT

1,400 PERSONS ON WAITING LIST

6,300 TREATMENT SLOTS

\approx 1 MONTH WAIT FOR TREATMENT
50% DROPOUT OF LINE

PROPOSAL: ADD 1400 SLOTS

WHAT HAPPENED?

WAIT LIST \rightarrow 1,100

WAIT TIME \rightarrow 3 wks.

% DROPOUT \rightarrow 40%

LET $\bar{A}TT$ = AVG TREATMENT TIME

$\mu = \frac{6300}{\bar{A}TT} = \text{ANNUAL SLOT TURNOVER}$

λ = DEMAND FOR TREATMENT

$\lambda = \mu / 2 ?? = .5$

WHAT IS μ / λ ??

ADD 1,400 SLOTS 7700

LET $\mu' = \frac{6300 + 1400}{\bar{A}TT} = 1.22 \cdot \frac{6300}{\bar{A}TT}$

WHAT IS μ' / λ ??

DRUG TREATMENT

1,400 PERSONS ON WAITING LIST

6,300 TREATMENT SLOTS

≈ 1 MONTH WAIT FOR TREATMENT

50% DROP OUT OF LINE

PROPOSAL: ADD 1400 SLOTS

WHAT HAPPENED?

WAIT LIST \rightarrow 1,100

WAIT TIME \rightarrow 3 wks.

% DROP OUT \rightarrow 40%

LET $\bar{A}TT$ = AVG TREATMENT TIME

$$\mu = \frac{6300}{\bar{A}TT} = \text{ANNUAL SLOT TURNOVER}$$

λ = DEMAND FOR TREATMENT

$$\lambda = \mu / 2 ?? = .5$$

WHAT IS μ / λ ??

ADD 1,400 SLOTS 7700

$$\text{LET } \boxed{\mu'} = \frac{6300 + 1400}{\bar{A}TT} = \boxed{1.22 \mu}$$

WHAT IS μ' / λ ??

DRUG TREATMENT

1,400 PERSONS ON WAITING LIST

6,300 TREATMENT SLOTS

~1 MONTH WAIT FOR TREATMENT
50% DROP OUT OF LINE

PROPOSAL: ADD 1400 SLOTS

WHAT HAPPENED?

WAIT LIST \rightarrow 1,100

WAIT TIME \rightarrow 3 wks.

% DROP OUT \rightarrow 40%

LET $\bar{A}TT$ = AVG TREATMENT TIME

$$\mu = \frac{6300}{\bar{A}TT} = \text{ANNUAL SLOT TURNOVER}$$

λ = DEMAND FOR TREATMENT

$$\text{WHAT IS } \mu/\lambda ?? = .5$$

ADD 1,400 SLOTS 7700

$$\text{LET } \mu' = \frac{6300 + 1400}{\bar{A}TT} = \boxed{1.22 \cdot \mu}$$

$$\text{WHAT IS } \mu'/\lambda = 1.22 \cdot \mu / \lambda = .60$$

DRUG TREATMENT

1,400 PERSONS ON WAITING LIST
6,300 TREATMENT SLOTS
~1 MONTH WAIT FOR TREATMENT
50% DROPOUT OF LINE

PROPOSAL: ADD 1400 SLOTS

WHAT HAPPENED?

WAIT LIST \rightarrow 1,100
WAIT TIME \rightarrow 3 wks.
% DROPOUT \rightarrow 40%

LET ATT = AVG TREATMENT TIME

$$\mu = \frac{6300}{ATT} = \text{ANNUAL SLOT TURNOVER}$$

λ = DEMAND FOR TREATMENT

$$\text{WHAT IS } \mu/\lambda \text{ ?? } = .5$$

$$\text{ADD 1,400 SLOTS } 7700 \\ \text{LET } \mu' = \frac{6300 + 1400}{ATT} = 1.22 \cdot \mu$$

$$\text{WHAT IS } \mu'/\lambda = 1.22 \cdot \frac{\mu}{\lambda} = .60$$

SUPPOSE DROPOUT PROPORTIONAL

TO QUEUE LENGTH
0.5 \propto 1400 BEFORE
AFTER

NEW QUEUE LENGTH?

DRUG TREATMENT

1,400 PERSONS ON WAITING LIST
 6,300 TREATMENT SLOTS
 ~1 MONTH WAIT FOR TREATMENT
 50% DROP OUT OF LINE

PROPOSAL: ADD 1400 SLOTS

WHAT HAPPENED?

WAIT LIST \rightarrow 1,100
 WAIT TIME \rightarrow 3 wks.
 % DROP OUT \rightarrow 40%

LET $\bar{A}TT$ = AVG TREATMENT TIME

$$\mu = \frac{6300}{\bar{A}TT} = \text{ANNUAL SLOT TURNOVER}$$

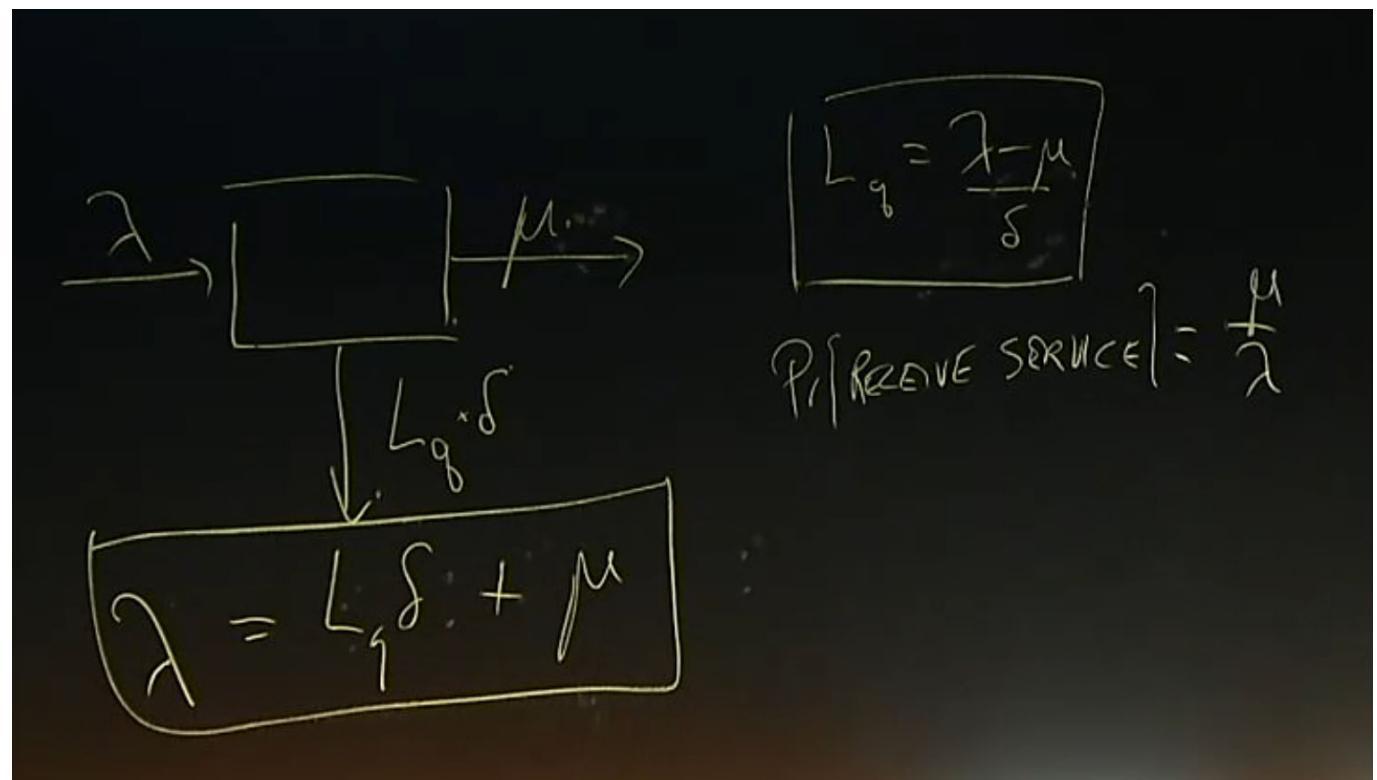
λ = DEMAND FOR TREATMENT

$$\text{WHAT IS } \mu/\lambda \text{ ?? } \frac{\mu}{\lambda} = 0.5$$

$$\text{ADD 1,400 SLOTS } 7700 \\ \text{LET } \mu' = \frac{6300 + 1400}{\bar{A}TT} = 1.22 \cdot \mu$$

$$\text{WHAT IS } \mu'/\lambda = 1.22 \cdot \frac{\mu}{\lambda} = 0.60$$

SUPPOSE DROPOUT PROPORTIONAL
 TO QUEUE LENGTH


$$0.5 \propto 1400 \text{ BEFORE} \\ 0.4 \propto ? \text{ AFTER}$$

$$\text{NEW QUEUE LENGTH?} \\ \frac{1400}{0.5} = \frac{?}{0.4} \Rightarrow \text{NEW QUEUE LENGTH} = \frac{0.4}{0.5} \times 1400 \\ = 1,120$$

What About Waiting Time?

- First, let's review the overall flows:

λ = treatment applicant rate
 μ = total slot turnover rate
 δ = reneging (dropout) rate
 L_q = queue for drug treatment

Figuring Out The Waiting Time To Receive Treatment

$$L_q = \frac{\lambda - \mu}{\delta}$$

$$Pr\{RECEIVE\, SERVICE\} = \frac{\mu}{\lambda} = e^{-\delta t}$$

$$Pr\{Willing\, to\, wait\, >t\} = e^{-\delta t}$$

Suppose $W =$ WAITING TIME THAT GUARANTEES SERVICE

$$Pr\{RECEIVE\, SERVICE\} - Pr\{WILLING\, TO\, WAIT\, > w\} = e^{-\delta w} = \frac{\mu}{\lambda}$$

$$W = \frac{1}{\delta} \ln\left(\frac{\lambda}{\mu}\right)$$

Watch in Picture-in-Picture

Figuring Out The New Waiting Time

- In old regime we were told $W = 1$ month, plus dropout rate was 50%
- This means that $\lambda/\mu = 2$, so $W = (1/\delta) * \ln(\lambda/\mu) = 1$ month
- Note that $\ln(2)$ is about 0.6944
- So solve for $1/\delta = 1 / 0.6944 = 1.44$ months
- Also note that in old regime, $L_q = 1400 = (\lambda - \mu)/\delta$
- But $\lambda = 2\mu$ and $1/\delta = 1.44$ months $\Rightarrow \lambda = 1,944/\text{month} (!!)$
- In new regime, $\mu'/\lambda = 1.22 * \mu/\lambda = 0.6$
- Since $\lambda/\mu' = 1/0.6$ and $\ln(1/0.6)$ is about 0.51 we have
- New $W = (1/\delta) * \ln(\lambda/\mu') = 1.44 * 0.51 = 0.73$ months or about 3 weeks

Data versus Model

DRUG TREATMENT

1,400 PERSONS ON WAITING LIST

6,300 TREATMENT SLOTS

\approx 1 MONTH WAIT FOR TREATMENT

50% DROP OUT OF LINE

PROPOSAL: ADD 1400 SLOTS

WHAT HAPPENED?

WAIT LIST \rightarrow 1,100

WAIT TIME \rightarrow 3 wks

% DROP OUT \rightarrow 40%

- $L_q = 1,120$
- $W = 0.73$ months or 3 weeks
- % receiving treatment $\rightarrow 60\%$ so dropout went to 40%

QTPMMSM Model (last M for Memoryless Abandonment)

- Inputs: arrival rate, service rate *per server*, number of servers, renegeing (or dropout or abandonment) rate *per customer*
- Outputs: L_q , W , $\Pr\{\text{Dropout}\}$, etc.

Function Arguments

QTPMMSM_Lq

Arrival Rate	1944	=	1944
Service Rate	.1543	=	0.1543
Abandonment Rate	.6944	=	0.6944
Servers	6300	=	6300
Queue Capacity		=	

Returns the expected queue length.

Servers The number of servers available to serve customers entering a queueing system.

Formula result = 1399.639977

Help on this function

OK Cancel

Treatment on Demand		Original Regime	New Regime
Arrival Rate (per month)		1944	1944
Treatment Rate (per slot per month)		0.1543	0.1543
Abandonment Rate (per drug user per month)		0.6944	0.6944
Number of Slots		6300	7700
Average Waiting for Treatment (L_q)		1399.639977	1088.55127
Fraction that Drop Out		0.499953704	0.3888323
Average Waiting Time for Those Admitted (months)		0.998576906	0.70949907