
MGT 721 - Modeling Operational Processes

Spring 2025

Diffusion and Queueing Approximations Problem Set: Solutions

These questions are meant to review and extend the concepts introduced in

class. You may use any computational assistant you like, including for example

Wolfram Alpha’s tools for symbolic integration or summation, or even chatGPT,

but you are responsible for any errors that might result (especially with chatGPT).

You can complete all of these questions without such computational assistants,

but nonetheless the option is there.

1. An NCAA Basketball Win Probability Graph

In class, we discussed a simple win probability model for basketball. To sum-

marize that model, let random variable () represent the net number of points

gained by the favorite (i.e. points scored by the favorite minus underdog points)

over minutes of play in the game. The model holds that() follows a Brownian

motion

() = (− )+
p
+ 

where  and  are the scoring rates per unit time for the favorite and underdog

respectively. The probability that the favorite wins given the current state of the

game (which is the favorite up by  after  minutes of play) is given by

Pr{Win} = Pr{(40− ) +   0} = Pr{(40− )  −}

(a) The file UConn_Notre_Dame_2011 on our course website contains a com-

plete play-by-play account of the University of Connecticut’s final home game of

the 2010-11 season, which took place on March 5, 2011 against Notre Dame,

which was the favorite in this game. Suppose you knew then what you know now

about modeling win probability. Produce your own “win probability graph” for

this game by applying the model above to the data from the UConn-Notre Dame

game. Your graph should show the probability that Notre Dame wins the game

as a function of the elapsed time in the game Suppose that the closing betting

odds prior to the 40 minute game (when  =0 minutes) had a spread of 4 points

favoring Notre Dame ( −  = 4), and an over/under (points total) line of 176

(+  = 176).

This is ridiculously easy! Since the game file tells us howmany minutes are left

along with the score at any moment, it is easy to calculate the required probability

using the normal distribution exactly as described above (note that minutes left =

40− ). Since the game is timed in minutes while the opening spread/point total

(i.e. drift/variance) was given for the 40 minute game duration, it is convenient

to simply divide by 40 to obtain a per minute drift of 0.1 points and a per minute

variance of 4.4 points2. To plot the resulting win probability against time elapsed

(as opposed to time remaining), we use the fact that Time Elapsed = 40 − Time
Remaining (duh....). Here’s what I get:

Note that this graph was created on the cheap, as I only computed probabilities

at the event times reported in the data file. A smoother picture can be created by

computing probabilities every 0.01 minutes, for example, as the win probability

2

changes even when the score does not. Here is what that graph looks like:

Note how the second graph shows movement in the win probability even

when the score does not change (that is, when there are no jumps in the graph).

Compare to the basketball win probability graphs you see on ESPN or other sports

sites. Cool, right?

(b) With 9.85 minutes left in the game, Notre Dame was leading UConn by

the score of 60-50. At that moment, what was the probability that UConn would

win the game?

Just look at the probabilities you created for the win probability graph above.

With 9.85 minutes left in the game, the probability that Notre Dame would win

was 0.95, which means the probability that UConn would win was 0.05. Not so

great!

(c) With 4.22 minutes remaining, UConn led Notre Dame by the score of

65-60. At that moment, what was the probability that UConn would win the

game?

Same idea — with 4.22 minutes left, the probability that Notre Dame would

win was equal to 0.14, which means that UConn had an 86% chance of winning

the game! But, as the game graph shows, that 5 point lead was UConn’s high

water mark, as Notre Dame went on a run to win the game by a final score of

70-67,

3

2. Price Discovery in Waiting Lists (after Ashlagi et al,

2022)

In a paper with the same name as this problem, Ashlagi et al stated the following

example:

(a) Build a birth-death process model for the situation above, and solve for

the steady state distribution of the number of agents in queue. What is the mean

and variance of the steady state number of agents in queue?

Let  denote the number of agents waiting in queue. If a new agent arrives

when there are already  agents in queue, that agent will only join the queue if

the value  of receiving the item ( is distributed uniform (0, 1)) exceeds the cost

of waiting (which includes the processing for the prior  agents plus additional

waiting cost for the newly arriving agent. Let  |() denote the probability
density for the waiting time to process all  agents already in queue plus the newly

arriving agent (in this example  |() will be the Erlang distribution that results
from the sum of +1 exponentials). In particular, since the item interarrival time

is exponentially distributed with mean 1, we have that ( |) = +1 Since the

waiting cost is 002 when the waiting time to process all + 1 agents equals ,

and since the new agent will only join if the item valuation exceeds this waiting

cost, we have

Pr{New agent joins queue with  agents|waiting time } = Pr{  002}
= 1− 002

Unconditioning over the waiting time distribution yields

Pr{New agent joins queue with  agents} =  |(1− 002 |)
= 1− 002(+ 1)

Now, given that the agent arrival rate is equal to 2 agents per unit time, but that

agents only join the queue with probability 1 − 002( + 1) when  agents are

4

already present, we see that the joining rate of new agents to the queue when 

are already present, call this the “birth rate” (), is given by

() = 2× (1− 002(+ 1))
The departure rate of agents who have joined the queue is simply equal to the

item arrival rate of 1 per unit time, which means that the “death rate” () in

this model equals 1.

So, we have a birth-death process with () = 2×(1−002(+1)) and () = 1.
Note that there will never be more than 49 agents waiting, as (49) = 0. We can

solve for the steady state probabilities () that there are  agents waiting for

 = 0 1 2  49 using the standard birth-death equations

()() = (+ 1)(+ 1) for  = 0 1 48

49X
=0

() = 1

Since () = 1, the solution is given by

() =

−1Y
=0

()

P49

=0

−1Y
=0

()

,  = 0 1 2  49

I did this in Excel, and discovered to two decimal places that the steady state

expected number of agents in queue () = 24 while the variance is equal to 25.

(b) Using the methods covered in class, construct an Ornstein Uhlenbeck dif-

fusion model for this same situation, and obtain the limiting distribution of the

number of agents in queue. What is the mean and variance?

Let’s start with the fluid model for (), the (deterministic) number of agents

in queue at time . Working directly with the birth-death model above we get

()


= ()− ()

= 2× (1− 002(+ 1))− 1
= 096− 004
= −004× (− 096

004
)

= −004× (− 24)

5

This is exactly in the form that we want, and we see that ∗, the deterministic
equilibrium number of agents in the queue equals 24.

We approximate the infinitesimal variance 2 as

2 = (∗) + (∗)

= 2× (1− 002(24 + 1)) + 1
= 2

and thus the variance of the equilibrium Ornstein Uhenbeck model as

 () =
2

2× 004
= 25

So the OU model approximates the agent queue lengths as being normally dis-

tributed with mean 24 and variance 25. Pretty good approximation, no?

(c) On a single graph, plot the probability distributions for the number of

agents in queue resulting from the birth-death model of (a) and the Ornstein

Ulenbeck model of (b). Which model provides the most succinct description of

the resulting steady state queue length distribution?

Here’s my graph:

6

While it is easy enough just to report the mean and variance for either model,

having an approximate normal distribution is much easier for discussion (and likely

subsequent calculations) than trying to explain the intricacies of the birth-death

process.

3. Big Data at the NSA

According toWashington Post investigative reporters, “Every day, collection sys-

tems at the National Security Agency intercept and store 1.7 billion e-mails, phone

calls and other types of communications.” (D. Priest and W. M. Arkin, 2010, “Na-

tional Security Inc.,” Washington Post, (July 20) A1.) Suppose that the NSA

intercepts communication messages (SIGINT) in accord with a Poisson process

where the mean message arrival rate is as stated above. Assume that the NSA

initially processes such intercepts for further study (or discard) using automated

algorithmic data analyzers or ADEs (i.e. dedicated computers), each of which is

capable of analyzing and classifying at most 5 million intercepts per day.

(a) What is the absolute minimum number of ADEs the NSA requires to meet

this workload?

From the problem description, we have an arrival rate  = 17 × 109 and a
per-server processing rate of  = 5× 106 First principles state the the expected
number of busy servers is then given by

() =




=
17× 109
5× 106

= 340

which means that the NSA needs 340 ADEs to meet the workload.

(b) Suppose the number of ADEs deployed by the NSA is set equal to 1 + your

answer from (a). Using the Halfin-Whitt approximation, what is the probability

that all ADEs are busy when a new intercept arrives? Again using Halfin-Whitt,

what is the expected length of the queue of communications intercepts waiting for

processing by an ADE?

We are told to set the number of servers  = 341. To use the Halfin-Whitt

7

approximation, we first compute

 =
− √



=
1√
341

= 00542

With this value for , the probability that all 341 servers are busy is given by

 =
()

() + ©()

= 09337

The expected Halfin-Whitt queue length is then given by

 =




√


=
09337

00542

√
341

≈ 318

Just for comparison, the Queueing ToolPak results for the probability of delay and

expected queue length for the M/M/n queue with the same arrival rate, service

rate, and number of servers are Pr{Delay} = 09346 and  ≈ 318
(c) Given the potentially serious consequences of a communication intercept,

the NSA decides it would like to deploy a sufficient number of ADEs such that the

probability that all of them are busy only equals 1%. Using square root staffing

and the Halfin-Whitt regime, how many ADEs should the NSA deploy? What is

the expected number of intercepts waiting for processing in this situation?

First we need to find that value of  that solves the equation

() =
()

() + ©()
= 001

To three decimals I find the root of this equation as ∗ = 2375. Now we employ

8

square-root staffing to obtain

 =



+ ∗

s




= 340 + 2375
√
340

= 38379 ≈ 384
Note that we need to round up as we can’t have 0.79 of a server. With 384 servers,

the expected number waiting in queue will essentially vanish as

 =




√


=
001

2375

√
384

= 008

4. Terror Queues with All Agents Busy

Recall the Terror Queues model from Policy Modeling, and also described in the

paper by the same name posted on the course website. Read over Section 3.1

(Boundary Approximations) on p. 778 of the paper, and focus on the case where

the number of busy agents  ≈  , the total number of agents. Taking  = 

reduces the model to one dimension, namely the number of undetected terror

plots . Why? Because in steady state, the number of undetected plots that are

detected per unit time equals the the number of detected plots that are interdicted

per unit time, and if  =  this latter rate just equals  . Noting that  will

increase with the arrival of a new plot, decrease with the detection of a previously

undetected plot, and also decrease with the execution of a terror plot:

(a) What is the differential equation for the fluid model for the number of

undetected terror plots over time? What is the fluid limit for the number of

undetected terror plots?

The fluid model is simply given by

()


= − − 

= −(− − 


)

9

Yippee — we have this in exactly the form of an Ornstein Uhlenbeck model, and

we see that the fluid limit for the number of undetected plots is given by

∗ =
− 



(b) Formulate a steady-state birth-death model for the number of undetected

terror plots assuming all agents are busy, and plot the resulting probability distri-

bution for the number of undetected plots assuming  = 100,  = 1,  = 4, and

 = 15. Report the mean and standard deviation of the number of undetected

plots.

Let’s get the model first, and plug in the numbers second. Letting  denote

the number of undetected terror plots, the birth rate () =  while the death

rate () = + (the first term reflects successfully executing undetected plots,

while the second term represents the detection (and interdiction) of undetected

plots). Solving the usual balance equations

()() = (+ 1)(+ 1),  = 0 1 2 
∞X
=0

() = 1

we obtain the solution

() =

−1Y
=0


+

P∞
=0

−1Y
=0


+

Plugging in the parameter values  = 100,  = 1,  = 4, and  = 15 I obtain

(from Excel) () ≈ 40 and  () ≈ 100, which means () ≈ 10 The
plot of () appears below in part (c).

(c) Formulate an Ornstein Uhlenbeck diffusion model for this situation using

the methods described in class. Derive the steady state distribution of the number

of undetected terror plots and plot the resulting density for the same parameters

in part (b) on the same graph. Report the mean and standard deviation of the

number of undetected plots. Which approach was easier to implement?

10

From part (a) we already know that the fluid limit, which in the Ornstein

Uhlenbeck approximation is taken as the expected value, is given by

∗ =
− 



=
100− 4× 15

1
= 40

That agrees perfectly with the birth-death model. To get  (), we first esti-

mate the infinitesimal variance of the diffusion approximation at the fluid limit

which yields

2 = (∗) + (∗)

= 100 + 1× 40 + 4× 15
= 200

We get  () by dividing the infinitesimal variance by twice the drift coefficient

( = 1) which yields

 () =
200

2× 1 = 100
and thus () = 10, in perfect agreement with the birth-death model.

Here is a graph showing both the birth-death probability mass function (dots)

and the Ornstein Uhlenbeck normal density (smooth curve).

11

It is pretty much impossible to tell these two probability models apart. I think

implementing the OU model was much simpler — the required equations for the

mean and variance are simple, whereas solving for the birth-death probabilities,

though not hard, is more work. Again we have a very succinct summary of the

situation — the number of undetected terror plots follows a normal distribution

with a mean of 40 and a standard deviation of 10. And this is when all the agents

are busy. Sounds like we need more counterterrorism agents!

12

