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Let’s Start With Baseball

Problem: given data for every MLB team
over several seasons reporting the total
number of wins, and the seasonal difference
between runs for and against (run
differential), predict the number of wins
from the run differential



Let’s Look At The Data
For 2000-2006 MLB seasons:




Pose Question To MBA Students...

They all want to commit an act of regression!!

So, before punching buttons 1n Excel...

Tell me: what 1s the intercept, and what 1s the
slope?

— Huh? That’s why we run the regression Prof!

[ know, I know, but humor me. What 1s the
intercept, and what is the slope?




Predicting Wins From Run Diff

How many MLB games per season?
— 162

Great. So what 1s the average number of
wins per team per season?

— Uhhh...81!

So 1f Wins = a + b * Run Diff, what 1s a?
— tick...tick...tick... 81!

Mazel Tov

(Why? What 1s average Run Diff? Zero!)




Predicting Wins From Run Diff

Now, on average, how many runs per team
per season?

— check data... 775.5

And how many runs against on average?

— don’t check data... 775.5

What 1s ratio of average number of wins per
runs for (runs against)?

—81/775.5=0.10

So, 1if Wins = 81 + b * Run Diff, what’s b?
~0.10 (1)




Back-of-Envelope Result. ..
Wins = 81 + 0.10 * Run Diff

OK, now run a regression

SUMMARY OUTPUT

Coefficients Standard Error

Regression S5tatistics
Multiple R Intercept 0.28
R Square Run Diff 0.00
Adjusted R Square
Standard Error
Observations

Estimated intercept: 80.94 (vs 81)
Estimated slope: 0.10 (vs 0.10)




Wow! Let’s Try Basketball!

Try to predict seasonal wins from
difference 1n points for and against

2010-11 NBA 5eason 5tats
Games per team per season? 02
Average wins per team? 41

Foints per team per season 6163.373

Average points per win’? 199107
Average wins per point? 0.005

Back of Envelope suggests

Wins = 41 + .005*Point Differential



Basketball Regression

SUMMARY QUTPUT
Coefficients Standard Ermror

Regression Statistics Intercept 40.991 G 70.915

Multiple R 0.97 Jll Foint Differential 0.033 21.777

R Square 0.94
Adjusted K Squarn 0.94
Standard Error [
Observations

Back of envelope: Wins =41 + 0.005 * Pt Diff
What happened?




What Went Wrong?
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Worked for baseball, why not basketball?
We’ll get back to this, but first...




Bill James

* Published highly influential
Baseball Abstract from
1977-1988

* First widely-known
baseball “Sabermetrician”

* One of the inspirations for

Michael Lewis’s book
Moneyball




James’s Pythagorean Model

In 1980, Bill James presented his
Pythagorean model for baseball relating

seasonal win percentage (WP), runs scored
(RS), and runs against (RA4)

He called 1t the Pythagorean model because
the denominator has a sum of squares...




Pythagorean Model

James was the Johannes Kepler of baseball
Works pretty well!




Pythagorean Model

Why “2” 1n the exponent? Why not y?

Lots of papers 1n sports modeling literature
estimating 7y for different sports, e.g.

— Baseball: y=2

— Basketball: y= 14




Aside: Reverse
Engineering Pythagoras

Miller (Chance, 2007): 1if number of points
scored by two teams playing each other are
independent and Weibull distributed with
same shape parameter but different scale
parameters, probability of winning follows
the Pythagorean formula



How Does This Relate To...

...the baseball vs basketball “back of
envelope” models?

Dayaratna and Miller (2012) showed 1%-order
Taylor expansion of Pythagoras 1s

To get baseball model, set y= 2, and multiply
both sides by 162. Result 1s that intercept = 81,
slope = 81/average runs/team. Perfect!




How Does This Relate To...

To get basketball model, set y= 14, and multiply
both sides by 82. Result 1s that intercept = 41,
slope = 41*7/average points/team. So need to
multiply back of envelope basketball slope by 7!

Back of envelope basketball slope = 0.0035;

multip)

Y

Basket

by 7 to get 0.035

al

| regression gave slope = 0.033 (!!)




Worded Differently...

If n games per season, R, ; seasonal points on avg

. . n/2
Average wins/point = /
Rtotal
. . . n/2 %
Marginal wins/point = X =
Rtotal 2

= g X Average wins/point

For baseball, y= 2 and Marginal = Average

For basketball, y= 14 and Marginal =7 X Average




Still Unsatisfying...

Pythagoras with Taylor series explains why
back of envelope works for baseball, but not for
basketball

But that 1s just because y = 2 for baseball, and

14 for |

hasketball

Does t

e Pythagorean vy tell us anything about

baseball versus basketball beyond “that’s what
the data say?”

What 1

s 1t about the sports of baseball vs

basketball that give rise to the different y’s?




Aside: Quick Way To Estimate y

Consider running regression

WP = a + B(RS — RA) + ¢

Then can estimate vy as

We’ll use this later




An Exact Win Probability Model!

Let X denote the spread (1.e. point difference)
between a team and 1ts opponent

Normalize RS (RA) as average points for
(against) team per game (so just divide by 162
for baseball, 82 for basketball, etc.)

In a randomly chosen game, we have

E(X) = RS — RA




An Exact Win Probability Model!

Now for any team, define:

Pr{Win} = Pr{X > 0}

We can estimate this by WP, the team’s
observed winning percentage

Now, define a team’s expected margin of victory by
MOV = E(X|X > 0), (9)

and similarly define a team’s expected margin of defeat by

MOD = —E(X|X < 0). (10)




An Exact Win Probability Model!

Invoke law of total expectation and write

E(X|X > 0)Pr{X > 0} + E(X|X < 0)Pr{X < 0}
MOV x Pr{Win} — MOD x (1 — Pr{Win})

(MOD + MOV) »x Pr{Win} — MOD (11)

Rearrange terms to arrive at

MOD 1

PriWin} = x E(X).




An Exact Win Probability Model!

This win probability equation is also exact at the
data level for each team over a season

mod,; 1
mod; + mov; mod; + mov;

WP;[' — A [:RSE —RAI'] {13}
where WP;, RS; and RA; are the observed win percentage,
runs scored and runs against while mod; and mov; are
the observed average margins of victory and defeat re-
spectively for the ith team, i =1, 2,...,n.



Exact Model For 2016 MLB
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Figure 1: Exact win percentage for the 2016 major league baseball season.
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An Exact Win Probability Model!

Note 1n figure: one line per team, and observed
win percentage for each team 1s single point on
each team-specific line

The intercept a; and slope b; for the ith team are
ogiven by

mod,
mod; + mov;

and
B 1
] mod; + mov;




Back To Pythagoras

Tempting to compare exact model to Pythagoras
Taylor expansion:

b [RSE — RA E}

mod,; 1

= ——— + ——— « (RS; — RA;)
mod; + mov;  mod; + mov;

which in turn suggests that

mod; 1
mod; + mov; 2

Y 1
4 % Rigtg  Mod; + mov;



But That’s Not Right!

Exact model 1s correct on a team-by-team basis

Pythagoras model 1s cross sectional




Decomposing Pythagoras

To simplify notation, let: x; = RS; — RA; = observed aver-
age run differential per game over the course of a season
for the ith team; y; = WP; = seasonal win percentage for
the ith team; and recall the definitions of a; and b,

mod,;

mod; + mov;

B 1
mod; + mov;




Decomposing Pythagoras

Now, as is well known, the estimated regression slope
B in the model E(Y) = a + BX is given by

However, owing to the exact model, for any
team i we have

yi:ﬂi‘l'bi}fi fori = 1,2,...,n




Decomposing Pythagoras

Substituting the exact model we obtain the
cross-team regression slope estimate as




Decomposing Pythagoras
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Adding the three gray lines together yields the
solid black line




Decomposing Pythagoras

Finally we can approximate 7y as

mod,
mod; + mov;

1
mod; + mov;




Decomposing Pythagoras

Other things being equal, we see
that not only does ¥ increase with the average number of
points scored per game (Ry.q), it also increases with b,
which itself declines with scoring margin. The term Eﬂlx
is the rate with which the ratio of mod; to mod; + mov;
changes with score differential x; across teams

teams with higher average
net scores (higher values of x; = RS; — RA;) have lower

values of mod;/(mod; + mov;). This implies that B4, < O.
Simply stated, better teams have higher average net scores,
larger margins of victory (so when they win they win by
more), and smaller margins of defeat (so when they lose
they lose by less). Finally,

the term f,2 essentially equals zero.
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Example: NHL Hockey

Table 4: Pythagorean Decompaosition Results for NHL Hockey.

Year

2007
2008
2009
2010
2011
2012
2013
2014
2015
2016




Decomposing Pythagoras

RGLEN

Empirically, for baseball and basketball over
many seasons

B, is about 30% of b, which suggests a further
approximation

Y = 4 % Riotal ¥ 0.7 x b.




We Have A Story!

This means that the Pythagorean gammas should roughly

be in proportion to the ratio of scoring to scoring margin
for baseball and basketball.

Note: baseball 1s a game with low scores,
and low margins of victory/defeat (scores
of 4-2, or 5-4 are common)

Note: basketball 1s a game with high scores,
but very low margins of victory/defeat

(scores of 100-95 are common; scores of
100-50 are not)




Football? Hockey?

Decomposition also works; resulting Pythagorean
coefficients show no trend over time

Pythagorean y over time
(MLE, NBA, NFL, NHL)
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To Sum Up...

Relationship between scoring and winning can be
captured 1n exact win probability model on a team
by team basis

Pythagoras model yields cross-sectional summary
of this relationship across teams

Decomposing Pythagoras reveals importance of
both scale of scoring (average points) and margins
of victory/defeat

Ratios of Pythagorean coefficients across sports
interpretable as ratios of scoring to scoring margin




One More Thing...

Bill James deduced the Pythagorean model
based solely on observing patterns in data

Daryl Morey was first to apply 1t to basketball

When James heard about Morey’s result, he
said “I would never have guessed that you
could adapt the Pythagorean to basketball.
Basketball has very small margins, relative to
the score.”

It appears James really got 1t!




