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Outline

Basics: Euler-Lotka equation, R, scratch model, final size, herd
Immunity
Aligning indicators via scratch model: basic convolution,

application to hospital admissions and sludge RNA data (joint
with Jordan Peccia, Yale School of Engineering)

Interventions: testing and 1solation, repeat testing, residential
college models (joint with Joe Chang, Yale Data Science and
Statistics, and Forrest Crawford, Yale Biostatistics)

References on last slide



Early Transmission Basics

Define A(u) as instantaneous transmission rate from a person
already infected for duration u (think non-homogeneous Poisson)

R, 1s the reproductive
number (expected number
of infections transmitted
per infected person early in
outbreak)

Epidemic requires R, > 1



Early Outbreak Dynamics

M) 1s transmission rate from person infected for duration u
Once transmission starts, exponential growth in infections

Incidence of new infections grows as ke’ from i, initial infections

t N
ke™ = / ke" I \(w)du + woA(t), t >0
0

Multiply both sides by e7*/k and let ¢ grow yields (e7“A(¢) = 0)

/i e "ANu)du = 1.
0




Early Outbreak Dynamics

Euler Lotka equation /[_

The integrand b(u) = e ””/I(u) 1s a probability density — of all infections
taking place now, what fraction are transmitted by people who were
themselves infected u time units ago?

b(u) 1s the backwards generation time density; can be estimated from
contact tracing data (look backwards from contacts to infectors)

Exponential growth rate » estimated from 1nitial growth 1n cases (.1/d)

So write A(u) = e™b(u) and estimate S / YO — 2 to 3
0




Early Outbreak Dynamics

If instead of working backwards, one starts with an index case and
looking forward asks for the probability distribution of the time
until said index infects a contact, you get the forward generation

time density f(u) = A(u) / R,
The Euler Lotka equation /
f e"fAu)du = 1/R

which shows how to estimate R, from f(x) and r

s implies that

The forward generation time density reflects the timing of
transmission — we’ll use this later



How To Use Early Analysis In Dynamic Model?

/(a) = transmission intensity as function of age of infection
s(1) = fraction of the population susceptible to infection at calendar time ¢
n(1) = incidence of new infections at calendar time ¢

n(t—a)i(a)da

with initial conditions s(0) and #(a) fora < 0

Can modify to account for interventions (Kaplan 2020 MSOM),
repeat testing/isolation considered downstream




Using The Forward Generation Time

Define L = the forward generation time (or lag)
The probability density of L equals flu1) = A(u)/R;
The expected lag E| L] = |T uflu)du = ur

Rewrite the incidence of infection as

s(1) JI n(t—a)A(a)da

(* 00

s(f)RgJ n(t— a)fla)da

.S'(fJR:]E[E(f - L:):
~ S(H)Ron(f— ur)




Final Size in Unmitigated Outbreak

If there 1s no intervention and an outbreak “runs its course” then the
total fraction of the population infected 1s given by = J (1) du

Consider a susceptible person at time ¢
Instantaneous hazard of infection, y(7), defined by

y(1) = RoE[n(t—Lr)] = Ron(t—lr)[The probability of infection over the outbreak,

equivalent to final size, then given by

lntegrated hazard, I, given by |
P = ]_ — (_"_r ~ ]_ — e~ o

= [, v(dt = ReE[| " 1(t — Lr)df] ~ Ry

If R,=2.25, ¢ = 0.85 (worst case unmitigated outbreak)




Herd Immunity

If s 1s the fraction of a population that 1s susceptible, then herd
immunity 1s reached when R, s = 1 (so each newly infected person
infects one person on average)

From that point in time, each newly infected person no longer
“replaces” themself, though infections continue to be transmitted

Many people erroneously believe that if herd immunity is reached,
infections would suddenly stop

Wrong — it’s all about the journey!



Herd Immunity

Recall 7(7) = s(f)RoE[n(t— Lg)] = s(f)Ron(f— ug)

Suppose reach herd immunity at time 7~ (Rys(77) = 1)

This suggests incidence is maximized at time /" — uz/2 (1)




Herd Immunity in the Scratch Model
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Herd Immunity Solves an Optimization Problem
Let /,(t) = E[ftt_L m(u)dul.

This 1s the expected number of infections that occurs during the
generation interval ending at time z.

Find the maximum of /,(t). Differentiation with respect to ¢ yields
the first order condition w(t) = E[n(t — L)] = n(t — ug).

This is the condition characterizing the time t” at which herd
immunity is reached!!

So, in an unmitigated outbreak, herd immunity is reached at the
end of that generation interval containing the maximum expected
number of infections.



Herd Immunity in the Scratch Model
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Herd Immunity (R, = 2.5)

Three Approaches To Herd Immunity
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Aligning Epidemic Indicators

We’ve seen how incidence self-lags via forward generation time
n(t) = s(f)RoE[n(ft— Lg)] S(H)Rorm(t— ug)

Suppose y(7) is a (model-scale) lagging indicator of infection like
diagnosed cases, hospitalizations, or deaths with characteristic lag
L, and associated probability density and mean lag; then

w(t) = | t(t— a)fr(a)da = E[n(t—Ly)] = n(f— puy)




Example: SARS-CoV-2 RNA 1n Sewage Sludge

Idea first proposed on March 6 to monitor New Haven outbreak

Discussion with Prof. Jordan Peccia (Chemical and Environmental
Engineering), on March 11; this led to March 16 meeting with other
researchers who could contribute (with sample collection, PCR
testing, analysis); agreed to focus on local wastewater treatment plant

First samples were collected on March 19

Daily sampling continues to date; expanded to other treatment plants
in Connecticut (Stamford, Bridgeport, Hartford, etc.)



East Shore Water Pollution Abatement Facility:

------------------------------>

START:
Mar. 19,

2020

* 40 MGD capacity

« Serves New Haven, CT; East Haven,
CT Hamden, CT; Woodbridge, CT

* 4 stage Bardenpho treatment process,
1° and 2° sludge mixed and then
enters centrifuges and belt filter press
for dewatering along with sludge
from treatment plants across CT.

* Dewatered sludge is incinerated.

50 ml samples are collected daily from the mixed 1° and 2°
sludge from the East Shore Water Pollution Abatement Facilty
only

Apr. 1,
2020




SARS-CoV-2 RNA concentration in primary sludge at the East Shore Water

Pollution Abatement Facility in New Haven, CT




Aligning Sludge Signal with Scratch Model

Lag from infection until viral detection should follow forward
generation time (viral output should grow with A(7), hence £{(7))

This means L, = L and thus

Model actual sludge viral RNA Y(¥) as normal random variable with
mean ky(¢) and variance cy(¢); need to estimate k, ¢ from data



Another Indicator: Hospital Admissions

Studies of COVID hospitalizations have estimated time from
infection to hospitalization by first focusing on incubation time
(time from infection to symptoms), and then on time from
experiencing symptoms to hospitalization

Published lag density with mean of 13.5 days (95% probability
coverage 4.8 — 27.9 days)

Model scale hospital admissions represented as
h(t) = E[n(t—Lg)] = n(t— ug)

Actual hospital admissions modeled as Poisson random variable
with mean and variance of k,/(7); need to estimate k,




Aligning Epidemic Indicators

Given forward generation time and hospitalization lag densities
from epidemiological studies, estimate three scaling constants, R,
and cumulative incidence up as of February 19 (initial condition)

R, measures strength of the outbreak; initial condition places the
epidemic wave (higher initial condition pulls outbreak earlier in
time; smaller 1nitial condition pushes it later)



Results on the Model Scale

Model-Scale Infection Indicators:
Incidence, Hospitalization, and Viral Load
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Empirical Results

SARS-CoV-2 RNA Copies x 10>/ ml Sludge Daily COVID-19 Hospital Admissions
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Estimated R, = 2.38 (std error 0.10); cumulative incidence as of February
19 =0.016 (std error 0.003)

Suggests sludge signal leads hospital admissions by W ,— W= 4.6 days



Different Problem: Repeat Screening to
Detect and Control SARS-CoV-2 Transmission

Detect and 1solate new infections through viral testing
Gain control of transmission; prevent 1ignition of local outbreaks
Detecting new infections requires intensive screening

Focus on screening for asymptomatic infections to shorten time
from infection to 1solation

JAMA Network Logistics of Aggressive Community
Screening for Coronavirus 2019

Edward H. Kaplan, PhD*2:3; Howard P. Forman, MD, MBA1-2-4

—— JAMA Health Forum




Preventing Transmission via Isolation

Suppose an infected person 1s isolated at T time units after infection

10 20
Age of infection, a

Figure 1: Impact of isolation. For a person isolated at a random time 7 after infection., the
blue shaded area shows the expected number of further infections whose transmissions are
prevented by the isolation, and the red area shows the expected number of further infections
that escape isolation and are still transmitted.




Preventing Transmission via Isolation

T 1s a random variable

The distribution of 7" depends upon how
infected persons are detected

— Test based on self-identification of
symptoms relates T to incubation time and

0 " test sensitivity
Age of infection, a

— Asymptomatic screening relates 7' to
— Test based on contact tracing testing frequency and evolution of test

relates 7" to forward/backward sensitivity with time from infection
generation time and evolution of

test sensitivity




Preventing Transmission via Isolation

Expected transmission at age a of
infection, A(a), only experienced if
T'>a

Effectively reduces transmission
rate from A(a) to A(a)Pr{T > a}

10 20
Age of infection, a

Possible for R, < 1, showing how isolation could end outbreak



Repeat Testing in Fixed Population
(e.g. Residential College)

Perfect test, random screening with mean intertest time T days

Perfect test, scheduled screening once every T days

Pr { T > a } = max(1l —a/7.0)for a > 0

Scheduled more efficient than random since e @* > 1 — a/7T

Imperfect repeat test every T days with test sensitivity ¢; 7'1s now
time to first positive test

Pr { 1 >a } = (1 —o0) 7 (l — 0 g) for a > 0




Age-of-Infection Dependent Sensitivity

Let o(a) = test sensitivity at a time units after infection

Assume tests at different times are independent; scheduled repeat
testing with intertest interval T

Let g{a) denote probability density of 7, time to first positive test
=
r':r'{ f.!

gr(a) = H(l—ﬁ (a — k7)) for a > (
k=1

or(u)du




Age-of-Infection Dependent Sensitivity

Box function: sensitivity = 0 for a < w and a > r; otherwise = ©
— w s silent test window; r 1s test reach ety Ne) FENPPPn!
Empirical distribution based on empirical study testing same

infected people daily over time from symptoms; impute time
before symptoms (Kucirka et al 2020) .

logistic (—29.966 + 37.713 log(a) — 14.452(log a)? + 1.721(log a)?) e
logistic (6.878 — 2.436log(a)) 8 3
logistic(z) = e* /(1 +¢€7) s
0 5 10 15 20 25 30

t (days after infection)



Sensitivity function examples

1.00 -

0.754
%" === Sensitivity=1 after window=0
% 0.50- = Sensitivity=0.8 after window=2
-
% mmm  Kucirka sensitivity function

- oensitivity=0.6 after window=4,
reach=14
0.25+
0.00 ~

10 20 30
Age of infection (days)
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Isolation Delay

It takes time from when a test is taken until the test is processed and
the infected person 1s notified and 1solated; let € be isolation delay

Suppose 7T 1s the time from infection until the date of the first
positive test; 7, 1s the time from infection until isolation




Survivor functions

1.001
Sensitivity function
0.754 y
mmm  Sensitivity=1 after window=0
©
A mmm  Sensitivity=0.8 after window=2
— 0.504
B === Kucirka sensitivity function
- Oensitivity=0.6 after window=4,
0.254 reach=14
0.00 4 e

10 20 30
Age of infection, a (days)
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Figure 3: Probability that the time from infection to isolation exceeds a. Here the isolation
delay in all four scenarios was taken to be 1 day.




Combining Transmission and Time to Isolation

Recall transmission intensity given by A(a)Pr{T > a}

Transmission curves under different testing scenarios

Scenario

= Li et al. transmission function, no screening
RT=R0=1.6

- SeEnsitivity=0.8 after window=4, reach=14
RT=1.11

Kucirka sensitivity function

RT=0.97

Sensitivity=0.8 after window=2
RT=0.69

Sensitivity=1 after window=0
RT=0.26

10 20
Age of infection, a (days)

Figure 4: Transmission curves under different testing scenarios.




Putting It All Together

Suppose that in addition to internally generated infections, population
members are exposed to imported infections at rate v(¢), meaning in
addition to internal transmission, v(¢)s(¢) infections are imported at
time ¢ (think of v for visitor)

Repeat testing scratch model: from 1nitial conditions (gateway testing)

w(t) = s(t) { / N m(t — a)\Na) Pr{T > a} da + v ('?‘_'}} for t > 0

JO




Repeat Screening for SARS-CoV-2

Easy to determine true and false positive detection rates, fraction
of the population 1solated at any time, etc. from model

[solation Rate for True Positives: RO / r(t—a)gt ™ (a) da
Ja=0
Isolation Rate for False Positives:

Number in 1solation at time ¢ (duration of 1solation = A

i’
L(t) = / 0(u)du
Jmax(0,t—A)




[1lustration

Model available at
All the features described above are there

Criterion: find most difficult scenarios that keep cumulative
infections < 5% over course of 80 day semester (1.e. this fall!)

For different choices of forward generating time density f(7), test
sensitivity function, imported infection rate, initial conditions,
isolation delay, find largest R, that keeps infections < 5% over term
as a function of scheduled testing frequency



Generating Times and Sample Trajectories

Forward generation time distributions

0.094
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© Source
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0
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@ 0.034
0.004

10 20 30
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=T

Figure 6: Two estimated generation time distributions found in published studies. We refer
to these distributions as featuring relatively early transmission (Park et al. 2020) and late
transmission (Li et al. 2020).

Cumulative infections over time
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Figure 7: Cumulative infections over time in scenarios with testing every 3 days and fixed
infectivity function, sensitivity function, and delays, as Ry varies.



Results: Weekly Testing

Scenario Maximal Rg Infections Average Maximum

(f(a), o(a)) Isolated [solated

Positive

Tests/day

L1 et al. &7

Kucirka

Li et al.

step-function

Park et al.

Kucirka

Park et al.

step-function




Results: Testing Every 3 Days

Scenario Maximal Rg Infections Average Maximum Positive

(f(a), o(a)) Isolated Isolated Tests/day

Li et al. - 143 207 11

Kucirka

Li et al.

step-function

Park et al.

Kucirka

Park et al.

step-function




COVID College Outbreaks
Tracking Covid at U.S.

Colleges and Universities

By The New York Times Updated Sept. 10, 2020

Colleges

Thousands of new coronavirus cases continue to emerge on college
campuses.

Most of the colleges in question have not implemented repeat testing




Cautionary Note: University of Illinois

Twice weekly testing on campus

Large outbreak last week of August
Some persons who knowingly tested positive still attended parties etc
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First Two Weeks Look Good

Daily Testing Data

Population Type Sep 09 Sep 10 Sep 11 Sep 12 Sep 13 Sep 14 Sep 15 Total Tests in Individuals
Last 7 Days  Tested in
Last 7 Days

Students
# Tests

# Positives

Undergraduates living on campus
# Tests

# Positives
Undergraduates living off campus
# Tests

# Positives
Graduate & Professional
# Tests

# Positives
Faculty & Staff
# Tests

# Positives
# Tests 4| 1512| 1583| 9321 |

# Positives ‘




Testing Positivity Rate at Yale, Overall and by Group

7-day rolling average
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