
COVID-19 Scratch Models
Edward H. Kaplan

William N and Marie A Beach Professor of Operations Research
Yale School of Management
Professor of Public Health

Yale School of Public Health
Professor of Engineering

Yale School of Engineering and Applied Science

Columbia/Stanford OR PhD COVID-19 Seminar

YaleSCHOOL of MANAGEMENT YALE UNIVERSITYYale YALE UNIVERSITYYALE UNIVERSITY
School of Public Health

YALE UNIVERSITY
School of Engineering and 
Applied Science



Outline

♦ Basics: Euler-Lotka equation, R0, scratch model, final size, herd 
immunity

♦ Aligning indicators via scratch model: basic convolution,  
application to hospital admissions and sludge RNA data (joint 
with Jordan Peccia, Yale School of Engineering)

♦ Interventions: testing and isolation, repeat testing, residential 
college models (joint with Joe Chang, Yale Data Science and 
Statistics, and Forrest Crawford, Yale Biostatistics)

♦ References on last slide



Early Transmission Basics
♦ Define λ(u) as instantaneous transmission rate from a person  

already infected for duration u (think non-homogeneous Poisson)

R0 is the reproductive 
number (expected number 
of infections transmitted 
per infected person early in 
outbreak)

Epidemic requires R0 > 1



Early Outbreak Dynamics
♦ λ(u) is transmission rate from person infected for duration u
♦ Once transmission starts, exponential growth in infections
♦ Incidence of new infections grows as kert from i0 initial infections

♦Multiply both sides by e−rt/k and let t grow yields (e−rtλ(t)  0)



Early Outbreak Dynamics

♦ Euler Lotka equation
♦ The integrand b(u) = e−ruλ(u) is a probability density – of all infections 

taking place now, what fraction are transmitted by people who were 
themselves infected u time units ago?

♦ b(u) is the backwards generation time density; can be estimated from 
contact tracing data (look backwards from contacts to infectors)

♦ Exponential growth rate r estimated from initial growth in cases (.1/d)  
♦ So write λ(u) = erub(u) and estimate                            = 2 to 3 



Early Outbreak Dynamics

♦ If instead of working backwards, one starts with an index case and 
looking forward asks for the probability distribution of the time 
until said index infects a contact, you get the forward generation 
time density f(u) = λ(u) / R0

♦ The Euler Lotka equation                          implies that 

which shows how to estimate R0 from f(u) and r
♦ The forward generation time density reflects the timing of 

transmission – we’ll use this later



How To Use Early Analysis In Dynamic Model?

♦ Can modify to account for interventions (Kaplan 2020 MSOM), 
repeat testing/isolation considered downstream



Using The Forward Generation Time



Final Size in Unmitigated Outbreak
If there is no intervention and an outbreak “runs its course” then the 
total fraction of the population infected is given by

♦ If R0 = 2.25, φ = 0.85 (worst case unmitigated outbreak)



Herd Immunity

♦ If s is the fraction of a population that is susceptible, then herd 
immunity is reached when R0 s = 1 (so each newly infected person 
infects one person on average)

♦ From that point in time, each newly infected person no longer 
“replaces” themself, though infections continue to be transmitted

♦Many people erroneously believe that if herd immunity is reached, 
infections would suddenly stop

♦Wrong – it’s all about the journey!



Herd Immunity





Herd Immunity Solves an Optimization Problem
♦ Let IL(t) = 𝐸[׬ 𝜋 𝑢 𝑑𝑢]௧௧ି௅ . 
♦ This is the expected number of infections that occurs during the 

generation interval ending at time t.
♦ Find the maximum of IL(t). Differentiation with respect to t yields 

the first order condition 𝜋 𝑡 = 𝐸 𝜋 𝑡 − 𝐿 ≈ 𝜋(𝑡 − 𝜇ி).
♦ This is the condition characterizing the time t* at which herd 

immunity is reached!!
♦ So, in an unmitigated outbreak, herd immunity is reached at the 

end of that generation interval containing the maximum expected 
number of infections.





Herd Immunity (R0 = 2.5)
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Aligning Epidemic Indicators

♦We’ve seen how incidence self-lags via forward generation time

♦ Suppose y(t) is a (model-scale) lagging indicator of infection like 
diagnosed cases, hospitalizations, or deaths with characteristic lag 
LY and associated probability density and mean lag; then



Example: SARS-CoV-2 RNA in Sewage Sludge
♦ Idea first proposed on March 6 to monitor New Haven outbreak
♦ Discussion with Prof. Jordan Peccia (Chemical and Environmental 

Engineering), on March 11; this led to March 16 meeting with other 
researchers who could contribute (with sample collection, PCR 
testing, analysis); agreed to focus on local wastewater treatment plant

♦ First samples were collected on March 19
♦ Daily sampling continues to date; expanded to other treatment plants 

in Connecticut (Stamford, Bridgeport, Hartford, etc.)



East Shore Water Pollution Abatement Facility:

START:
Mar. 19, 
2020

Apr. 1, 
2020

• 40 MGD capacity
• Serves New Haven, CT; East Haven, 

CT Hamden, CT; Woodbridge, CT
• 4 stage Bardenpho treatment process, 

1o and 2o sludge mixed and then 
enters centrifuges and belt filter press 
for dewatering along with sludge 
from treatment plants across CT. 

• Dewatered sludge is incinerated.

50 ml samples are collected daily from the mixed 1o and 2o

sludge from the East Shore Water Pollution Abatement Facilty  
only 





Aligning Sludge Signal with Scratch Model

♦ Lag from infection until viral detection should follow forward 
generation time (viral output should grow with λ(t), hence f(t))

♦ This means LY = LF and thus

♦Model actual sludge viral RNA Y(t) as normal random variable with 
mean ky(t) and variance cy(t); need to estimate k, c from data



Another Indicator: Hospital Admissions
♦ Studies of COVID hospitalizations have estimated time from 

infection to hospitalization by first focusing on incubation time 
(time from infection to symptoms), and then on time from 
experiencing symptoms to hospitalization

♦ Published lag density with mean of 13.5 days (95% probability 
coverage 4.8 – 27.9 days)

♦Model scale hospital admissions represented as

♦ Actual hospital admissions modeled as Poisson random variable 
with mean and variance of kHh(t); need to estimate kH



Aligning Epidemic Indicators

♦ Given forward generation time and hospitalization lag densities 
from epidemiological studies, estimate three scaling constants, R0
and cumulative incidence up as of February 19 (initial condition)

♦ R0 measures strength of the outbreak; initial condition places the 
epidemic wave (higher initial condition pulls outbreak earlier in 
time; smaller initial condition pushes it later)



Results on the Model Scale
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Empirical Results

♦ Estimated R0 = 2.38 (std error 0.10); cumulative incidence as of February 
19 = 0.016 (std error 0.003)

♦ Suggests sludge signal leads hospital admissions by μΗ − μF = 4.6 days
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Different Problem: Repeat Screening to 
Detect and Control SARS-CoV-2 Transmission

♦Detect and isolate new infections through viral testing
♦Gain control of transmission; prevent ignition of local outbreaks
♦Detecting new infections requires intensive screening
♦Focus on screening for asymptomatic infections to shorten time 

from infection to isolation



Preventing Transmission via Isolation
♦ Suppose an infected person is isolated at T time units after infection 



Preventing Transmission via Isolation
♦ T is a random variable
♦ The distribution of T depends upon how 

infected persons are detected
– Test based on self-identification of 

symptoms relates T to incubation time and 
test sensitivity

– Asymptomatic screening relates T to 
testing frequency and evolution of test 
sensitivity with time from infection

– Test based on contact tracing 
relates T to forward/backward 
generation time and evolution of 
test sensitivity 



Preventing Transmission via Isolation
♦ Expected transmission at age a of 

infection, λ(a), only experienced if 
T > a

♦ Effectively reduces transmission 
rate from λ(a) to λ(a)Pr{T > a}

♦ Reduces reproductive number R0 to RT where

♦ Possible for RT < 1, showing how isolation could end outbreak



Repeat Testing in Fixed Population
(e.g. Residential College)

♦ Perfect test, random screening with mean intertest time τ days

♦ Perfect test, scheduled screening once every τ days

♦ Scheduled more efficient than random since e−a/τ > 1 – a/τ
♦ Imperfect repeat test every τ days with test sensitivity σ; T is now 

time to first positive test



Age-of-Infection Dependent Sensitivity

♦ Let σ(a) = test sensitivity at a time units after infection
♦ Assume tests at different times are independent; scheduled repeat 

testing with intertest interval τ
♦ Let gT(a) denote probability density of T, time to first positive test



Age-of-Infection Dependent Sensitivity

♦ Box function: sensitivity = 0 for a < w and a > r; otherwise = σ
– w is silent test window; r is test reach

♦ Empirical distribution based on empirical study testing same 
infected people daily over time from symptoms; impute time 
before symptoms (Kucirka et al 2020)



Examples of Test Sensitivity Functions



Isolation Delay

♦ It takes time from when a test is taken until the test is processed and 
the infected person is notified and isolated; let l be isolation delay

♦ Suppose T is the time from infection until the date of the first 
positive test; Tl is the time from infection until isolation



Survivor Functions for Time to Isolation



Combining Transmission and Time to Isolation
♦ Recall transmission intensity given by λ(a)Pr{T > a}



Putting It All Together

♦ Suppose that in addition to internally generated infections, population 
members are exposed to imported infections at rate v(t), meaning in 
addition to internal transmission, v(t)s(t) infections are imported at 
time t (think of v for visitor)

♦ Repeat testing scratch model: from initial conditions (gateway testing)



Repeat Screening for SARS-CoV-2

♦ Easy to determine true and false positive detection rates, fraction 
of the population isolated at any time, etc. from model

♦ Isolation Rate for True Positives:
♦ Isolation Rate for False Positives:
♦ Number in isolation at time t (duration of isolation = Δ



Illustration

♦Model available at https://jtwchang.shinyapps.io/testing/
♦ All the features described above are there
♦ Criterion: find most difficult scenarios that keep cumulative 

infections < 5% over course of 80 day semester (i.e. this fall!)
♦ For different choices of forward generating time density f(t), test 

sensitivity function, imported infection rate, initial conditions, 
isolation delay, find largest R0 that keeps infections < 5% over term 
as a function of scheduled testing frequency



Generating Times and Sample Trajectories



Results: Weekly Testing



Results: Testing Every 3 Days



COVID College Outbreaks

♦Most of the colleges in question have not implemented repeat testing



Cautionary Note: University of Illinois
♦ Twice weekly testing on campus
♦ Large outbreak last week of August
♦ Some persons who knowingly tested positive still attended parties etc



First Two Weeks Look Good
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